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The motion of a classical electron in a dense medium of disordered scatterers is studied. The interaction of 
an electron with a single scatterer is described by a potential with an attractive polarization part and a 
repulsive short·range part. The electron-velocity autocorrelation functions for different values of the 
electron energy and of the density of the scatterers are found by a computer-experiment method. The 
electron conductivity is calculated as a function of the energy. A sharp increase of the electron conductivity 
is observed in a narrow energy band correpsonding to opening of percolation channels. 

The behavior of an electron in disordered systems 
has been studied in many papers. The theory of the 
electron states in disordered systems explains many 
electronic properties of strongly-doped semiconductors 
and amorphous solids and gives a correct description 
of phenomena occurring during the motion of an elec
tron in substances as widely different, at first sight, as 
dense helium at cryogenic temperatures and dense 
plasmas of alkali metals and mercury at low degrees 
of ionization. By now, the problems of the theory of the 
density of states in a system of disordered scatterers 
have acquired a certain appearance of completion. The 
progress achieved in this field is reflected in the re
views[l-31. Whereas for the denSity of states there are 
methods of calculation and analytic expressions based 
on different strong inequalities between the parameters 
of the system, for properties determined by the dynam
ics of the electron, e.g., kinetic coeffiCients, the situa
tion is significantly worse. 

A systematic solution of the problem of the conduc
tivity of an electron in a medium of disordered scat
terers can be obtained only when the mean free time of 
the particle is much longer than the collision time. As 
a rule, this condition is not fulfilled in the above
mentioned systems, and the intuitive ideas of gas
kinetic theory do not work. At high densities of scat
terers new qualitative phenomena arise that do not oc
cur in rarefied systems. Belonging to this group are, 
e.g., the nonmonotonic energy dependence of the mobil
ity, the appearance of percolation at negative electron 
energies, etc. (The mobility edge is the lowest energy 
value Ep of a classical particle situated in an arbitrary 
potential-energy relief V ( r) at which it is still possible 
to find a region of space with V(r) < E, going out to in
finity in all directions.) To determine even such a com
paratively simple characteristic of the motion of an 
electron in a dense medium as the mobility edge, com
plicated methods of numerical calculation are used. On 
the more subtle characteristics of the motion of an 
electron in disordered systems, such as, e.g., the 
temporal velocity autocorrelation function, there is 
practically no -information at the present time, in the 
cases of both the quantum and the classical description 
of the system. In view of this, in the calculation of 
kinetic coefficients one has to confine oneself to phe
nomenological arguments, as, e.g., in[41. 

In the present paper the classical velocity autocorre
lation functions of an electron moving in a medium of 
disordered scatterers are studied by a computer-ex-
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periment technique. The energy dependences of the 
autocorrelation functions, relaxation time and conduc
tivity of the electron are also obtained, for different 
densities of the scatterers. It is shown that in a dense 
medium of classical scatterers a sharp increase in the 
electron conductivity is observed in a narrow energy 
interval. 

1. We shall consider the motion of a classical elec
tron in a medium of disordered scatterers producing a 
field 

N 

V = E u(r.-r.}, (1 ) 
i=1 

where re is the electron coordinate, ri is the coordi
nate of a scatterer and N is the total number of scat
terers. The interaction potential between the electron 
and a scatterer is prescribed in the form 

[ ( II ) • II' u(r}=4e --; -( -;:) ], r>ll, 

u(r} =00, , ... 11. 

Inasmuch as (2) is a two-parameter potential, the law 
of corresponding states is valid for the system being 
studied. 

(2) 

The model under consideration has direct applica
tion to the description of the properties of an electron 
in a dense weakly-ionized mercury or cesium plasma. 
Under certain conditions in such a plasma the interac-_ 
tion between an electron and the neutral atoms is 
dominant[S,61, and the interaction of the electrons with 
the ions and amongst themselves can be neglected. The 
free electrons and the electrons near the mobility edge 
are classical or else quaSi-claSSical, and move in the 
field formed by the superposition of the polarization 
potentials of the neutral atoms interacting with the 
electrons. The appropriate criteria that enable us to 
regard the motion of an electron in a ,plasma as classi
cal have been given by Khrapak and Yakubov[71. If we 
choose the parameters of the potentials in (2) such that 
4€64 be equal to the polarization constant ae2/2, and the 
quantity 0 is the gaS-kinetic radius of the atom, then 
our model corresponds to the situation in a plasma. We 
note that the behavior of the interaction potential be
tween an electron and a neutral atom at short distances 
is not sufficiently well-known. However, it is clear that 
the principal features of the dynamics of an electron in 
a dense medium will be the same for a potential in the 
form (2) as for any other potential having an attractive 
part ~ae2/2r4 and a repulsive Short-range part. 
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The static conductivity of the system under consider
ation is determined as follows: -cr==ne'~Z-' J e-~Ep (E) cr (E) dE, 

where 
+-

Z = Le-~"p (E) dE, 

n is the number of carriers, p ( E) is the density of 
states, 

cr(E) = J CjlE(t)dt, 

<P E(t) is the velocity autocorrelation function, defined 
in the following way: 

(3 ) 

<j'E(t) =<u,(O)u.(t»", (4) 

Vx is a component of the electron velocity, < ... > E de
notes a microcanonical average, at a fixed total elec
tron energy (the mass of a scatterer is infinite), over 
its initial momenta and coordinates, averaged over all 
possible configurations of the scatterers. In the present 
paper the quantities cP E( t) and a( E) will be calculated. 

2. The velocity autocorrelation functions are found 
by the molecular-dynamics method[8], into which only 
slight changes have been introduced. The quasi-classi
cal corrections can be calculated in an analogous 
manner on the basis of[9]. We shall briefly describe the 
scheme of the calculations. 

N scatterers are placed in a cube with edge L. Two 
variants will be considered below. If we assume that 
the scatterers are not mutually correlated, the centers 
of the scatterers are assigned in a random manner by 
means of a random-number generator. In this variant 
it is possible in prinCiple that the centers of several 
scatterers coincide. In the second variant the mutual 
correlation of the scatterers is taken into account, it 
being assumed that the scatterers interact with each 
other like hard spheres with radius 0. In the second 
variant the coordinates of the centers of the scatterers 
were assigned by the following scheme. First, the co
ordinates of one scatterer were generated in a random 
manner. Then the coordinates of the next scatterer 
were generated, again in a random manner. If the dis
tance between the centers of the two scatterers was 
found to be less than 20, this state was rejected and the 
coordinates of the second scattering center were gen
erated anew, until the sphere fell in unoccupied space. 
Then the coordinates of the third scattering center, etc., 
were found in an analogous manner. 

After all the scatterers in the first or second vari
ant had been placed in the cube, an electron with total 
energy E was placed at an arbitrary, randomly
selected point in the cube. As is usual in the molecular
dynamiCS method, periodic boundary conditions are im
posed, i.e., it is assumed that the cell is surrounded by 
cells in which the configurations of the scatterers are 
the same. When the electron has been placed at an 
arbitrary point in the cell, the potential energy 

N 

V = ~ n(r,.-r,) 

is calculated at this point. In the calculation of the po
tential energy, here and below, one takes into account 
the interaction of the electron with all the particles 
situated in a cube of side L whose center coincides with 
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the location of the electron. Here, if E < V, a subse
quent selection is performed until the electron falls in 
the classically accessible region E - V = mv2/2 (we 
note that when this is done the configuration of the 
scatterers is also projected anew). The momentum ob
tained is the initial condition for the solution of the 
equations of motions of the electron in the cell. If as a 
result of the motion the electron leaves the cell under 
consideration through one of the sides, this is equiva
lent to the entry of an electron, with the same momen
tum as the one that left, at the corresponding point on 
the opposite side. 

The equations of motion are solved by a numerical 
scheme analogous to that of[lO] but somewhat compli
cated by the necessity of taking into account the undif
ferentiable potential u( r) at r = O. Since the solution 
of the dynamical equations gives the classical trajectory 
of the electron as a function of time, using the ergodic 
hypotheSiS we can replace the ensemble average in (4) 
by a time average, which must then be further averaged 
over the different configurations of the scatterers: 

1 M 1 T 

qi,,(t)=lim M \'1lim-S ux(t',R;) u,(t'+t, Rj)dt', (5) 
.11_0:> ~T-+OO T 0 

where Rj denotes the j -th configuration formed by the 
N scatterers in the cell and T is the averaging time 
along the trajectory of the system. It is clear that if 
the equations of motion were solved both for the elec
tron and for the heavy particles, a single time-averag
ing would be sufficient. In this case the quantity T 
should be greater than the relaxation time of the heavy 
particles. In view of the fact that the electron relaxa
tion time is incomparably shorter than the relaxation 
time for the heavy particles, to carry out such a scheme 
would require enormous expenditure of computer time. 
It is an entirely obvious approximation to assume that 
scatterers are immobile compared with the electrons. 
However, in this case, for negative energies it is pos
sible that the electron will fall in a rarely-encountered 
random cluster of scatterers from which it cannot 
escape. In a real system, the motion of the scatterers 
leads sooner or later to the freeing of the electron from 
its chance captivity and makes the system ergodic. 
Therefore, the averaging over the different configura
tions of the scatterers, which models the motion of the 
heavy atoms, is necessary. For positive energies, when 
all regions of space are acceSSible, the further averag
ing over the configurations is, in addition, equivalent to 
increaSing the averaging time T by a factor of M, and 
this is an important factor increaSing the accuracy of 
the calculation[ll]. 

Most of the values of the quantity <PE(t) were calcu
lated for N = 200, M = 100. Here we shall not dwell on 
the questions of the convergence with respect to T, M 
and N. The methods used in the present paper to check 
the convergence are practically the same as in[10]. We 
note only that for N = 50, M = 50, the result already 
hardly differs from that for the case N '; 200, M = 100. 
The calculations were performed on a BESM-6 compu
ter. Since the interaction potential is a two-parameter 
potential, the law of corresponding states will be valid 
for all the quantities in (3); in view of this, the calcula
tions were performed in dimensionless units. The po
tential depth € was used as the unit of energy. The 
cube edge L was taken equal to unity. The quantity 0 
was measured in fractions of L. The dimensionless 
time t' = tm-10-1 €1/2. The electron mass was taken 
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FIG. I. a) The velocity auto
correlation function of an electron 
as a function of time for motion 
in the field of uncorrelated scat
terers with density 6 = 0.05: curve 

r---+'-:;'~2:~::;;2~~'tt' I-for E = 5; 2-for E = 0; 3-for 
E = -0.5; 4-for E = -1.5. b) 
Velocity autocorrelation function 
of an electron as a function of 
time for motion in the field of 
correlated scatterers with density 
6 = 0.04; I-for E = 10; 2-for 

1--+"-':~~+----:7'S:=~1';t" E = 5; 3-for E = 0; 4-for E 
= -0.5; 5-for E = -1.1. 

b 

equal to unity. It is clear that changing the quantity 15 
is equivalent to changing the density of the system. 

3. Figure Ia shows the behavior, calculated for 
15 = 0.05, of the quantity <PEW)/<PE(O) as a function of 
t for various E for the case of uncorrelated scatterers. 
The same quantity in the case of correlated scatterers 
for 15 == 0.04 is plotted in Fig. lb. At this density the 
potentials of the scatterers are strongly overlapping. 
(For 15 = 0.05 the average potential equals -1). For 
high values of E the particle moves in a very dense 
gas of hard spheres and the attractive part of the over
lapping potentials is a perturbation. The densities are 
such that, even for high energies, the behavior of the 
autocorrelation function as a function of time differs 
from the exponential behavior that is characteristic for 
a rarefied gas. With decreaSing energy of the electron 
a negative minimum-an echo of the OSCillatory motion 
of the electron-appears in the function <PE(t'), i.e., 
the electron is, as it were, localized for a certain time, 
until it finds an opening in the potential barrier. Here 
the integral 

S 'PE(t)dt, 
o 

characterizing the conductivity at a fixed energy is still 
essentially nonzero. On further dec rease of the energy, 
in the region of large negative energies the electron is 
localized and 

~ 

J 'fE (t) dt=<o (E) =0. 

This definition of a localized electron coincides with 
that proposed by Mott[l2J. 

Localization of electrons at high denSities occurs at 
several scatterers. This fact is best observed by con
Sidering Fig. 2. In this figure the behavior of the quan
tity <PE(t')/<PE(O) is presented as a function of time for 
the energy E = -0.5 for various densities of correlated 
scatterers. The quantity t' = t1)-1 EJ/2 with /) = 0.03 is 
taken as the unit of measurement of the time. (This is 
done to make it possible to compare the characteristic 
times of the oscillations.) At low densities the electron 
is localized on one scatterer (the classical analog of a 
negative ion), 'and the correlator has a clearly pro
nounced oscillatory character. On increase of the 
density the characteristic times of the oscillations in
crease, the electron is localized at several scatterers 
(if the localization occurred at one scattering center the 
period would remain constant) and, finally, at 15 = 0.05 
the quantity <PE(t') is noticeably damped, conduction 
channels appear, and the electron is not localized. The 
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FIG. 2. Velocity autocorrelation function of an electron as a func
tion of time for motion in the field of correlated scatterers for E = -0.5 
and various density values: curve I-for 6 = 0.05; 2-for 6 = 0.03; 3-for 
6 = 0.02; 4-for 6 = 0.01. 

possibility of localization at one scatterer is manifested 
at moderate densities (15 = 0.03, 15 = 0.02) in beats with 
the frequency of the oscillations that characterize the 
motion at negative energies in the field of one scatterer. 
At such densities the numbers of configurations for 
which an electron with negative energy can be localized 
either by one center or by a cluster of centers are com
parable. 

We now consider the behavior of 
1 :: 

1: (E) = 'PEW) ) 'PE(t) dt. 

This quantity has the physical meaning of a relaxa
tion time for monotonically decreaSing correlators only. 
Indeed, for oscillating correlators corresponding to 
localized electrons, the relaxation time is extremely 
long, whereas 

f 'PE(t)clt=O. 
o 

However, inasmuch as an analog of T( E) appears in the 
phenomenological theories, it is meaningful to give its 
energy dependence. Figure 3 shows the behavior of 
T( E) as a function of E for 15 = 0.05 and 15 = 0.04 in the 
cases of correlated and uncorrelated scatterers. The 
character of the dependence on E is analogous to the 
phenomenological results of[4J. We note that the behav
ior of the quantity T( E) at negative energies for uncor
related scatterers is not the same as that for corre
lated scatterers. For correlated scatterers T(E) in
creases steeply from a value of zero at E = Ep, where 
Ep is the mobility edge; for uncorrelated scatterers 
the dependence on E is Significantly smoother. The 
tail of T( E) for negative energies E in the case of un
correlated scatterers extends into the region of larger 
negative energies. This situation arises because the 
probability of formation of conduction channels as a 
result of a density fluctuation is higher in the case of 
uncorrelated scatterers than for correlated scatterers, 
and percolation appears at high negative energies. 

For high positive energies E the quantity T( E) be
gins to fall, and this is explained by the decrease of the 
time between collisions on increase of the velocity. The 
values of T( E) at high energies are higher for uncorre
lated than for correlated scatterers, since the possibil
ity of superimposing several scatterers at one point 
effectively decreases the scattering. Naturally, with 
decreasing density the difference in T( E) for corre
lated and uncorrelated scatterers should decrease, and 
this can be seen by comparing the figures. 

With decrease of E the accuracy of the calculation of 
T( E) and, consequently, of 0-( E) falls, despite the fact 
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FIG. 3. Conventional relaxation time of an electron as a function of 
energy: X-uncorrelated scatterers, /j = 0.04; o-uncorrelated scatterers, 
/j = 0.05; &-correlated scatterers, /j = 0.04; D-correlated scatterers, 
/j = 0.05. 
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FIG. 4. (a) The dependence u(E) for density /j = 0.05: curve I-un· 
correlated scatterers, 2-correlated scatterers. (b) The dependence u(E) 
for density /j = 0.04: curve l-uncorrelated scatterers, 2-correlated 
scatterers. 

that the error in the calculation of <P E( t) is not higher 
than 5%. The error in the calculation for negative E 
arises as a consequence of the numerical integration of 
the oscillating functions, whose behavior at large times 
we have not calculated, because of the large expendi
ture of machine time necessary for this. Despite the 
fact that for E ~ Ep the error in the calculation can be 
comparable with the quantity r( E) itself, the above
mentioned difference in the behavior of r( E) for cor
related and uncorrelated scatterers can be traced suf
fiCiently clearly. In addition, it is clear that the given 
method of calculation does not permit us to determine 
exactly the value of the mobility edge Ep , and, although 
the fraction of the classically accessible volume Oc has 
been calculated as a function of the electron energy in 
our work, it has not been possible to establish an exact 
correspondence between Ep and Od Ep). 

Of most interest, from our point of view, is the de-

For both densities of scatterers, a( E) increases by 
several orders of magnitude in a narrow range of ener
gies. For lower densities the increase is steeper, since 
the conduction channels are opened at high energies and 
the value of Ep for lower densities is shifted to the 
right. Such a sharp increase in conductivity could also 
be expected on the basis of the results of model calcu
lations of the quantity p( E)[13 l , which represents the 
fraction of conduction electrons in the total number of 
electrons. After all regions of space have become ac
cessible (except, of course, the regions occupied by 
hard cores), the conductivity a( E) increases smoothly, 
like ,fE approximately. 

In conclusion we express our deep gratitude to I. M. 
Lifshitz for useful discussion of the work. 
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