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We measure the temperature dependences of the damping and velocity of longitudinal elastic waves with 
frequencies between 500 and 1000 MHz in gadolinium molybdate crystals near the phase transition. The 
temperature dependences of some photoelastic constants are also measured. Calculations of the elastic, 
velocity. and photoelastic parameters are carried out with account taken of a two-component order 
parameter. The theory is shown to describe the experimental results satisfactorily. Some coefficients in the 
free energy expansion are determined by comparing the experimental data with theoretical calculations. 

Gadolinium molybdate (Gd2(Mo04h is a ferroelectric 
crystal (Curie temperature 159°C), for which the spon­
taneous polarization is not a tranSition parameter. [ll 
The elastic and photoelastic properties of such crys­
tals in the region of a phase transition should differ 
from the properties of ordinary ferroelectrics. The 
elastic properties (attenuation and velocity) of crystals 
of gadolinium molybdate were studied in [2,3 l ; however, 
these studies were carried out at low frequencies and 
were not exhaustive. In the present work, the problem 
has been set up of carrying out a measurement of the 
temperature dependence of the attenuation and velocity 
of high-frequency elastic waves and the temperature 
dependence of photoelastic constants in the region of a 
phase transition, and of comparing the experimental 
results with the theory for a ferroelectric with a two­
component order parameter. 

1. EXPERIMENTAL METHOD AND 
EXPERIMENTAL RESULTS 

For measurement of the elastic and photoelastic 
constants of crystals, a method of Bragg scattering of 
light by elastic waves was used (:\0 = 6328 A). Longitud­
inal elastic waves with a frequency of 500-1000 MHz 
were excited by means of a lithium niobate piezoelectric 
transducer. The samples had average linear dimensions 
of about 1 cm. To make the temperature measurements, 
we used an optical thermostat, the temperature in which 
was changed from 20 to 200°C and stabilized to within 
o .02°C. The attenuation coefficient of elastic waves r 
(in decibels per unit length) was calculated from the 
formula 

r=~lg l(x,) , 
x,-x, I(X2) 

where I(Xl) and I(x2) are the intensity of the scattered 
light at the points Xl and X2 along the direction of prop­
agation of the elastic wave. 

The possibility of carrying out measurements for 
X2 - Xl "" 1 mm allowed us, first, to determine the high 
value of the attenuation and, second, practically to elim­
inate the effect on the results of the measurements of 
temperature gradients which in our experiments amoun­
ted to about 0.03 deg/mm. The velocity of the elastic 
waves was calculated from the scattering formula 

v=f..ov/2 sin f\j, 

where II is the frequency of the elastic waves, liB the 
external Bragg angle. The scattering angles were 
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measured by means of a GS-5 goniometer, on the stage 
of which attached the thermostat with the sample. The 
temperature dependences of the photoelastic constants 
were determined from the temperature dependences of 
the scattering intensity, attenuation and velocity of 
elastic waves. 

All the measurements were carried out on single­
domain samples. A small mechanical pressure was 
applied to the samples during the process of measure­
ment to maintain the single-domain character. In cer­
tain samples, transparent electrodes were attached on 
the faces perpendicular to the Z axis. Through these 
electrodes, a constant electric field could be applied to 
the sample or it could be short-circuited. The accuracy 
of the measurements of the attenuation and the velocity 
amounted to about 10 and 1%, respectively. Inasmuch 
as the measurements of the photoelastic constants were 
carried out without a standard, the accuracy of these 
measurements did not exceed 30%. 

The results of certain measurements are given in 
Figs. 1-4. As the transition temperature is approached 
from the ferroelectric phase, the damping of the 
elastic waves for propagation along the 5t and X axes 
increases, while their velocity decreases, even in the 
temperature range far from the transition point (here 
and below, the notation XYZ applies to the axes of the 
ferroelectric phase and XYZ to the axes of the para­
phase). Near the transition point, the damping increas­
es by almost an order of magnitude while the velocity 

FIG. I FIG. 2 

FIG. I. Temperature dependence of the attenuation of longitudinal 
elastic waves propagating along the X axis. The frequency of the elastic 
waves here and in the subsequent drawings is 550 MHz. The dashed line 
is that calculated from Eq. (II). 

FIG. 2. Temperature dependence of the velocity of longitudinal 
waves for propagation along the X axis. The dashed line is that calcu­
lated from Eq. (II). 
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FIG. 4 

FIG. 3. Temperature dependence of the Bragg angle (I) and velocity 
(2) for longitudinal waves along the X axis. 

FIG. 4. Temperature dependence of the attenuation of longitudinal 
waves propagating along the Z axis. 

falloff by a factor of 1.5 (the temperature dependence 
of the Bragg angle is also shown in Fig. 3. (The temper­
ature dependence of the velocity can be calculated from 
it.) In the paraphase, the attenuation and velocity of 
the elastic waves change more rapidly with temperature 
than in the ferroelectric phase. In the range of tem­
peratures adjacent to the transition point, the damping 
turned out to be so large that it was not possible to 
measure it. From an investigation of this temperature 
region, it follows, however, that no Significant decrease 
in the attentuation is observed at the transition point. 
This decrease had been discovered at very low frequen­
cies in L2]. 

Measurements of the frequency dependence of the 
damping of elastic waves of the types considered have 
shown that this dependence is close to quadratic. The 
imposition of an electric field of 5 kV /cm along the Z 
axis of the crystal led to a shift in the temperature 
dependence of the velocity and attenuation by ~2°C in 
the direction of higher temperatures, while the forms 
of the dependences themselves did not change. 

For longitudinal waves propagating along the Z axis 
(Fig. 4), an anomalous change in the attenuation takes 
place in a narrow temperature range near the transition 
point, and the temperature dependence of the attenua­
tion is almost symmetric relative to the transition 
point. The velocity of these elastic waves does not de­
pend on the temperature within the limits of accuracy of 
the measurements. The photoelastic constants, as mea­
surements have shown, do not change with changing tem­
perature over the range of temperatures studied, again 
within the limits of accuracy of the measurements. 

2. CALCULATION OF THE ELASTIC AND 
PHOTOELASTIC CONSTANTS 

For comparison of the experimental results with 
theory, a calculation was made of the attenuation and 
velocity of the elastic waves. These calculations are 
carried out in principle in exactly the same way as in 
the well-known work of Landau and Khalatnikov.L5] 
The complications of the calculation are connected only 
with the fact that the order parameter in gadolinium 
molybdate is a two-component parameter. 

We write down the equations of motion for the com­
ponents of the order parameter and calculate their in­
crease under the action of the prescribed elastic wave. 
The inertial effects will not be taken into account, so 
that only the expressions for the free energy and the 
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diSSipation function will be necessary for writing down 
the equations of motion. The part of the free energy 
dependent on the order parameters takes the formL6 ] 
(for the sake of compactness of writing, the notation is 
changed somewhat here) 

F~'/,ar'+'/,~,r'+'/.~,r' sin 4(cp-cp,)+'/,sr'+6,u"r' 
+6, (u;:, +uy y,)r'+6,uxyr' sin 2 (cp-cp,), 

r, cp are the polar coordinares in t he plane of the order 
parameters L6 ]. Uti{ are the components of the deforma­
tion tensor on the axes of the paraphase. The coupling 
between the order parameters and the polarizations is 
small L1 ] and is not taken into account here. The coeffi­
cient a depends linearly on the temperature: 

a~a,+a(T-T,), a,~3(~,-~,)'/16s, 

while the other coefficients are constant, and {32 "=: 0, 
~ > 0 and, inasmuch as the tranSition is a first order 
transition, {32 > (31. There is at most one quadratic 
invariant of the order parameter; therefore the dissipa­
tive function 

.p~t/,,, W+r'¢') 

depends only on one constant coefficient iJ.. 

The coupling between the order parameter and the 
elastic deformations is assumed to be small, so that 
the effect of spontaneous deformation on the order para­
meter can be neglected when not too close to the transi­
tion point. Then, for T < Tc, the free energy reaches a 
minimum for L7 ] 

n n 
Cp~Cp'''''Cp'-"8 + n"2' 

where n is an integer. The values of cpo, which differ 
by 1T/2, correspond to a domain with a different direc­
tion of polarization, and those which differ by 1T, to one 
and the same macroscopic state .L8] 

In the presence of the elastic wave, characterized 
by the tensor Uik, r and cp take on the increments ~r 
and ~cp, which satisfy the equations 

"M+2r,'1' (~,-~,)'-4a; Ar=- (iJ'FliJriJuik)'U", (2) 

w,'L'1¢+4~,r,'L'1cp=- (iJ'FliJcpiJu,,)oUik, (3) 

where the zero subscript on the derivatives indicates 
that they refer to the state of equilibrium. It nrust be 
noted here that the terms of the free energy which 
guarantee the coupling between the order parameter 
and the deformations are proportional to r2. By virtue 
of this, the right-hand sides of Eqs. (2) and (3) are 
equal to zero above the transition point when r = 0, so 
that the propagation of the elastic wave in the linear 
approximation does not produce a change in the order 
parameter. In this connection, the gadolinium molyb­
date behaves in a manner similar to the usual ferro­
electric that does not have a piezoeffect in the para­
phase. 

Setting uik ~ exp (-iwt), we obtain 

It turns out that, in spite of the fact that the dissipative 
function is characterized by a single coefficient, the 
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modulus r and the phase cp of the order parameter have 
different relaxation times: 

11 T,,=--. 
4~2r02 

The existence of .:lr and .:lcp leads to a contribution 
to the elastic stress tensor 

where 

~CiAlm=---1 -- --
1 1 ( ifF) iJ'F 

1-io", 2ro' l' (~,-~,) '-4as ar au;, 0 (ar au,) 0 

1 1 ( a'F) a'F 
- 1-io". 4~,ro' iicp iiu " 0 (iiCP iiu'm ) 0 

(4) 

is the contribution to the elastic modulus tensor ciklm. 
The change in the polarization in the elastic wave, con­
nected with the piezoeffect, leads to a similar contri­
bution. However, in contrast with the usual ferroelec­
trics, this contribution in the case of gadolinium molyb­
date does not depend on the temperature and therefore 
it is convenient to include it in the bare tensor ciklm, 
i.e., taken for an order parameter equal to zero. 

The complex contribution to the elastic modulus 
tensor leads to damping and to renormalization of the 
velocity of the elastic wave: 

f=- 1m ~Cuqqu (i) , 

Cuqqu v 

~V 1 Re ~CUqqU 
-~-

v 2 Cuqqu 

(5 ) 

Here the indices u and q denote the directions of polar­
ization and the wave vector of the elastic wave. 

Using formulas (4), (5), we write out the damping 
coefficient and the contribution to the sound velocity for 
several cases. In propagation of an elastic wave along 
the X axis, we have 

(6) 

and for the case of propagation along the X axis, 

r~ 2[6,-6, sin 2 (CPo-<P') ]' w'" + 6,' cos' 2('1'0-'1") "h:. 

cllvl' (~,-~,)'-4as l+w',,' ClIV~, 1+w',.' 
.1. v [6,-6. sin 2 ('1'0-'1") ]' 6,' cos' 2 ('1'0-'1") (7) 
v 2cl1~' 

In the case of propagation along the Y axis, the corres­
ponding formulas differ from (7) by the replacement 
of Ih by -113, and along the Z axis, we have 

r 26,' 1 w'" 
c"v 1'(~,-~,)'-4as l+w',,' 

6,' 1 1 I!v 
(8) 

r~~w,[Sil1'2(<Po-CP') T, +,cos'2(<po-cp,) '. ], 

21'"" f (p,-p,r-4as l+o,'T,' 2~, l+w',.' 
~v 6,' [ sin' 2 (CPo-CP') 1 cos' 2 (CPo-CP') 1 ] 

u 4c" l'(~,-p,)'-h~ l+w'T,' + 2~, 1+w2 Tq' 

(9) 

and for a wave polarized along Y and propagating along 
X, the coupling constant vanishes and, consequently, the 
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correction to the velocity of the elastic wave and also to 
the damping coefficient vanish. 

All the temperature dependences are determined by 
the temperature dependence of the expression 

l'(~,-~,)'-4asi~(~,-p,) [4-+ (~'::1)' (T,-T) r· 
The coefficients for (Tc - T) can be determined from 
the measurements of the jump in the specific heat at con­
stant electric field and pressure .:lC = 6 X 10-3 cal/g­
deg[9 J and the entropy jump .:lS = 0.7 cal/mole_deg.[9,10 J 

Using the expressions 

IlS= 2 ~2-~1 a I1C= Tea2 
8 s' p,-~.' 

we get 4a~/(r32 - (31)2 ~ 10-1 deg-1. This numerical value 
gives excellent agreement between the theoretical tem­
perature dependence of the polarization and the experi­
mental results, [11 J with the exception of the vicinity of 
the transition point of the order of 50. 

We consider further the photoelastic properties of 
the crystals. They are determined by the dependence 
of the reciprocal dielectric permittivity tensor Elk on 
the deformations. In order to take account of the con­
tribution to Elk from the order parameter, we must 
make use of the fact that the tensor properties of Etk 
are identical with the properties of the stress tensor 
Eik' the form of which is determined by the free energy 
(1). We have 

e~f = (f;;} )Ujk=O -1- jj~l11xx + p~zU,1i!i + P~3U:: --1- glr2, r_. 
Ea} = (~:;:11)nik=o + F~lllXX + P~l UVY + P~311zz +- gar2 , 

1'=0 

where Pika are the photoelastic coefficients which are 
not connected with the order parameter. For the condi­
tion wTr « 1, we get 

~ --, -l- 2g'/)2] 
Fa = l"i., - V(~2 _ ~1)' _ 4as uxx' 

1'1;-1 = [-. _ 2g,/), ] ll ... 
'" . P., Ve (~2 - ~1)2 - 4as .' 

(10) 

3. DISCUSSION OF THE RESULTS 

The nearly quadratic frequency dependence of the 
damping, and also the absence of velocity dispersion, 
allow us to conclude that, at the frequencies used in the 
research, and for temperatures that are not too close 
to the transition point, the relation WT « 1 is satisfied. 
In this case, the formulas (6)-(8) for the attenuation 
and velocity of these types of waves, which have been 
studied experimentally, can be put in much simpler 
form. 

Longitudinal waves along X: 
r~ 2/),'116 w' 

pv'(~,-~,)' (Hl't)t 
(11) 

V pv' (p,-~,) it 

longitudinal waves along X: 
r = 216,-/), sin 2 (CPo-CP') Fils. w' 

1 T,-T 
t""-+~-· 

4 10 

, 6,'IlSw' cos' 2 (CPo-CP') 
T _ 

(Jv"(~,-~,)' t(1+}'t) 2pv'~,'(~,-~,) (H'I't) 

~" _ [62 -Il,sin2(<po-cp,)]' 1. 1 "( ) 
--- ,-=----/), cos 2 cpo-CP' 

V pV2(P2-~') l't 2pV2~,' 

and longitudinal waves along Z: 
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r=_2'\'I1£ 0)' 

pU'(~,_~,)3 t+(1+1't) 

du (13) 

u pv' (~,-~,) 'It' 

It follows from a comparison of the experimental 
results shown in Figs. 1 and 2 for the wave u:gx with Eq. 
(11) that in this case the tensor well describes the tem­
perature dependences of the attenuation and velocity. 
The best correspondence between experiment and cal­
culation is given for 

Ii ' __ 2_= 1.5.10" erg/cm3 

~2-~' 
11; 4 10-12 

(~2-~,)2 =. sec. 

It then follows that the expression for the temperature 
dependence of the relaxation time of the order para­
meter modulus is given by 

4.10-12 

T, = _ _ [sec]. 
1't(1+1't) 

The agreement between theory and experiment 
should be expected only for temperatures that are not 
too close to the transition point, inasmuch as the coup­
ling of the order parameter with the elastic wave can­
not be regarded as weak close to this point; moreover, 
a large contribution to the attenuation and velocity can 
be made by the fluctuation mechanism, which is not 
taken into account in the theory. According to the theory, 
the attenuation and change in the velocity in the para­
phase should be absent; therefore the experimentally 
observed dependences should as a whole be due to the 
fluctuation mechanism. The contribution of such a 
mechanism, as follows from the experimental results, 
turns out to be very important. This fact also explains 
the asymmetry of the temperature dependences of the 
attenuation and velocity; in the paraphase, these depen­
dences are determined only by the fluctuations, and in 
the ferroelectric phase, both by the fluctuations and 
by the coupling with the order parameter. 

The experimental results for longitudinal waves 
.uong the X axis can be explained qualitatively in the 
same fashion; however, a quantitative comparison is 
difficult to make, since Eqs. (12) contain two com­
ponents and there exists considerable arbitrariness in 
the choice of the unknown parameters. The compari­
son of the results of the experiment for longitudinal 
waves along the Z axis with Eq. (13) shows that Ih 
:5 lO-l lh. 

Starting out from the symmetric form of the temper­
ature dependence of the attenuation and a narrow range 
of temperatures, in which such a dependence exists, the 
conclusion can be made that the attenuation of this type 
of wave, both in the para- and in the ferroelectric phase, 
is determined by the fluctuation mechanism. [12] The 
small width of the temperature peak of the attenuation 
shows that for a longitudinal wave along the Z axis, the 
coupling with the fluctuations is Significantly weaker 
than for longitudinal waves along and X and X axes. 

An interesting feature of the temperature dependence 
of the attenuation, due to coupling with the order para­
meter, is the relatively slow change in the attenuation 
upon departure from the transition point. For large 
coupling constants, such as is the case for longitudinal 
waves along the X and X axes, this attenuation should 
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be considerable even at room temperature (we note 
that the expansion (1) is still valid at room temperature, 
as follows from the data on the temperature dependence 
of the polarization). In the case of a small or zero 
coupling constant, the attenuation at room temperature 
should be determined only by the lattice mechanism, 
i.e., it should be less than in the first case. As shown 
in this research, the coupling constant is small for the 
wave uzz and is equal to zero for the waves Uxy and uxz. 
It follows from the experiment of[4] that the attenuation 
of these types of waves at room temperature is smaller 
by a factor of several fold than the attenuation of the 
waves uxx, Uyy and u:gx, i.e., in actuality, the coupling 
with the order parameter can make a considerable con­
tribution to the attenuation in temperature ranges that 
are far from the transition point. The large attenuation 
at room temperature is observed also for a wave of the 
type Uxy, i.e., the coupling constants in Eq. (9) are suf­
fiCiently large for this wave. 

In conclusion, we consider the question of the tem­
perature dependence of the photoelastic constants. In 
correspondence with the expressions obtained in Sec. 2, 
this dependence is determined by the contribution of 
mechanisms not con:lected with the phase transition, 
and the contribution from the order parameter. The 
first mechanism is practically independent of the tem­
perature, and the temperature dependence of the contri­
bution from the order parameter is determined, accord­
ing to (10), by the expression (1/4 + (T - Tc)/10tl/2 
with a coupling constant which includes the coefficients 
g, 0 and {32 - (3l. From the experimentally discovered 
lack of temperature dependence of the photoelastic con­
stants, it follows that gO/({32 - (3l) ;s 10-2 • 
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