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The gravitational radiation emitted by a charged particle in the field of a plane circularly polarized 
electromagnetic wave is considered in the linear approximation of general relativity. It is shown that, in 
distinction from the case of the gravitational radiation emitted by a relativistic particle in a slowly varying 
field, the intensity of the radiation increases proportional to the sixth power of the ratio EI m, rather than 
the fourth power. A formula is also obtained for the annihilation of a pair into one graviton in the 
presence of an electromagnetic wave. The limit of a static field is discussed. 

INTRODUCTION 

The photoproduction of a graviton on a charged parti­
cle is one of the most essential microscopic processes 
that lead to the generation of high-frequency gravitational 
radiation in stellar interiors. For instance, for the sun 
(nonrelativistic electron energies) the effectiveness of 
this process is by several orders of magnitude larger 
than the Coulomb bremsstrahlung mechanism, and the 
corresponding magnitude of the flux of gravitational 
radiation near the earth turns out to be of the same 
order of magnitude as the flux of low-frequency gravita­
tional radiation from the nearest double stars [1J •. Other 
astrophysical applications require consideration of the 
region of relativistic temperatures. In this case, in 
addition to the one-photon photoproduction, the emission 
of a graviton accompanied by the absorption of one or 
more quanta becomes possible. All these processes are 
described uniformly as the gravitational radiation emit­
ted by a charge moving in an electromagnetic wave. 

In the present paper the problem of gravitational 
radiation emitted by an electron in the field of a plane 
Circularly polarized electromagnetic wave is discussed 
both within the framework of classical and quantum 
theory; in the latter case the exact solutions of the 
Dirac equation in the field of the wave are used. The 
units used are such that 11 = c = 1, e 2 = 1/137. The metric 
of free space is 1/00 = 1, 1)ii = -1 (i = 1, 2, 3). 

1. CLASSICAL THEORY 

In distinction from electromagnetic radiation, the 
gravitational radiation emitted by a charged particle is 
a nonlocal effect, since the contribution to the radiation 
come from the stresses of the total electromagnetic field 
of the particle, stresses which are in general distributed 
throughout the whole space. For this reason the gravi­
tational radiation emitted by a charge moving on a circu­
lar orbit in a homogeneous magnetic field [2 ,3J and in 
the field of a plane, circularly polarized, electromag­
netic wave turn out to be different, although the trajec­
tories of the motion are identical. 

Using the equations for a weak gravitational field [4J 

one can obtain in the linear approximation a formula that 
expresses the power of the gravitational radiation, Po> 
emitted by a charged particle, in terms of an integral of 
the product of the energy-momentum tensor T tJ.II and the 
derivatives of the potentials Ij; tJ. II of the gravitational 
field (an analo~of the Umov-Poynting theorem in elec­
trodynamics) [3 : 
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dW 1 '( a~)" 1 a It,·' , ChI''') PG+--=--Jdx T ----T'---2T -dt 2 V ,.n (jxG 2 ~ axil "ax)·· (1) 

Here dW Idt is the rate of change of the energy of the 
gravitational field in a volume V, Ij;tJ.II is the solution of 
the equation for the weak gravitational field 

D¢"=16nGT,, (2) 

with the subsidiary condition a Ij; tJ. II lax II = 0, where in the 
right-hand side of (1) one must substitute the semi­
difference between the retarded and the advanced solu­
tions of Eq. (2), in the same manner as in electro­
dynamics [5J • 

In the case of periodic motion of the particle, the 
second term in the left-hand side of (1) vanishes, and we 
obtain for the average power of the gravitational radia­
tion 

G~ ./ 
dPG=-;-"-.J (lw)'T • .'(wn)T"" (wn)N'''''dQ, 

,-, 
,. d(wt) 

T, .. ' (wn)= S -2-S dr T •• (r, t)e"·(I-.", 
o n 

(3) 

where w is a characteristic frequency, and n is a unit 
vector in the direction of the gravitational wave. For the 
case of motion of a charge in a given external field F~J 
satisfying the free Maxwell equations, the conserved 
energy-momentum tensor T tJ. II consists of a mass term 
and the energy-momentum tensor of the electromagnetic 
field, in which one has to retain only the mixed contribu­
tion from the proper retarded field F~eJ and the external 
field F~x;: 

, S dX,dx, .1(,.,. 1, .. =m ds----{)(x-x(s»+- F,. F,." 
ds ds 4n 

(4) 

We note that taking into account the conservation law 
aTtJ. lllax ll = 0 (Since all calculations are done in the 
linear apprOXimation for the gravitational field the 
gravitational interaction is not taken into account her.e) 
one can write the tensor AtJ.II>"p in a three-dimensionally 
transverse form , 

A.Ik,='/, (1\,,1\;,+ I\"A;o-I\,;I\.,), 

I\,;={),;-n,n; (i,;, k, 1=1,2,3) 

(5 ) 

(all other components vanish), and also represent this 
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tensor as an expansion with respect to two independent 
polarization states: 

(6) 

In this section we shall use the three-dimensionally­
transverse representation of the polarization tensors 

(1) H (I) I 

e" =2-"(e,oe;'-e,'e,o), e" =2-"(e,·e,·+e,oe,o), (7) 

where eO and eCfJ are the unit vectors of spherical coor­
dinates with the radius-vector along n. 

Let us consider a monochromatic plane electromag­
netic wave with circular polarization. We represent its 
4-potential in the form (cf. [4J) 

A,':,=a,' cos <p+a,. sin <p, <p= (kx); 
(8) 

a,'=a,'=-m's'le', (a,a,) =0, (a,k) =0 (i=1,2). 

If one neglects radiation damping, the motion of a 
charge in the field of a potential (8) in a special refer­
ence frame will be a circular motion. Therefore the 
contribution of the energy-momentum tensor of the par­
ticle coincides with the analogous quantity for the motion 
in a uniform magnetic field [3"]. 

In order to calculate the contribution of the electro­
magnetic stresses we write the retarded potential A¥et 
in the form 

A'~'=-21, ~ Sdqj(.::,(q)e-,m.'+i"{ p +in~6(q'-(mCll)')} 
",,,~ . q'-(mCll)' Iml ' 

(9) 

The term proportional to the delta function describes the 
electromagnetic radiation which has detached itself from 
the particle, and the corresponding term in (4) is a 
secondary effect of the transformation of electromagnetic 
radiation into gravitational radiation [2 ,6J. It is easy to 
show that in the case under consideration this effect van­
ishes. Indeed, since the external field is a plane wave, 
we are talking in fact about the conversion of two photons 
into a graviton. Since all three particles have zero mass, 
the law of conservation of energy and momentum requires 
that their momenta be collinear. Then the amplitude of 
the process, constructed out of the antisymmetric ten­
sors Fill! of the photons and the symmetric transverse 
tensor e Ill! of the graviton vanishes on account of the 
transversality condition. 

Calculating the contribution of the principal value in 
(9) to the Fourier transform of the energy-momentum 
tensor of the field and combining it with the contribution 
of the mass, we obtain 

, ms S'"dr:r. T = - ell"-4p _ e i {I!l-ll sin a cos c:r.)'t I 
(.) l'2 ,2n (.j, (10) 

T(;)= cos O(-v sin' r:r.(1 + cos 0) +i sin 0 cos r:r.II(1- cos 0», 

T(;,=A (v-'I, sin 2r:r.{1+cos 0) +i sin 0 sin r:r.1l(l-cos O)}. 

Here (} and CfJ are the spherical angles of the vector n, A 
= ± 1 corresponds to right (left) circular polarization of 
the plane electromagnetic wave and the absolute value of 
the velocity v is related to the intensity parameter I; by 
v = 1;/(1 + I; 2)1/2• 
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For small values of the parameter I; (nonrelativistic 
limit) the main contribution comes from radiation with 
the frequency w (l = 1). In this case one may neglect in 
the exponent the term proportional to v, which yields 

T l_- mssin20e'''' 1 Amsin6e'" 
(,)-1 , T(,,=- -=-----

41'2(1- cos 0) 21'2(1- cos 6) 
(11) 

These quantities correspond to the production of a gravi­
ton by a photon in a Coulomb field [lJ , and has a singular­
ity for cos (} = 1. This singularity is related to the long 
range of the Coulomb field and is removed by taking 
screening into account, which results in the difference 
(1 - cos 0) in the denominator being replaced by 

1-cos O+'I'(CllR) -', 

where R is the screening radius. 

(12) 

Radiation on the harmonic Z = 2 is described by ampli­
tudes without singularities. The angular distribution for 
the two independent polarizations has the form 

dPtl)= cos' 6 dPi,,=2n-'G(mCll)'s' cos' e cos' (9/2) dR, (13) 

and the total power radiated is 

P(;)='I,P', Pi,)='I,P', P'="I"G (mCll) 's'. (14) 

We note that this quantity does not coincide with the in­
tensity of radiation emitted by nonrelativistic gravita­
tionally coupled particles, calculated according to the 
Landau - Lifshitz formula [6J. The reason for this is the 
different contribution of the stresses (in essence this 
effect is relativistic, even for v - 0, since a photon par­
ticipates in it). 

In the general case of arbitrary values of the param­
eter I; the angular distribution of the intensity of gravita­
tional radiation has the following form: 

dPG=dP(l,+dP(,); 

6 W 

dP(l)=Om'(1+~')ctg'2 E (ICll)'ctg'9J,'(z)sinOdO, (15) 
1_' 

dP(,,=Gm'(1+s')ctg'+ t (ICll)'v'J,"(z)sinOd9, 
1_' 

where JZ (z) is the Bessel function of z = v sin (]. 

It is easy to see that dPw and dP(2) are proportional 
to the known expressions of the intensities of radiation 
for the so-called 'IT and C1 components of linear uolariza­
tion in electromagnetic synchrotron radiation [7]. This 
circumstance is not fortuitous and, as will be shown in 
the next section, it survives also in the quantum theory. 

Let us compute the total power of the gravitational 
radiation for the case of relativistic electron energies 
(I; »1). Since the maximum of the spectral intensity in 
(15) falls into the high harmonics (l ~ e) the sum over l 
and the integration with respect to (] can be carried out 
with the help of the quasiclassical asymptotic expres­
sions for the Bessel functions [7J , neglecting the term 
with l = 1, which has a nonintegrable singularity in (]. 
The result is 

PG",,'I,Gm'Cll' (1 +s') '='I,Gm'Cll' (Elm)', (16) 

where E = m(l + e)1/2 is the energy of the electron in the 
frame in which it is on the average at rest. 

We note that the fact that the power is proportional to 
the sixth power of the energy is, generally speaking, 
characteristic for the conversion of electromagnetic 
radiation (of synchrotron type) into gravitational radia-
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tion, for a charge which moves in a slowly varying elec­
tromagnetic field [6J; at the same time the proper gravi­
tational radiation of the particle increases as E4. In the 
case under consideration one cannot, however, consider 
the external field as slowly varying1); the effect of 
direct conversion of electromagnetic radiation into 
gravitational radiation is totally absent, as we already 
remarked. However, in our case the energy E is in fact 
determined by the value of the invariant ~ 2 which charac­
terizes the intensity of the electromagnetic wave and is 
thus not an independent parameter. 

2. QUANTUM THEORY 

The usual description of the photoproduction of a 
graviton on an electron in terms of perturbation 
theory [8-11J is applicable if ~ « 1. For large intensities 
of the incident wave (~ :;::; 1) one must take into consid­
eration the contribution of multiphoton diagrams. The 
corresponding calculations can be carried out in the 
Furry representation. Making use of the solutions of 
the Dirac equation in the field of a plane electromag­
netic wave [12,13 J; this is done under the assumption that 
the interaction with the electromagnetic and gravitational 
fields can still be treated as a small perturbation. 

In an arbitrary graviton gauge the matrix element of 
the process under consideration has a rather complica­
ted form: 

S:i= 4'1'X(j)' e,:(k') S dxe"·'(if,·l'>1: .. '·-iji;~ 1'>1:,). (17) 

-; ex e,." (k') S dx e""'if,'l'lj:,A,:,+i ex ell: (k') J dx dx' e"'x'iji" (x) 
Uw' 4Jtl'w' 

X (l·a <"Do' (x-x') -l'a,,''Do' (x-x'» F:./, (x') 11'. (x), 

where l/iq (x) is an exact solution of the Dirac equation in 

the field of a circularly polarized electromagnetic 
wave[12,13J, l/i;{ == aVl/iq, K = (161TG)1/2. The first, second 

and third terms in (17) are represented by the diagrams 
a, b, c in the Figure, where the double line represents 

I 
.... 
I 
I 

;. , ;. 
b 

the exact electron wave function, the cross denotes the 
external field of the wave, considered as classical and 
the dotted line corresponds to the emitted graviton. 

The polarization tensor of a graviton with four-mo­
mentum k' satisfies the relations 

e,,(k')k"=O, 

e,:(k')e"(k') =1. 
(18) 

All calculations become significantly simpler if one 
makes use of the technique of helicity amplitudes [10, 11J • 

For this purpose we construct two space like 4-vectors: 

(t) _ i (Z)" ~/v p {Il _ el.p.vpk''''kVqP 
e, - (kk') e.".e k k, e, - (kk') (2(kq) (k'q)/(kk')-m.')'I. (19) 

having the following properties: 

(e(l)e(l) = (e("e(") =-1, (e(l'e(2') =0, 

(e(Ok) = (e(Ok') =0 (i=1, 2), (e("q) = (e("q') =0, 

(e(tlq) = (e(!)q') = (2 (kq) (k' q) I (kk') -m.') '''; 

(20) 

q and q' are the quasi-momenta of the electron in the 
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initial and final states, respectively (q 2 = m~ 
= m 2(1 + ~2). In (20) we have taken into account the fact 
that the matrix element of the process under considera­
tion is represented as a sum of amplitudes of partial 
processes with the conservation laws sk + q = q' + k' . 
The relations (20) allow us to fix the gauge of the elec­
tromagnetic wave in the following manner: 

and to characterize the two independent polarization 
states of the graviton by the chiral tensors (helicity 
tensors) 

(21) 

(22) 

Indeed, the validity of the relations (8) and (18) follows 
obviously from (20); moreover tensors of opposite heli­
city are orthogonal: 

In the gauge (21), (22) the total contribution of the 
second and third terms of (17) (the diagrams b and c of 
the figure) vanishes and the matrix elements of the 
S-matrix corresponding to the emission of a graviton 
with positive or negative helicity turns out to be propor­
tional to the helicity matrix elements for the emission of 
a photon: 

ilt':r:: 
(.:1::) lot S e --SJj =-; --=(e(±J'q) dx-=t,'e(±)·"". (23) 

'12 1'2w' 

Making use of the results of [14J , this allows us to write 
directly an expression for the partial wave probability 
of emission of a graviton (from unit volume, per unit 
time) with the absorption of s (S:2:: 1) quanta from the 
wave: 

(.) n du (u. ) dWG =-Gm'(Hs')--- --1 
4qo (1+u)' u 

(24) 

here n is the electron density 
(kk') 28 (kq) 

U= (kq') , O,;;u,;;u.= -----;;;:;--' 

and the variable in the Bessel functions is 

Z=28-~-(~ (l-~)) 'I. 
(1 +6') ':. u' u' . 

For l; « 1 the right-hand side of the expression (24) 
can be expanded in powers of l;. The first term of the 
expansion in dWg), with appropriate normalization of the 
4-potential of the wave (13) coincides with the probability 
for the photoproduction of a graviton, calculated accord­
ing to perturbation theory [11]. Passing to the classical 
limit in (24) (w'/qo« 1), then in the frame where the 
electron is at rest on the average, the formula obtained 
here coincides with the classical intensity of the gravi­
tational radiation (15) divided by sw. 

The probabilities of the processes of one-graviton 
annihilation and pair-creation by a graviton can also be 
calculated making use of the gauge (21), (22). Just as in 
the case of emission, these probabilities turn out to be 
proportional to the corresponding quantities for proces­
ses with the participation of a photon. In particular, the 
probability for the annihilation of a pair into one gravi­
ton in the presence of a circularly polarized wave has for 
l; »1 the form 

_ Gm.' ( ~-1) W 
wG - e' ~ (x+x')' T' 
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( + ')' --':"'[-(F'" ')')'" ,_ e [ (FOX' ")']'" ~ __ q_q_ x- m3 ~'" q I X - rn3 - II'" q ,- m/' t (25) 

and Wy is the total probability for one-photon annihila­

tion [15J. We note that for ~ - 00 (for fixed other invar­
iants on which the probability depends) (25) tends to zero. 

3. THE EMISSION OF A GRAVITON IN A 
STATIC FIELD 

The limit ~ - 00, which allowed us to go over from 
the probability of emission of a photon by an electron in 
the field of a circularly polarized wave to the corre­
sponding probability in static crossed fields [15J, makes 
the probability of emission of a graviton infinite. Indeed, 
the 4-momentum conservation law implies that in a static 
field the momentum of the intermediate photon (diagram 
b) is on the mass shell. Therefore the gravitational 
radiation of an electron in a static field will be deter­
mined principally by the succession of two events: the 
emission 02 a photon by the electron with successive 
transformation of the electromagnetic radiation into 
gravitational radiation. The formal becoming infinite of 
the probability means in fact that the amplitude of the 
gravitational wave increases with the distance. 

Within the framework of classical theory the intensity 
of the gravitational radiation in an arbitrary static field 
can be determined by means of solving the equations for 
the gravitational potentialS? means of the method of 
slowly varying amplitudes [6 • This intensity turns out 
to be proportional to the square of the distance to the 
observation pOint, in agreement with the fact that the 
integral over a spherical volume of the stress tensor of 
the total field of the electromagnetic radiation and the 
external field, which in this case is the main source of 
gravitational radiation, grows in the same proportion: 

rei , dP 
dPG _ Gr'(F ox, ')'-' dQ-- .' n dQ' (26) 

One should however keep in mind that we neglect the 
variation of the amplitude of the electromagnetic radia­
tion on account of the effect of conversion into gravita­
tional radiation, as well as the inverse transition. As 
was shown by Zel' dovich [16J , a joint consideration of the 
direct and inverse processes leads to oscillations of the 
amplitude for large r. 

In the quantum theory of the problem we restrict our 
attention to the diagram b, and replace the propagator in 

" (l) d (2) it by ItS absorptive part. For the 4-vectors E an E 

from which the graviton polarization tensors (22) are 
constructed it is convenient to choose 

t (2) ep.y,.k''''p'''Feztk'P 
.. (o= __ e '_8(z)vk''''p' e . (27) 
~ (k'p) •• ~ ,. (k'p)[-(F;~k")']'/' 

Then the contribution to the amplitude of one-graviton 
emission, related to the conversion of the electromag­
netic radiation of the particle into gravitational radiation 
in a static field F~t takes the form 

M~"')=-(4G)"'e~1l n.F:'~IM:"", (28) 

where M(j:) is the helicity amplitude for the emission of 

a photon rn the field F~it and I is a divergent integral: 

1= J dql\(q+k')I\(Cil"-q'). (29) 
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We make use of the follOWing formal trick. We repre­
sent li (k + k/) in the form 

1 
1\ (q+k')-lim. -,-( (q+k')'+r-Z) -', (30) 

r-oo 1t r 

which has the result that (29) takes the form r/21Tw'. 
The corresponding contribution to the intensity of the 
gravitational radiation due to the direct conversion of 
the electromagnetic radiation of the electron into gravi­
tational radiation turns out to be proportional to the in­
tensity of the electromagnetic radiation and we obtain a 
formula analogous to (26). In the special case of the 
crossed field 

dP'" e dP 
__ 0 _ =4GB'r' sin' __ , 

dQ 2 dQ' 

where e is the angle between k and k', k is the "wave 
vector" of the crossed field, and B is the absolute value 
of the field strength. The electromagnetic radiation of an 
electron in a crossed field has been discussed in detail 
in [15J. 

'lEssentially the slowly varying field approximation of Sushkov and 
Khriplovich [6) corresponds to neglecting the momentum carried 
away by the external field, which is not admissible in the case under 
consideration. 
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