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Anomalies of the electron dislocation drag force are investigated for various types of phase transitions of 
order 2-1/2 with respect to pressure P (at Pz Pk). It is shown that the appearance (disappearance) of a 
new cavity in the Fermi surface leads to a root singularity of the dislocation drag force -"';lp-Pk r. On 
rupture of the connecting neck, the nature of the anomaly of the dislocation drag force depends on the 
direction of motion of the dislocation. If the dislocation axis is parallel to the axis of the connecting neck, 
the singularity of the drag force will be the same as that on the appearance (or disappearance) of a new 
Fermi surface cavity. If the dislocation axis is perpendicular to the neck axis the derivative of the force will 
possess a logarithmic singularity. The effect of interband transitions on the anomaly of the dislocation drag 
force is taken into account. 

The scattering of electrons by a moving dislocation 
leads to a specific dislocation drag force F (see 
Kravchenko [lJ ). According to present-day concepts, this 
force plays an essential role in the plastiC properties of 
metals at low temperatures. 

Dislocation dragging by conduction electrons becomes 
particularly clearly manifested by a softening of the 
metal as it becomes superconducting. The separation of 
the electronic component of the dislocation drag force is 
based on the fact that the transition to the superconduct­
ing state hardly affects the lattice subsystem of the 
metal (the structure of the defects and the phonons). 
Therefore the entire change in the plastic properties of 
the metal must be ascribed to the electronic subsystem 
(a detailed review of the research in this direction is 
contained in [2], where references to the original work 
can be found). 

The transition to the superconducting state is not the 
only cause of the change in the electron energy spectrum. 
This spectrum can be altered in various manners: by 
placing the metal in a magnetic field, by subjecting it to 
hydrostatic pressure, etc. As shown by Kravchenko and 
Natsik [3, 4J, a sufficiently strong magnetic field can 
greatly influence the electron dragging of the disloca­
tions. 

Application of the sufficiently strong pressure changes 
all the characteristics of the metal (both lattice and 
electronic), and particularly its plastic properties [5-7J. 
It is apparently impossible to separate the role of the 
conduction electrons when the plastic characteristics 
vary smoothly with pressure, The situation should be 
different in a phase transition of order 2% (PT-2%, 
I. Lifshitz [8]), when the topology of the Fermi surface 
changes in a relatively narrow pressure interval without 
any Significant change of the lattice, The change of the 
plastic properties (if observed at all) would have to be 
ascribed to a change in the electronic component of the 
dislocation drag force. The purpose of the present arti­
cle is to calculate the anomalies of the electron drag 
force F in a phase transition of order 2%. The PT-2% is 
accompanied by anomalies in the thermodynamic and 
kinetic characteristics of the metals. The sound absorp­
tion coefficient should experience a Significant change in 
PT_2%[9,lO]. As we shall show, the calculated anomaly 
in F is a consequence of the anomaly of the sound-ab­
sorption coefficient. 
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The measure to the proximity to PT-2% is the quan­
tity[ll] 

(1) 

where EF is the Fermi energy and EC is the critical en­
ergy at which the topology of the electronic equal-energy 
surfaces changes (the Van-Hove singularity). The anom­
aly in F is manifest by the presence in F of a term liF 
that depends on z non-analytically. Our problem is the 
calculation of liF(z). 

As is well known [1-4J, the procedure for calculating 
the drag force on a dislocation moving with velocity V 
can be reduced to a calculation of the intensity Ii: of the 
dislocation-energy absorption by the electron gas (per 
unit dislocation length). We assume that the moving dis­
location line penetrates through the entire crystal. Re­
maining within the framework of the macroscopic des­
cription of the dislocation, we neglect the dependence of 
F on the coordinate along the dislocation axis. To calcu­
late Ii: it is convenient to represent the energy of inter­
action of an electron with a moving dislocation U(r - Vt) 
as a superposition of plane waves 

U (r - Vt) = L i I U,e-l (w,t-f,·" Wf = (rv), (2) 
1 • , 

f is a plane wave vector; L1 and L2 are the dimensions of 
the crystal in a plane perpendicular to the dislocation 
axis, r is a two-dimensional vector in a plane perpen­
dicular to the dislocation axis, and the vector V lies in 
this plane. 

We see that the moving dislocation generates a packet 
of peculiar phonons with which the conduction electrons 
interact. The peculiar character of the phonons (we shall 
call them simply phonons; this should not lead to mis­
understanding, since the interactions of the dislocation 
with actual phonons will not be taken into account) re­
duces to a peculiarity 'of their dispersion law, namely 
w = f· V instead of w = sf (s is the speed of sound). By 
considering the interaction of phonons with momentum hf 
with the electron gas, we can 'write down the drag force 
F in the form 

F = - J Ilw,r(f, w)d'j, (3) 

where 

ref, (0) = (2n:)'V J I <U,>pl'[n(8p) -n (8)+,,)]6 (ep+,,-8p-hw,)d'p, (4) 
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r is a dimensionless phonon-absorption coefficient 
which has in this case the meaning of the probability that 
a phonon with energy n:wf will decelerate the dislocation' 
(Uf)p is the matrix element of the transition, so normai­
ized that in the case when the wave function of the elec­
tron is plane, it is equal to Ufo 

It ~s shown in [9,10] that the singularities of r (f) in 
PT-2 Y2 ?epends on the topology of the transition, namely, 
r experiences a discontinuity when a Fermi-surface 
cavity appears (or disappears), and has a logarithmic 
singu~arity and when a bridge is broken a connecting 
neck IS ruptured. It must be borne in mind however 
that in [10] the results were obtained for re~l sound ~aves 
(w = sf; l/l « f « l/a, a is the interatomic distance and 
1 is the electron mean free path). The phonon packet (2) 
generated by the dislocation contains phonons with 
f ::; fmax "" l/a. This makes it necessary to refine the 
formulas for r(f, z)o In the calculation we shall natur­
ally assume that lzl « Eo, where Eo = n:2/a2m* is the 
characteristic electron energy and m* is the effective 
mass of the electron. . 

According to (3) and (4), the drag force F depends in 
a complicated manner on the dislocation velocity V. In a 
normal metal, the nonlinear dependence of F on V is 
completely immaterial [12], since the characteristic 
velocity at which the nonlinear effects come into play is 
of the order of vF "" 108 cm/sec, and the dislocation 
cannot attain such a velocity. In superconductors it is 
possible to have nonlinear effects [12,13]. The character­
istic velocity in this case is v "" ~/PF « s (~ is the gap 
in the electronic energy spectrum of the superconductor). 
In the PT-2%, the electron velocity v "" J2m*lzl tends to 
zero as z - O. Therefore the nonlinear dependence on V 
calls for a speCial analysis. It appears that nevertheless 
this is an effect difficult to observe, since it should take 
place at z ::; m *V 2/2. Since the dislocation velocity is as 
a rule smaller than s, the temperature and other factors 
can smear out the nonlinear dependence, in analogy with 
the manner in which the temperature, according to [10], 
makes it difficult to observe quantum Singularities in 
r(w). 

We confine ourselves here to the linear approxima­
tion, i.e., we calculate the singularity of the friction 
coefficient B: 

()F=-{)BV; B = 81t~Ii' J f~ (f) cos' 9 d'/, 
(5 ) 

fV S onp cos9=/V, ~(f)=- I <U,)pl'a;;{)(ep-eH .,) d3p. 

Disregarding the temperature smearing of the PT-2%, 
we can assume that -anF/aEp = 6(Ep - EF)' According 
to [10], the singularity of f3 (f, z) is determined by the 
electrons of a small region of p-space about the critical 
point Pc (we assume it to be zero). In the case when a 
new cavity is produced (say a sphere, for simpliCity, 
case A), Pc coincides with its center; in the case of the 
rupture of a neck (case B), it coincides with the conical 
point (Fig. 1). This makes it possible to use in the cal­
culation of of the approximate dispersion law 

e=ec+p'l2m' (case A) (6) 
e=Bc+(p.'+p,')/2m.L -p,'/2m ll (case B). (7) 

The notation in (6) and (7) is universal. Smallness of 
the integration region around p makes it possible to take 
the matrix element I(Uf)p =Pc l f outside the integral sign 

and assume it to be equal to IUfI2. As we shall see, in 
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FIG. I. Types of phase transi­
tion of order 2Yz: A-formation of 
a new cavity of the Fermi surface; 
B-disruption of connecting neck. 

B 

the calculation of 6B, the integration with respect to f 
(see (5» is limited in most cases to small values of f, 
thus justifying the use of the macroscopic formulas for 
Ufo On the other hand, in those cases when large f play 
an important role, the explicit form of Uf is immaterial 
when it comes to determining the character of the de­
pendence of 6B on z near the PT-2% point. 

Using the last formulas and expression (5) for f3(f, z), 
we obtain in case A at z > 0: 

(f, z) = { 2;d U,I'm"IIi/, /<2'l2m'z 1ft, 
~ 0 j>2l'2m'z Iii. 

(8) 

In case B it is necessary to refine the arrangement of 
the dislocation relative to the neck axis. Since the dis­
locations are produced as a rule and move along selected 
crystallographic directions, there is no need to investi­
gate an arbitrary disposition of the neck axis, of the 
dislocation, and of the velocity V. We confine ourselves 
to three cases (Fig. 2): the dislocation axis is parallel 
to the neck axis (case B-1), the dislocation axis is per­
pendicular to the neck axis and the velocity V is parallel 
to it (case B-II), and the dislocation axis and the veloc­
ity V are both perpendicular to the neck axis (case B-III). 

Case B-I. Owing to the assumed isotropy of the dis­
persion law (7) the value of f3(f, z) depends in the plane 
(1, 2) on the direction of f only because of the matrix 
element Ur: 

B(f )_2m,l'~IU,I' . 
. ,z - ftf Ina, 

a= I p,+l'p,'+2m,,(z-z,) I; z,= ft'!'. 

Po-l' po'+2m" (z-z,) 8m.L 

We have f3(f, z) -I 0 if 
2 ( .,. 

/</m= -,;-!!!::::..) l' Po'.+2mllz, 
rL mil 

(9) 

and f3~, z) = 0 if f > fm. We have to restrict the integra­
tion with respect to P3 to the limits Ip31 < Po « n la, in 
order to be able to use the approximate dispersion law 
(7), which is valid only in the immediate vicinity of Pc' 
The final expressions either do not contain Po at all, or 
only under the logarithm sign. 

Case B-II. Before we write out the final results, we 
note that the expression for {3 (see (5» can be written in 
the form 

R(f )-IU,I'SIl(p"+p,, pa' )"(_ p,sinS P'COSS) 
1-' ,z --- -------z u s---.+-- dSp, 

lif 2m.L 2mll mJ., mil (10) 

where 

s=~Rsin2S 
2mll ' 

R = ctg' S-ctg' Ser' 

and the angle e is defined in (5). 

V. N. Oavydov and M. I. Kaganov 

-V mil 
ctgScr = -, 

m.L 

322 



~-"""'P2 Ao.l..-:::-_,..-- Pz 

PI 

I II m 
FIG. 2. Different variants of dislocation motion when the neck is 

broken in case B: I-dislocation axis parallel to the P3 axis of the neck; 
II -dislocation axis perpendicular and the velocity V is parallel to the 
neck axis; III-dislocation axis and velocity perpendicular to the neck 
axis (the dislocation axis is shown dashed). 

It is clear from (10) that we can use the results ob­
tained in[10] (see (16) of [lOJ). According to (21) we have 
from [10] and Icot 91 > cot 8cr : 

(f) 2nmJmlliUrl' 
~ , z = --=---"--'­

IifJIR 1 sin e 1 
(11) 

This formula is valid for z > 0 at arbitrary f, and at 
z < 0 it is valid only if the following inequality holds: 

2l'2~ 
f?;o =fmin(Z,O). 

Iil'R Isin 01 
(12) 

If f < fmin(z, 8), then (3{f, z) = O. When Icot 81 < cot 8cr 
we have in accordance with formula (23) of [10J 

where 

R(f -'- 2m.LmlllUrl' 1 
p ,~) - n ct, 

a=a(Zr), 

Iifl'IRIIsin81 

li'f'IRI sin' 8 
Z, = ---'---­

Bmll 
with formula (13) valid if 

f f _ 21'p.',+2mllz 
< ma.l - -==----'--

Iil'lRllsin 01 

At f > fmax we have (3(f, z) = O. 

(13) 

(14) 

Case B-III. The value of (3(f, z) is determined by 
formulas (5) and (11)-(14), but in formula (5) we must 
put f . V = fV sin 8. We assume that the angle 8, just as 
in the case B-II, is reckoned from the axis of the neck 
(Fig. 2, III), and then cos 8 = n'f/f, while n is a unit vec­
tor along this axis, the vector V being perpendicular to 
the vector n. 

To calculate the friction coefficient from formula (5) 
it is necessary to know not only (3(f, z) but also IUfI2. 

As already mentioned, we can use macroscopic ex­
pressions for the deformation field; these expressions 
are valid at large distances from the core of the dis­
location (small f corresponds to large r). According 
to[12], for a screw dislocation located along the 3-axis 
and moving along the 2-axis we have 

I Ur I'=b' ('),,"/'-'),,"/') 'I/" (15) 

b is the Burgers vector of the dislocation and ~tk are the 
components of the tensor characterizing the deformation 
potential [14J. An expression for I Uf 12 at a different 
placement of the dislocation is obtained from (15) by 
permuting the indices. 

Case A (appearance of a new cavity). From formulas 
(5), (8), and (15), integrating with respect to 
f < 2v'2m*z!n, we have 

m"b''),,' --. 
6B = Bn'Ii' l'2m'z, ')"'=3')",,'+'),,,,'. (16) 
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In the case B-1 we obtain from (5), (9), and (15) 

B1 = .L 0 .1. II , { b'm ''),,'p IBn'Ii'-b'm ''),,'l'2m Iz1/8n'/i' %<0 
b'm.L'f..'p./8n'/i', z>O, 

(17) 

from which it follows that in this case the integration of 
expression (9) leads not only to an anomalous part of the 
friction coefficient, but also to a contribution, amounting 
to b2mi A 1>0/81T~4, to the smooth part. That part of the 
friction coefficient liB which is irregular in z differs 
from zero in the region where the number of cavities of 
the Fermi surface is larger (z < 0): 

6B,=b'm.L''),,'1'2mlllz I 18n'/i'. (18) 

As follows from (9) and (17), large f contribute to the 
smooth part of the friction coefficient, and small f con­
tribute to the irregular increment. Indeed, it is seen 
from (9) that if f ~ f~, then (3{f, z) is regular in z (in this 
case (3(f, z) ~ mlliz l!Po), and if f are small (f ~ .jm liz lin 
« fm ), then (3(f, z) is irregular in z (in this case (3(f, z) 
~ In (p~/mlll~z I), ~z = z - zf' see also [10J, formula (23)) 

and it is this which leads, after integration with respect 
to f and 8 according to (5) and (9), to the irregular incre­
ment liBI ~ /fZT, determined by formula (18). 

Cases B-II and B-III. It is seen from (11)-(14) that 
the integration with respect to f, even in the case of 
small z, is carried out to arbitrarily large values of the 
wave vector f. If we disregard the exact dependence of 
IUfl on f, and use the ex~ressions for the macroscopic 
elasticity theory (see [12 and later), then the corre­
sponding integrals for liB diverge, so that it is necessary 
either to introduce bounds on the wave vector f or, 
equivalently, assume that IUfl tends to zero rapidly as 
f - 00. As will be seen below, the cutoff parameter in f 
enters in the expression for liB only under the logarithm 
Sign, and it can therefore be assumed that the final ex­
pression is "stable" relative to the assumption concern­
ing the structure of the dislocation core (the structure 
determines the concrete dependence of IUfl on f at 
f ;2; l/a). We shall henceforth use the assumption that 
IUf I = 0 at f > fmax (fmax ~ l/a). Then, as follows from 
(12) and (14), the region of integration with respect to f 
and 8 in the calculation of liBn,III is determined by the 
inequalities (Fig. 3): . 

From (5), (11)-(15), and (19) we obtain 

where 

liBn,Ill = 

'A.n'=ctg' e~ sin' ~,('A.21'+'),,'" tg' ~cr~ 

~'llI'=tg 8c,(sin' ~Cr+cos' ~~,,) ('A.,/+'A.,,'), 

B,=Ii'j.:.x!(m.L +mll ). 

(19) 

(20) 

From the analysis that precedes formula (20) it fol­
lows that the logarithmic singularity VjZj'ln (Iz I/Eo) stems 

b 

9 

FIG. 3. Regions of integration with respect to f and 8 in the calcula­
tion of B in the different cases B-Il and B-llI: a-at z < 0; b-at z > 0; 
I-plot of f = 2y'2riiTZJ!iy'iR Iisin 81; 2-plot of f = 2y'pij + 2mllz/liy'jRT 
Isin 81; 3-the line f = fmax. 
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from the anisotropy of the contribution of phonons with 
different f to the friction coefficient. As follows from 
(12) and (14), the largest contribution to the dislocation 
drag is made by phonons whose wave vector increases 
in accordance with a square root law f "=J ,fm IIlz I/nlfii8T 
when the critical angle is approached, where 1681 
= 18cr - 81 and 1681 «8 r' Consequently, as seen from 
(5) and (11), in the calc~ation of the friction coefficient 
B, the integrand in (5), after integration with respect to 
f, is proportional to vlzT/168I, and the integration of the 
latter with respect to the angle 8 with allowance for (19) 
leads to a singularity of the type vTzTln (lzI/Eo) in the 
friction coefficient. 

The phonon packet generated by the dislocation, as 
already mentioned, contains phonons with large wave 
vectors f "=J 1/a, so that it is necessary to ascertain the 
role of the interband transitions in the dislocation dragg­
ing. The influence of the interband transitions on the 
dislocation dragging will be considered with two very 
simple examples. 

a) Let the energy spectrum of the metal consist of an 
electron band with a dispersion law (Fig. 4) 

E,.=p'/2m, (21) 

and let the PT-2% give rise to a hole band with a dis­
persion law (Fig. 4) 

(22) 

The Fermi surface consists of two spheres with centers 
at the point p = 0 and radii PF = v'2mlEF and Pz = v'2m2Izl. 
From (5), (21), and (22) we find that in this case the 
quantity (3(f), which is connected with the interband tran­
sitions, is equal to 

{ 
:!"m,m,IU,12 

Ij-ferl<j.j, 
fif 

~(f) = (23) 
0, i/-/er! >.1/, 

where fcr = PF' M = v'2m21z I. 

We emphasize that (3(f) f. 0 only in a narrow interval 
of values of f, and consequently in the calculation of oB 
we can take IUfl outside the integral sign in this case 
(lUf I "=J IUf I), and the character of the singularity of 

cr 
the drag force (i.e., the dependence on z) is not deter-
mined by the explicit form of IUfl: we always have oB 
"=J IiZf. 

According to (5) and (23) we have 

(24) 

The quantitative contribution of the interband transi­
tions to the anomaly of the deceleration force is deter­
mined, naturally, by the value of IUfl. At small values of 

b 

FIG. 4. Onset of hole band in a phase transition of order 2Y:z: a) Z = €F 
- €c > 0; b) z = 0; c) z < 0; I-€Ip = p2/2m.; 2-€2p = €c - p2/2m2' The 
dashed lines show the hole band. 
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fcr' in particular, if fcr > fmax (see above), the contri­
bution of the interband transitions is entirely inessential. 

b) The energy spectrum of the metal consists of the 
electron band (22) and the PT-2% gives rise to a new 
electron band with a dispersion law 

(25) 

The Fermi surface consists of two spheres with dif­
ferent centers (Fig. 5). From (5), (21), and (25) we find 
that (3(f) corresponding to the interband transitions is 
equal ~2 (to Simplify the calculations we assume that 
Po» m1EF »v'2m2z ) 

\ 

ZJtm,m,IUrl' , 

~(f)= 1ft/-pol 

0, 

I/-r.~~ I <!J.j, 

If-f~~ 1>!J.j, 

where rr~2 = Po::l: v'2mlEF' and the angle 8 is small 
(181 :5 v'2mlEF7po). 

(26) 

The largest contribution is made by the interband 
transitions in this case when the vectors V, Po, and I1f 
lie in one plane, i.e., the dislocation axis is perpendicu­
lar to the vector po (Fig. 5), and in the latter case we ob­
tain from (5) and (26) 

(27) 

where 

117I'= IU,I'+IU,I', IU,.,I = IUrl at /=/,." 

and consequently the quantitative contribution of the 
interband transitions to the anomaly of the drag force is 
determined as before by the quantity IUfl at large f. We 
note that if the dislocation axis is directed along the vec­
tor Po, and the velocity V is perpendicular to Po, then the 
contribution of the interband transitions to the anomaly 
of the drag force is equal to zero. 

As noted in [10J, in those cases when p = Pc lies on the 
boundary of the Brillouin zone, two phase transitions of 
order 2% can be located (on the z scale or pressure 
scale) very close to each other. One of the transitions is 
connected with the appearance (vanishing) of a new cavity 
of the Fermi surface, and the other with the breaking of 
a neck. Each PT -2%, naturally, is accompanied by the 
corresponding singularity of B (or F). It should be noted 
that the singularity accompanying the appearance of a 
new cavity should in this case depend Significantly on the 
interband transitions, since the distances between the 
two cavities of the Fermi surface (new and old) are small 
and Uf "=J bA/fcr and fcr < 1/a, A COincides in order of 
magnifulde with the components of the tensor Aik' Since, 
according to (26), Mcr "=J po, in this case the contribution 
of the interband transitions is of the same order as the 
contribution due to the appearance of a new cavity. 

FIG. 5. Illustrating the calculation of c5B for interband transitions 
between the anomalous and main bands: I-the surface €Ip = p2/2m.; 
2-the surface €2p = €c + (p - pol2/2m2' The dislocation axis (dashed) 
is perpendicular to the vector po. 
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Comparing the expressions obtained above for B with 
the value of the electronic component of the friction co­
efficient in a normal metal BN ~ m\,2,\2ti/a 
(Kravchenko [lJ), we see that the anomalous increment 
is small to the extent that Izl = IZollP - pcl/pc is 
small1). Indeed, 

6B '" BN YIP-Pel. or f,B '" BN YIP-Pel In IP-Pcl. (28) 
Pc Pc Pc 

This increment, however, can appear in the derivative of 
the friction coefficient with respect to pressure, since 
aB/az - 00 as z - O. 

The finite temperature and the different scattering 
mechanisms lead to a smoothing of the singularities of 
the friction coefficienL 

If T »tiiT (Le., T[K] » 10-3/1 [cm]; T and 1 are 
respectively the time and mean free path of the elec­
trons), then in the cases A and B-1 we have 

!!!..",(~) (~) ',. 
az aSF N T 

and in cases B-II and B-III 

I)B", ( ~) (!.!'..) 'l'ln~ 
I)z aSF T T • 

(29) 

(30) 

where (aB/aEFlN denotes the change inthe drag force of 
the normal metal far from the singularity. 

In the opposite limiting case at tiiT »T, the value of 
aB/az is given by 

I)B r (~~t (S~'T' (in cases A and B-1), 

az"'" j (aB) (SF'l')'!'ln ('SF'1:) (in cases B-II, B-III). (31) 
l aSp N It It 

The quantity aB/az can be expressed in terms of the 
derivative with respect to the external pressure P. From 
(29)-(31) we see that in the case of PT-2% the change of 
aB/ap and aF/ap at the point P = Pc is appreciable 

I)B (I)B) (S) '" n 
fJP= Ofi N;' . T'=T+-;-. (32) 

or 

.!!!.. '" ( fJB) (!.!'..) 'I, ~ 
fJP I)P N T' In T' . (33) 
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In conclusion, we take the opportunity to thank V. D. 
Natsik and A. M. Kosevich for useful discussions. 

I)For estimates we can use formula (13.15) of [11]: 

Iz,llp-pcl 
Izl= • 

Pc 

where Zo = (€F - €dp=O. Pc is the critical pressure at which the phase 
transition of order 2~ occurs. 
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