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An approach to the problem of charge transport in a system of small metallic particles coupled by tunnel 
interactions is proposed. The system Hamiltonian is represented in the form H = Ho+Hv+ HT where Hv takes 
into account electrostatic effects due to charge accumulation in the granules and the discrete character of 
the charge, and HT is the tunnel Hamiltonian. Owing to the electrostatic threshold at low temperatures the 
conductivity a is asymptotically proportional to T. The important role of the specific granule charge 
fluctuations due to the discrete character of the charge is demonstrated. The fluctuations are manifested by 
the characteristic oscillations of a number of physical characteristics of granulated media. Some features of 
the conductivity of M-G-M and ~G-S tunnel junctions containing granules of a metal G in an oxide 
layer (M is the normal metal and S the superconductor) are investigated. 

1. INTRODUCTION 

Minute metallic partic les (granules) coupled by weak 
tunnel interactions are an interesting object of the 
physics of disordered media. On the one hand, a feature 
of such systems is the enhancement of the conductivity 
as a result of "accumulation" of the charge on the 
granules, causing the probability of the transitions 
M - G - M' (M and G stands for metal and granule, 
respectively) to be much larger than the probability of 
the through tunneling M - M'. On the other hand, at 
small dimensions of the granules G, an important role 
is assumed by electrostatic effects, which lead to a 
limitation on the current as a result of formation of a 
space-charge region[l-31. Since the charge can move 
from granule to granule only in finite batches, unique 
"quantization" effects appear, due to the discrete 
character of the charge[41. Similar phenomena are ob­
served experimentally in tunnel junctions containing 
metallic inclusions in the oxide layer[5-81. It was shown 
that the so-called "zero" anomalies of the tunnel cur­
rent can be due not only to the Kondo effect (scattering 
by paramagnetic impurities)[91, but also to threshold 
phenomena connected with the discrete character of the 
electric charge. In a number of papers[l,lo-121, models 
were proposed that take into account the activation 
character of the charge transport in granulated media. 

A feature of the considered problem is the need for 
taking into account fluctuation redistributions of the 
charge among the granules during the course of current 
flow. Although there is an electrostatic threshold to the 
passage of electrons from granule to granule, under 
certain conditions this threshold can be appreciably 
lowered. The fact that the electrostatic energy of a 
granulated system is a quadratic function of the charges, 
gives rise to the possibility of a unique "degeneracy," 
wherein several different distributions of the total 
charge among the granules correspond to the same free 
energy of the system[41. Since the electric charge is 
discrete, such a degeneracy can correspond to the 
smallest value of the free energy. This facilitates ap­
preciably the fluctuation transitions of the electrons 
within the limits of the separated configurations. It is 
shown in the present paper that the possibility of re­
moving the energy threshold for the fluctuation redistri­
butions of the charge leads to a number of characteristic 
oscillatory effects. 

A consistent analysis of the indicated questions en­
tails a search for the distribution function W( nl, 
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n2, ... ) of the electrons over the granules. Starting from 
the equation for the density matrix, a kinetic equation is 
derived and determines the form of the function W, and 
methods of solving this equation are indicated. In a num­
ber of cases this permits the kinetic characteristics of 
the granular medium to be determined. The concrete 
results pertain mainly to granular systems included in 
a tunnel junction between two bulky metals. 

A more general aspect of the presented analysis 
touches upon the mechanisms of conductivity in con­
densed phases of matter, as influenced by the role of 
electronic correlations. Actually, the model investi­
gated in the present paper turns out to be closely con­
nected with correlation effects in narrow-band sub­
stances (the Hubbard problem)[l31. The Hamiltonian of 
a system of granules, neglecting cross-capacitances, 
takes the form (see[41) 

fl = .E.E T;jIl,+a;+H.c.+ .E 2~; (.E a/ai-No )'. (1.1) 
all iJ a 

where o:i(o:) are the operators for particle production 
on the granules, and 0: is the set of quantum numbers of 
the electron, including the spin a. For brevity, we have 
left out from (1.1) the index 0: of the operators ai and 
the tunneling matrix elements Tij. If we extrapolate 
(1.1) to the case of individual atoms, then we obta:in the 
Hamiltonian (0: == a) 

H=const-.E1: (N,-'/,)U;a;.+a;. + .E,.ET;Ja •• +a;.+ L.,U;n;tn;;, 
a i G ij i 

where Ui = e 2/ Ci is the electrostatic energy, and 
Ilia = ataaia is the operator of the number of electrons 
at the site i. The index a takes on two values: , or +. 
With the exception of the inessential self-energy term 
(the second term of (1.2)), the Hamiltonian (1.2) coin­
cides with the Hubbard Hamiltonian[l3-l51. 

The analysis that follows is macroscopic and allows 
us to study the case when the granules are large, so 
that they contain a large number of electrons. It can be 
stated that this is the case of the Hubbard model for 
particles with spin s = .>Q. 

One of us has shown earlier[41 that if the particle 
dimensions are not too small we can neglect the spatial 
quantization of the spectrum, but we must take into ac­
count the discreteness of the charge, since the latter 
effect begins to manifest itself with decreasing particle 
dimensions before the quantization effects become sig­
nificant1l. A correct mathematical description was pro-
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vided for the charge transport in a system of small 
particles, and the singularities of the conductivity of 
tunnel systems containing metal granules in the barrier 
layer were considered. The case of tunneling was ana­
lyzed for both normal (M - G - M) and superconducting 
(S - G - S) junctions. The conductivity of three-dimen­
sional granulated media was dealt with in another paper 
by the authors(l61. 

2. HAMILTONIAN OF A SYSTEM OF MINUTE 
PARTICLES 

We consider a system of metallic particles contained 
between bulky conductors. We assume the tunnel model 
of transitions between particles, described by the so­
called ''tunnel Hamiltonian" (see, e.g.,(171). The total 
Hamiltonian of the system is represented as a sum of 
three terms: 

(2.1 ) 

where Ho is the Hamiltonian of the aggregate of nonin­
teracting bodies, Hy is the electrostatic part of the 
energy and depends on the applied voltage Y, and HT 
is the tunnel term. 

For a correct separation of the term Hy, we con­
sider a system of three bodies: Ml, G, and M2 (Fig. 1), 
where Ml and M2 are bulky metals in which the dis­
crete character of the charge plays no role, and G is a 
granule whose characteristic electrostatic energy 
e2/Ci can be of the order of the temperature T or of 
the difference of the electrochemical potentials Il~ - JJ.; 
= eY (or else, if the metals Ml and M2 are supercon­
ducting, of the order of the energy gap A). We choose 
the term HT in the form (we neglect the direct tunnel 
transitions Ml ;;:: M2) 

pq 

(2.2) 
'q 

where ap, bk, and Cq are respectively the operators 
for the production of electrons in the metal Ml, in the 
metal M2, and on the granule G; p, k, and q is the set 
of quantum numbers of the electrons. All three bodies 
are characterized by Fermi distributions with chemical 
potentials Ill, 1l2, and /-Ls, which are not altered by the 
addition of electrons. The basis for this assumption is 
the fact that the equilibrium inside of each of the 
metals (M!, M2, G) is established within atomic times 
that are short in comparison with the times of the tunnel 
transitions between the granule and the edges, and the 
metals themselves are still macroscopic. 

1 ~~~~~~~~~ 

3 GeN3=n 

FIG. 1 
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The only effect that is produced by the electron 
transitions is the potential-energy shift due to the finite 
charges of the bodies. The state of the granule is char­
acterized by a distribution function Wn, which depends 
in general on the time t and which shows the probability 
of finding an integer number of electrons n on the 
granule. The possibility of such an abbreviated descrip­
tion will be justified in detail in Sec. 3. 

The numbers of electrons on the bodies Ml and M2 
and in the granule G will be deSignated respectively 
by Nl = N~ + nl, N2 = Ng + n2, N3 = n, where Ni are the 
equilibrium numbers of particles corresponding to the 
neutrality condition. The tunnel Hamiltonian (2.2) de­
scribes transitions in which nl, n2, and n change by 
±1, so that it suffices to use the expansion of the elec­
trostatic energy 

, . 
E=-i- ~a .. (N.-N.')(N!-N!')-~ w.'N. (2.3) 

",1=1 1 

in powers of nil and nzl. We assume that since the 
bodies Ml and M2 are macroscopic, the number of 
particles on them are large (excessive) in the presence 
of voltage on them. In formula (2.3), wk is the work 
function of the metal k, namely, wk = Wk - JJ.k, where 
Wk is the depth of the potential well and Ilk is the 
chemical potential. 

Carrying out the indicated expansion, discarding in­
essential constant terms, and regarding nk as opera­
tors, we obtain 

Hv=N,eV,+N2eV2+e2~2!2C;+(CL;eV,+~,eV2+w,)n, (2.4) 

where Y 1,2 are the potentials on the bodies Ml and M2, 
and are expressed in terms of their mean charges 
Ql = e(N l - Nn and Q2 = e(N2 - Ng). The quantities 
ai> j3i, wi, and Ci in (2.4) are defined by the formulas 

(2.5) 

If the junction contains many granules whose electro­
static interaction can be neglected2), then the Hamilton­
ian Hy is obtained from (2.4) by summing over the 
index i. 

The quantities ai, !3i, Wi, and Ci will be regarded 
as the primary parameters of the particles, and we 
shall choose some distribution law for them. It can be 
shown that in the limit of large bodies Ml,2 and of small 
granules (see Appendix 2) we have ai + !3i = 1 and f3i 
= di/ d, where d is the distance between the metals Ml 
and M2 while di is the distance from the surface of the 
metal to the granule. In this case the tunnel current 
turns out to depend on the difference of the potentials of 
two bodies Y 1 and Y 2. In the general case, however, 
strictly speaking, there should be separate sensitivity 
to y 1 and Y 2, i.e., to the character of the joining of the 
contact with the external bodies (for example, to ground­
ing of one of its edges). The quantity Wi has the mean­
ing of the effective work function of the granule (which 
depends, generally speaking, on its dimenSions), and 
Ci is the effective granule capacitance. 

We note that the foregoing procedure used to sepa­
rate the term Hy is applicable also to the ordinary 
two-body tunnel problem, where it yields the result[17] 
Hy = NleYI + N2eY2, which can be replaced, by virtue 
of gauge invariance, by N1eY, where Y is the potential 
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difference between the metals. Thus, the term (2.4) 
takes correctly into account all the electrostatic effects 
and expresses them in terms of macroscopic parame­
ters, namely the external potentials V 1 and V 2. 

The complete Hamiltonian of the system (2.1) is a 
sum of the terms (2.2) and (2.4). The quantity Ho in 
(2.1) can describe, generally speaking, normal metals, 
superconductors, etc. 

3. DENSITY MATRIX AND KINETIC EQUATION FOR 
THE DISTRIBUTION FUNCTION Wn 

We consider a system of three bodies (see Fig. 1) 
and stipulate that the statistical operator p remain 
stationary after turning on the interaction HT (2.2). 
Let \ n, O!) be the eigenfunctions of the Hamiltonian 
H = Ho + HV (see Sec. 2), and let O! be the set of quan­
tum numbers characterizing, besides the number of 
particles n on the granule, the state of the entire sys­
tem. We put 

sprpJn= L, <nalplna>=Wn, (3.1) 

where Sp{ ... }n is the trace at a fixed value of n. 

After turning on the term HT, the system is de­
scribed by a density matrix p' satisfying the Liouville 
equation 

f/ 
-.i:..=-,·[H' p-'] -, - H' H+H at "p,~-~=p, = ,. (3.2) 

The solution of the equation takes the form 
, 

p'(t)=e-iH'S(t)pS-'(t)eiH', S(t)=Texp { -~I dt' H,(t')}' (3.3) 

Putting p(t) = eiHtj)'e-iHt , we obtain, accurate to 
terms quadratic in HT, 

, 
8pJOt=-i[H,(t),r]- S dt'[H,(t), [H,(t'),pll. (3.4) 

Applying the operation Sp{ ... }u to this equation, we 
have 

aWn' - S ----at = --; Sp{[HT(t), pDn -_00 dt' Sp{[HT(t), [H, (I'), p] Dn. (3.5 ) 

Since HT does not conserve the number of electrons 
on the granule, the first term vanishes. We shall calcu­
late the second term by using the explicit form of the 
Hamiltonian HT (2.2). Introducing the notation 

(ap+(t)ap(t'»n=Sp {ap+(t)ap(t')P}n/SP {P)n 

and analogously for b+ and c+, we get 

8Wn'/8t"",L{Wn} =F nH-F., 

where 

F n=W.{P(n. q In-1, p)+P(n, ql n-1, k)} 
-Wn_dP(n-l, pln,q)+P(n-1, kin, q)}, 

t 

(3.6) 

(3.7) 

P (n, ql n-l, p) =4T,' Re LI S dt' <ap(t)ap + (I') >n<C,+ (t) C,(t') >., 

t 

P(n, q In-l, k) =4T,' Re L, S dt' <b.(t) b. + (t') >. <Cq + (t) Cq(t'»n, 
I.q _0> 

P(n-1,pln,q)=4T.'Re L, S dt'<ap+ (t)ap (t'Pn_.<cq(t)c,+ (t') >n- .. 
pq _i>O 

(3.8) 

P(n-1, kin, q) =4T,' ReL, S dt' < b,+(t) b. (t'Pn_.<C,(t) c/ (t') > n-" 
hq _DO 

The mean values of the product of the Fermi opera-
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tors in the foregoing formulas can be regarded as not 
differing from the corresponding mean values at fixed 
chemical potentials of the bodies. The difference be­
tween these mean values, which represents the differ­
ence between the canonical and grand canonical ensem­
bles, is small when the particle number is large. For 
the metals Ml and M2 this certainly takes place, and 
for the granule G we shall assume that this condition is 
also satisfied, inasmuch, as already noted, the spatial­
quantization interval EF /Ni (Ni is the average number 
of particles in the granule) is assumed to be small, i.e., 
Ni» 1. Nonetheless, a change of Ni by ± 1 leads to the 
appearance of a noticeable electrostatic energy and is 
not a negligibly small effect[4l. 

The quantities Pin (3.7) have the obvious meaning 
of the probabilities of transitions accompanied by change 
in the number of particles in the granule. The index p 
(the quantum number of the electron) fixes the body M1, 

the index k the body M2 , and q respectively the granule 
G. Thus, for example, P(n, q \ n - 1, p) is the probabil­
ity of a transition connected with a decrease in the num­
ber of electrons in the granule by unity (n - n - 1), 
and appears when an electron tunnels between the 
granule G and the edge of Ml (q - pl. The meaning of 
the remaining quantities P( ... \ ... ) is the same. 
Formula (3.7) is the kinetic equation for the system in 
question. 

The integrals (3.8) are easy to calculate. We have 

P(n, q I n-l, p) =i../(E.-En_.-e V.), P(n, q I n-l, k) =i.,f(E.-E~.-eV2)' 

(3.9) 
P(n-1, pin, q) =i../(En-.-En+eV.) , P(n-1, kin, q) =i.,f(En-,-E.+eV,); 

!(x) =x/ (1-e-~'), 

i..=4nT,'N. (O)N,(O), i.,=4nTz'N, (O)N,(O) , 
(3.10) 

where N1,2(0) and Ni(O) are the state densities at the 
Fermi level for the corresponding metals and En is the 
energy of the granule as a function of the number of 
electrons: 

E.=e'n'/2C,+(lX;eV'+~ieV,+w,)n. (3.11 ) 

In the equilibrium state we should have aw~/at = O. 
Using (3.9), we see that if the potentials of the edges of 
the junction coincide (V 1 = V 2 = V), then the solution of 
(3.7) is the Gibbs distribution function 

Wn=Z-'exp [-~(En-neV)]. (3.12 ) 

At V 1 "" V 2 the distribution function does not take the 
form (3.12). In this case, although the stationarity con­
dition aw~/at = 0 holds as before, the distribution over 
the number of particles is formed kinetically as a re­
sult of equality of the numbers of the direct and reverse 
transitions, and can differ appreciably from a Gibbs 
distribution. 

4. TUNNEL CURRENT IN M-G·M SYSTEM 

We proceed to the calculation of the tunnel current. 
In the tunnel-Hamiltonian method, the current is defined 
as the mean value 

l=e(JiI.>=-e(Jil2> . (4.1 ) 

The indicated mean values coinCide, since the Hamilton­
ian (2.2) conserves the total number of particles N 1 

+ N2 • Using the formula ( Nz ) = Tr{ Nzp'} and abbrevi­
ating the description of the system by introducing the 
number of particles n in the granules (see Secs. 2 and 
3), we obtain 
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+00 

l=e ~ Wn{P(n, kln+t, q)-P(n, qln-t, k)}. 
.;...,I 

(4.2) 

The probabilities P(i \ f) are given by formulas (3.8), 
while Wn satisfies the stationary condition (see (3.7)): 

L{Wn} =0. (4.3) 

We assume that the system is connected to some 
external sources that maintain constant values of the 
potentials V 1 and V 2 (actually, constant values of the 
mean charges on the bodies Ml and M2)' The change 
of the charges during tunneling is a slow process, and 
therefore the external Sources needed to ensure the 
stationary condition can be disregarded in the calcula­
tion. For the same reason, each of the metals is char­
acterized by an equilibrium (Fermi) distribution of the 
electrons with respect to their energies. The chemical 
potentials of this distribution (reckoned from the bottom 
of the band) remain unchanged, since the characteristic 
changes in the number of particles are of the order of 
unity and are small in comparison with their mean 
values Nk » 1. In the case considered by us, the cur­
rent in the system of granules is the sum of the currents 
flowing through the individual granules. 

It is impossible to solve (4.3) in general form. We 
consider therefore limiting cases, in which it is possi­
ble to obtain the form of the distribution function Wn. 
These cases are the following: a) the case of small 
voltages (Vl - V2 - 0), when Wn deviates little from 
a Gibbs distribution; b) the case of an asymmetrical 
junction when, for example, T l » T2, Le., the Ml 
~ G and G ~ M2 tunneling probabilities differ strongly. 

In the latter case, the resistance is determined 
mainly by the second process, and the distribution func­
tion Wn is close to Gibbsian for the pair of bodies 
(Ml + G), since the electron executes transitions be­
tween these bodies much more frequently, and goes over 
to the body M2 relatively rarely (violating equilibrium, 
Le., producing a current). 

A. Linear Response 

Equation (4.3) has a "first integral" 

Fn=C (4.4) 

(see (3.7)), where C is a constant obtained from the 
normalization condition LWn = 1. Under the condition 
\ v \ « 1, where 

v=pe(V,-V,), 

we solve Eq. (4.4) by successive approximations, 
putting 

Wn=Wno+vWn'+ .. . , 

W n'=Zo -, cxp (-pe n O), eno=e'n'/2C,+w,n, 

w,=w,+(a,+p,-t) V,. 

(4.5) 

(4.6) 

We note that in the macroscopic limit (see Sec. 2 and 
Appendix 2), when ai + i3i. = 1, we have Wi = Wi and the 
dependence on V 1 drops out. 

For wA we obtain the equation 

-W", [(°0_ C, _, 0 ° p,(}.,+I.,)-}., ° 
n +VI n-' exp p en-,-en )]- }.,+}., f (en -8n-,)- }.,+}., W., 

where Cl is a constant. This equation has a solution 
satisfying the condition LwA = 0 only at C 1 = 0, in the 
form 
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+~ 

ii= 1: nW.o. (4.7) 

Substituting (4.7) in (4.2) and USing (3.9), we obtain 

A.tl..2 ~ 0 G 0 

l=ell }.,+}., .l..;f(en -er._')Wn , (4.8) 
n=-DO 

where f(x) is defined in (3.9). 

We introduce the quantities 

R, =[ 4ne'N, (O)N,(O) T,']-', R,=[ 4ne'N.(O)N,(0) T,']-', 

which have the meaning[l7] of the resistances of the 
tunnel junctions Ml - G and M2 - G, without allowance 
for the effects due to discreteness of the charge. Then 
formula (4.8) shows that the resistance of the junction 
Ml - G - M2 is proportional to the sum of the resist­
ances Rl and R2, and its value is 

(4.9) 

with a certain proportionality coefficient y > 1. The 
quantity y-l describes the decrease produced in the 
current by the effect of "quantization" of the charge, 
and is given by 

+~ , 

x{e'/'n~ooexp[-}.(n-s)'] r ' (4.10) 

}.=pe'/2C" s=w,C'/e'. (4.11) 

At high temperatures (;\ - 0) we have y = 1. At low 
temperatures (;\ » 1), to the contrary, an important 
role is played in the sums (4.10) (depending on the value 
of ~) by either one or two terms corresponding to 
n ~ ~. In this case, the resistance oscillates when the 
parameter ~ is varied: 

y=sh {2}.(s-E[s]-'/,)} I}. (s-E[s] _1/,) (4.12) 

(E LX] is the integer part of x). A similar effect was 
noted earlier[41. 

At high temperatures (A « 1), the oscillating incre­
ment Rosc to the resistance R = Rl + R2 is exponen­
tially small: 

Rosc=Yosc(R,+R,) , Yosc=2n (nIl.)," exp (-n'I}') cos 2ns. (4.13) 

According to (4.11), (4.6), and (2.5), the quantity ~ is 
determined by the parameters of the granule and in the 
macroscopic limit, when ai + i3i = 1, it takes the form 3 ) 

s=c,[a,(w,O-w,O) +w,o-w,Oj/e'. (4.14) 

As seen from (4.12) and (4.13), the resistance of the 
junction depends on the ratio of the work function of the 
granule wg to the work functions of the junction edges 
w~ and wg. If the bodies Ml and M2 and the granule G 
are made of identical metals (w~ = w~ = wg), then 
~ = 0 and the resistance depends exponentially on the 
te mpe rature : 

2C,T (e') 
R=(R,+R,)~exp 2C

i
T ' (4.15) 

e' 
T«. C,' 

On the other hand, if wg - Wt2'" 0 (different materials 
of the edges and granules), then, generally speaking, 
e2/Ci \ Wt2 - wg\ « 1, Le., ~ is a large quantity. When 
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the periodicity in ~ is taken into account, the averaging 
over the parameters of the granules reduces in this 
case to integration with respect to ~ from 0 to 1. After 
averaging, the oscillations in (4.12) vanish, and the 
temperature dependence of the resistance takes the 
form 4 ) 

R=4n-'(R,+R,) e'IC,T, 
T<e'/C,. (4.16) 

At low temperatures, the resistance increases in 
comparison with its value at high temperatures. A 
"zero anomaly" of this type is observed in experi­
ment[S,6]. We note that at a granule diameter r ~ 103 'A, 
the temperatures satisfying the condition A > 1 amount 
to ~ lOoK (if the dielectric constant is E ~ 10). 

The temperature dependences of the reduced conduc­
tivity (J = (R1 + R2 )/R, calculated in accordance with 
formula (4.10), are shown in Fig. 2. As seen from the 
figure, (J increases with increasing T and becomes 
equal at T» e2/ Ci to the value of the conductivity with­
out allowance for the electrostatic barriers. As already 
noted, at w~ = wg = w~ the dependence of a on T as 
T - 0 is exponential (curve b), but if averaging is car­
ried out with respect to the parameters wf (curve a), 
then a ~ T. 

B. Current-voltage Characteristic of Asymmetrical 
M-G-M Junction 

Let us find the I( V) dependence at R1 » R2 • In this 
case, according to (4.16), the scale of the junction re­
sistance is R ~ R2 , i.e., it is determined by transitions 
in the G - M2 ''bottleneck''. We seek the solution of 
(4.4) in the form 

W.=Wn'+eW.'+ ... , e=1.2/1.,«1, 

where Ai is obtained from (3.10). For w~ we obtain the 
equation (Ei,'2 = En - nV1,2) 

w.o_, exp[~ (e~_,-e.') j-W.o = Cj-' (e.'-e.~,), 

the solution of which 

W.'=Z-'exp(-~en') (4.17) 

corresponds to a Gibbs distribution for the bodies 
Ml + G. The constant C should be set equal to zero, for 
otherwise the function Wn increases as n - "", i.e., 
the corresponding distribution cannot be normalized to 
unity. This confirms the hypothesis advanced above 
concerning the equilibrium between the bodies Ml and 
G. 

The remainder of the calculation is trivial. Calculat­
ing wA and substituting the corresponding expression 
in the formula for the current (4.2), we get 

VI-V, (V) , I=2--vR2 sh 2- <p(Lv), (4.18) 

(4.19) 

where cp(~, TI), A, I;, and v are defined by formula (4.10), 
(4.11), and (4.5). As v - 0, this expression coincides 
with (4.10). It is seen from (4.10) and (4.18) that I is 
periodic in i;' with a period Ai;' = 1. Since I;' depends 
on v, Eqs. (4.18) describes the non monotonic depend­
ence of I on v. 

To obtain the current-voltage characteristic (CVC) 
of the tunnel junction it is necessary to average (4.18) 
over the parameters of the granule. The result of the 
averaging depends significantly on the ratio of the work 
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FIG. 2. Temperature depen­
dence of the conductivity of a 
tunnel junction M-G-M at V = 0: 
a-conductivity averaged over the 
work functions wf of the granules, 
b-case of constant vf (wY = w~ 
=w~. 

o "--_L.._.l:--JJ..I -....Lq---'--5 
/ 

eZ 

T Ui 

functions of the granule w~ and of the edges of the junc­
tion w~ and w~. 

1) If Ci \ wg - wt2\/ e 2 » 1, then the averaging re­
duces to integration with respect to ~ I from zero to 
unity (see footnote 4). Averaging causes the oscillations 
of I( V) to vanish, and the evc becomes monotonic. The 
differential conductivity a(V) = dI/dV (I(V) is the 
averaged current) at T = 0 (A = 00) takes the form 

a=aoo{U, u<l, u=VC" 
1, u> 1 e 

(4.20 ) 

where a"" is the conductivity of the junction without al­
lowance for the effects of the discreteness of the charge. 
At high temperatures (A - 0) we have a(V) = aoa • 

2) If the granule and the edges of the junction are 
made of identical metals (w~ = w~ = wg ), then ~ = 0 
(see (4.14», and when averaging (4.15) it is necessary 
to take into account the explicit dependence of the 
parameter i;' (4.19) on the position of the granule in the 
junction. As seen from (4.19), this dependence is deter­
mined by the parameter i3i, which takes the follOwing 
form in the considered model (Appendix 2) 

~,=x/d, (4.21) 

where x is the distance between the granule and the 
surface of the nearest large body (M 1 ), and d is the 
distance between the metals Ml and M2 • Depending on 
the pOSition of the granule, a change takes place also in 
the reSistance R2. We shall henceforth assume that 
R2 (x) takes the form 

(4.22) 

If the granules are distributed uniformly with respect 
to the coordinate x, then it is necessary, in order to 
calculate the average current I(V), to substitute (4.21) 
and (4.22) in (4.18) and (4.19), and to integrate the re­
sult with respect to x from 0 to d/2. With this method 
of averaging, 1 (V) retains both the characteristic 
threshold due to the activation mechaniSm of the con­
ducti vity and the oscillations due to the discreteness of 
the charge. At high temperatures (A - 0), the CVC is 
mainly ohmic (a( V) ~ aoo), and the characteristic oscil­
latory increments to the differential conductivity a( V) 
are exponentially small (aosc ( V) ~ exp ( _112/ A». 

At low temperatures (.\ » 1), the threshold charac­
ter of the conductivity and of the oscillations of the CVC 
manifest themselves most strongly. If T = 0 (A = 00), 
we obtain for a( V) the expression (Kd » 1) 

a(V) =aoo (Q,+Qosc), 

Q,=8(u-l), 

(4.23 ) 

(4.24) 

" ",.i.. _1+ xd (1+2E[uI2)) [Xd(1-2D)]8(D_J:..) (425) 
"osc 2 u' exp 2u 2 ' • 1 

u-' exp[xd(1-u-')/2j8(u-'I,), u<l 

l<u«xd 
xdu-'[8(D~'/2)-D), xd«u 
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II [ II ] {1, z>O D=--E -, 8(z)= . 
2 2 0, z<O 

(4.26) P(n, qln-i, p)=A,f(En-En_,-eV,), P(n, qln-i, k)=A,f(En-E._,-eV,), 

P(n-1, pin, q)=A,f(En_,-En+eV,), P(n-1, kin, q)=A,f(En-,-E.+eV,), 

The quantities u and K are defined in (4.20) and (4.22). 

Figure 3 and 4 show plots of alO""" against u for both 
considered methods of averaging, calculated numerically 
for a number of values of the parameter A. From the 
experimental point of view it appears that the relations 
shown in Fig. 3 are more probable (or, at least, rela­
tions of Fig. 4 with weak oscillations), since the granule 
parameters[5] are subject to a large scatter. 

C. Capacitance Oscillations 

In the case of an asymmetrical junction, it is easy to 
calculate the change produced in the charge by the re­
distribution of the electrons among the edges of the 
junction and the granules. The charge on the granule 

+-

ilQ = e 1:, W. (n-N,') (4.27) 

can be obtained by substituting in place of Wn the dis­
tribution function W~ (formula (4.17)). The quantity 
~Q contains an increment ~Qosc that oscillates with 
the voltage. We find the oscillating part of the capaci­
tance ~Cosc = d(~Qosc)/dV. We have 

{ '/2C,~"Jch' (~' -E[~']-'/,)A, A~1 
ilC "" , osc -C,A-'k4:rt'exp (-:rt'/A)cos2:rt~, 1.«1 

(4.28) 

where i;'(V) is determined by (4.19) and (4.11). These 
oscillations of the capacitance in an asymmetrical junc­
tion were observed experimentally[81• 

5. TUNNEL CURRENT IN S-G-S JUNCTION 

In this section we calculate the current in a tunnel 
junction whose electrodes are identical superconductors 
(S), and the granule (G) is in the normal state. In this 
junction, the main contribution to the current is made 
by quaSiparticle tunneling. The Cooper-pair current 
(the Josephson .current) is a quantity of second order in 
the transparency T~,2 of the junctions, and the contri­
bution of this current will be neglected. In this case, 
just as before, the calculation of the current calls for 
solution of the system of equations (4.2) and (4.3), with 
(3.7) and (3.8) taken into account. The only difference is 
that the mean values of the operators pertaining to the 
edges of the junction, which enter in (3.8), must be cal­
culated over the states of the superconductor. Taking 
this into account, we obtain for P( i\ f} 

6/600 

1.0 

0.5 

a 

T " 
2 

OL-~--~2L--LJ--~q~-5~U 

FIG. 3 FIG. 4 
FIG. 3. Derivative of the current-voltage char.acteristic a = dI/dV 

of an M-G-M junction, averaged over the values of the work function 
wf: a) A = 5, b) A = 3, c) A = I, where A = e2/CiT and u = VCJe is the 
reduced voltage. 

FIG. 4. The dI/ dV - V characteristic of monometallic M-G-M 
junctions (w,'~w,'~w3'): a - A~30, "d~20; b - A~10, "d~20; c - A~5, "d~20 
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+- ixi8(ixi-il) 
f(E)"", e~EI'ID (~EI2)= J dx (X'-d')'" n.(z-E) [l-n.(x)], 

-- (5.1) 
where nF(x) = (1 + e i1Xr1 is the Fermi distribution 
function and ~ is the energy gap. The quantities A1,2 
and En are defined in (3.10) and (3.11). The function 
f( E) coincides with f( E) (3.9) at ~ = O. 

The subsequent calculations are analogous to those 
in Sec. 4. The kinetic equation (4.3) was solved for the 
same limiting cases (V - 0 and T2/T 1 - 0) that were 
considered in Sec. 4. 

A. Linear Response 

Solving the kinetic equation (4.3) and substituting its 
solution together with the quantities (5.1) in the formula 
for the current (4.2) we obtain 

1.,1., ~f(' ')W' 1= ev--- En-t-En n' 

A,+A',,~_oo 
(5.2) 

The quantities v, W~, and €~ are defined in (4.5) and 
(4.6), while f(E) is defined in (5.1). If we introduce the 
resistances R1 and R2 of the tunnel junctions M1 - G 
and M2 - G (see Sec. 4), then we can obtain from (5.2) 
expressions analogous to (4.9) and (4.10): 

+-

R=V(R,+R.) , 

'y-'=<P{6, 0), 

iji(6, Tj)= 1:,exp[ -A (n-6+'I,)'] ID [A(n-6+'/,)-TjJ2] 

+- , x{ e'l' 1:, exp[ -t.(n-6) '] } - , 
n __ oo 

(5.3) 
(5.4) 

(5.5) 

where the quantities A, 1;, and cI>(x) are defined in (4.11) 
and (5.1). 

At ~ = 0, expressions (5.4) and (5.5) coincide with 
the analogous results (formula (4.10» for the M-G-M 
junction. The quantity .y is an oscillating function of the 
parameter I; with period ~~ = 1. At A « 1 (high tem­
peratures), the oscillating part of y is exponentially 
small 

CJS so;;; V- 1 = 000 +Gosc, 

r (2:rt~d)';'e-'M', ~il~l 
0 00 ''''' l1+~M2, A«~d«l, 

1, ~il «I. 

(5.6) 

(5.7) 

{ 

(~t.)';' exp[ (:rt'-(~M2)/4A] . (:rt~il + ) . 2 • 
sm -- '" sm :rt~ 

ch(~M2) [:rt'+(~t.)'l'" 21. ' 
a~sc "" 2:rte-n'I'. ~il~A 

-~il(:rtA)-'he"l'lcos2:rt6, e-"I"«~il«A, (5.8) 
(:rt/A)'" cos 2:rt6. ~il<e-"I", 

cp = ( 7'2 }tan-1( rrl (3~). With decreasing temperature, the 
amplitude of the oscillations increases, and at A » 1 
we obtain for as 

o'=!D [A(s-E[;j'-'/,) 1/2 ch A(s-E[6]-'/,). 

4>(x) is defined in (5.1). 

(5.9) 

To obtain the total resistance of the S-G-S junction 
it is necessary to average formulas (5.6)-(5.9) over the 
granule parameters. If w~ = wg = wg, then according to 
(4.14) the temperature dependence of the resistance R 
is determined by the expressions (5.6)-(5.9), in which 
we should put ~ = O. On the other hand, if Ci I wg 
- w~11/e2» 1, then the averaging, just as in Sec. 4, 
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reduces to integration of (5.6)-(5.9) with respect to ~ 

between 0 and 1. At >. « 1 we obtain 

(5.10) 

(Joa is the conductivity of the M-G-M junction without 
allowance for the discreteness of the charge, and a! is 
given by formula (5.7). 

At low temperatures (>.» 1) after integration of 
(5.10) with respect to ~ we obtain 

{ 
(2n~L'i)"'e-M, 

a"'" aoo (2n~L'i) "'~L'ie-P"/21., 

'/,1. -, (n'/4+~L'i), 

~L'i;}>1. 

1~~L'i~1.. 

~L'i~1 

(5.11 ) 

In contrast to the M-G-M junction, the temperature 
dependence of (J = 1/R is exponential (at (3A » 1), this 
being due to the presence of the energy gap A in the 
spectrum of the quasiparticles on the edges of the 
S-G-S junction. Figure 5 shows the temperature de­
pendences of (J/ a"", calculated numerically for a number 
of values of the parameters 0 = CiA/e2. 

B. Current-voltage Characteristics of Asymmetrical 
S-G-S Junction 

If R1 « R2, then Eqs. (4.3) and (3.7) can be solved by 
perturbation theory with respect to the small parameter 
€ = >'2/>'1, After calculations that are perfectly analo­
gous to those of Sec. 4, and after substituting Wn in 
formula (4.2) for the current, with allowance for (5.1), 
we obtain 

V,-V, (V) , 
f=2~sh 2" iji(s ,v), (5.12 ) 

where ( and q;(~, 7/) are defined in (4.19) and (5.4). 
Since I( ~') is periodic and ~' is linear in the voltage 
(see (5.4) and (4.19)), expression (5.12) reflects the 
nonmonotonic character of I(V). Just as in Sec. 4, the 
form of the current-voltage characteristic of the junc­
tion depends essentially on the method of averaging over 
the granule parameters. 

1) Ci \ W~,2 - w~ \I e 2 » 1. The oscillating increment 
to the current vanishes upon integration with respect to 
(. At T = 0 we obtain for the differential conductivity 
a( V) = d17 dV the expression 

a(V)=aooQ, (5.13) 

Q=8(u-6) {[ (u'-6')"'-«u-1)'-6,)'h]8(u-1-6) 

+ (u'-/l') "'8 (/lH-u)}, (5.14) 
/l=t.C.!e', (5.15) 

u is defined by (4.26). Equations (5.13) and (5.14) coin-

uK-~~--~----~m~----~~~--­

/ 112 
T, zei 

FIG. 5. Temperature dependence of the conductivity of a mono­
metallic (w?= w~= wg) S-G-S tunnel junction: a) 8 = 10, b) 8 = 5, 
c) 8 = I, d) 8 = 0.1, where 8 = t.Ci/e2 is a parameter. Averaging over 
the granule parameters WY does not lead to a noticeable change in the 
shape of the curves. 
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cide at A = 0 with expression (4.20) obtained for the 
M-G-M junction. The conductivity has a threshold 
u = 6, which is typical of S-N junctions[17 l . At high tem­
peratures (>. - 0), the CVC coincides with the well­
known result 

I (V) =aoo (eP'V -1) f (-e V) (5.16) 

where f is given by (5.1). Figure 6 shows plots of the 
CVC calculated numerically for a number of values of 
the parameter 0 at finite temperature. 

2) w~ = wg = wg. The parameter i;', which enters in 
the expression for the current (5.12), is determined by 
the relations (4.19) (at i; = 0) and (4.21), and depends 
on the distance x between the granule and the nearest 
edge. When averaging over the different positions of the 
granule, it is necessary to take into account the depend­
ence of R2 in (5.12) on x (see (4.22)). If the granules 
are uniformly distributed over the thickness of the junc­
tion, the averaging reduces to integration of (5.12) with 
respect to x from 0 to d/2 (d is the thickness of the 
S-G-S junction). With this method of averaging, the 
CVC retains the characteristic oscillations. At high 
temperatures (>. « 1), the oscillating increment to the 
current is exponentially small (~exp [-const/>. ]), and 
the CVC is determined mainly by (5.16). With decreas­
ing temperature, the contribution of the oscillations in­
creases. Even in the case T = 0 (>. = 00), the expres­
sion for the differential conductivity as ( V) is quite 
cumbersome. However, if \ eV \ » A + e 2Ci, this expres­
sion simplifies to 

a'(V) =a(V) (1H'j2u') , (5.17) 

where u and 6 are defined in (4.20) and (5.15), while 
a( V) is the conductivity of the M-G-M junction. 

6. CONCLUSIONS 

The main results of the present paper reduces to the 
following: 

1. The description of the tunnel charge transport in 
granulated systems differs from the usual scheme used 
to calculate the current in tunnel structures. In these 
systems, the relaxation process connected with the re­
distribution of the charge among the granules is quite 
slow, so that the distribution function of the charge on 
the granules should be determined by solving the cor­
responding kinetic equation, and does not coincide in the 
general case with the Gibbs function. 

2. Owing to the smallness of the granules, the sys­
tem is on the whole sensitive to the discreteness of the 
electric charge, so that the tunnel current and the 
charges on the granules are nonmonotonic functions of 
the voltage. 

3. The form of the current-voltage characteristic 

FIG. 6. Derivative of the CVC of 
an S-G-S junction for the case 8 = 5 
and for parameter values 8 = 5 (a), 
2 (b), and 0.5 (c). 

u 
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and the temperature dependence of the resistance of a 
M-G-M junction depends significantly on the relation 
between the work functions w~ and wg of the edges of 
the junction and w~ of the granules. If Ci I W~,2 - w~i/e2 
» 1, then after averaging over the parameters of the 
granules the current-voltage characteristic does not 
contain the characteristic electrostatic threshold, and 
is monotonic (Fig. 3). The temperature dependence of 
the conductivity a(V = 0) at sufficiently low tempera­
tures (T« e 2/Ci) is linear (see (4.16)), Le., a in­
creases with increasing T. On the other hand, if 
Ci I wt2 - wgl/e2 » 1, then the current voltage charac­
teristic contains a characteristic electrostatic threshold 
( e/ Ci) and oscillations whose period is equal to double 
the threshold voltage (Fig. 4). The temperature depend­
ence of the conductivity a( V = 0) is exponential in this 
case: a(V = 0) ~ exp(- e2/CiT). 

4. The current-voltage characteristic of a S-G-S 
junction has a threshold character, and the temperature 
dependence of a( V = 0) is exponential regardless of the 
relation between the work functions of the granules and 
the edges of the junction. The effective threshold of the 
current-voltage characteristic is determined by the 
sum of the "superconducting" (~) threshold and the 
electrostatic threshold (e2/Ci) (see Fig. 5). If 
Cil W~,2 - wgl/e2 « 1, then a(V) contains oscillations 
with a period 2e/ Ci, which vanish in the opposite limit­
ing case. 

In conclusion, the authors are grateful to E. A. 
Kel'man for help with the computer calculation of the 
plots. 

APPENDIX 1 

We consider the potential produced by a point charge 
q located in a dielectric (with dielectric constant E) 
between two metallic bodies (Fig. 7). To find the poten­
tial cp at the point (r, z) (r is the radius vector in the 
plane perpendicular to the z axis) it is necessary to take 
into account the images produced by the point charge 
(shown by crosses). We obtain 

+~ q -
<p(r,z)=~.E [«z-z.-)'+r')-'t. 

- -~~ (z-z. +)'+r')-'''l, 

~ = 2nd ± x. Using the Poisson summation formula, 
we get 

2' +-
<p(r,z)= d:q E exp(tanz) 

X sin (a.x) Ko (Ian Ir), 

where an = -1Tn/d and Ko(x) is a modified Bessel func­
tion. 

If nr/d» 1, then I an Ir » 1 (for n ~ 0), and we can 
use the asymptotic form of the Bessel function. Omit­
ting the exponentially small terms (~exp ( -21Tr/d)), we 
obtain ultimately 

it is seen from this formula that the electrostatic inter­
action of the granules is screened by the metallic edges 
and decreases exponentially with increasing distance r 
between them. 
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APPENDIX 2 

If the granule dimensions are small enough, then we 
can neglect the influence of the granule on the distribu­
tion of the charge on the surfaces of the large bodies 
Ml and M2. To calculate the potential coefficients Qik 
of the considered three-body system, we can then use 
the "spherical capacitor" model shown in Fig. B. In 
this model, when calculating au, a12, alS, au, and a23, 
the granule G is regarded as a point charge. The 
matrix aik takes the form 

1 
(l;kz 7 

(
a,+a'+d)-' (a, + a, + d)-' (a, + a. + d)-' ) 

X (a,+a,+d)-' a.' + (" +a, +d)-',-(a, + d)-' (a,+a.)-'-(a'+~~'-f(a'+"+d)-', 
(.,+a,+1)-' (a,+d,)-'-(a,+d)-'+(.,+a,+d)-' TO 

where ro is the characteristic dimension of the granule 
G. In the limit d/al,2« 1 we obtain, for aik, accurate 
to terms ~d/ (al,2)2, 

1 (aO-dao' ao-dao' ao-dao' ) 
aik ~- a~-dao2 cxo+dat 2 Clo+dttXt2_dzC'.toz, 

e ao-dao' ao+d,a,'-d2ao' ro-' 

ao= (a,+a,) -I, a,'=a,-'- (a,+a2) _2. 

Using this matrix, we easily obtain 

lim ~i = lim CX23ct11-etl3ct12 d, 
111,2-+00 11 1,2-00 CtllctZ2-at22 d' 

lim at = lim CXuCtZ'.!-CXZ3etl2 dz 

"',2-- "',2-- aua,,-a,,2 d' 
Thus, the quantities ai and i3i do not depend on the die­
lectric constant E, nor on the dimensions of MI and MOl, 
and are determined by the position of the granule in the 
junction. 

2d 

-d 

-2d 

FIG. 7 

FIG. 8 
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I)Actually, the characteristic electrostatic energy is VI - eZIEr, and the 
distance between energy levels is V z - EF/N - EFa3/ r3. At not too 
small values of r, we have VI ~ V z (r is the particle radius, N is the 
total number of electrons in the particle, a is the interatomic distance, 
and e is the dielectric constant; in order of magnitude, we have eZ/a 
-EF)· 

2) As shown in Appendix 1, the electrostatic interaction of the granules 
gi and gj is screened by the edges of the junction, and its order of 
magnitude, at fjj ~ d, is (eZlerij)(rij/d)I/Z exp (-7ITij/d), where rij is 
the distance between granules and d is the distance between the edges 
of MI and Mz. The mutual electrostatic influence of the granules can 
therefore be neglected at rij ~ d. 

3)ln expression (4.14) we have omitted the integer Ng. Since the quan­
tity "f (4.1 0) is periodic in ~ with a period equal to unity, it is possible 
to add to ~ any arbitrary integer. 

4Tfhe calculation of the conductivity reduces to the calculation of the 
I 

integral f "f-Imd~ at a fixed Ci. Formula (4.16) pertains to this case. 
o 

The next step, generally speaking, is averaging over Ci, using some 
distribution function with respect to the granule parameters. As a 
result we obtain an expression of the type (4.16), where the role of 
Ci will be assumed by the mean values of the capacitance. 
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