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Resonant coherent scattering of Mossbauer 'Y radiation by perfect magnetically ordered crystals is 
considered theoretically. It is shown that the characteristics of coherent Mossbauer-radiation scattering, and 
in particular its polarization properties, significantly depend on the details of the crystal magnetic structure, 
differ qualitatively from the case of Mossbauer-radiation scattering in paramagnetic crystals, and can be 
expressed in terms of the properties of the proper solutions of the Maxwell equations for the Mossbauer 'Y 
quanta in the crystal. For crsYtals of arbitrary thickness, expressions are found for the intensities and 
polarizations of the 'Y beams coherently scattered and transmitted through the crystal. The analysis is 
carried out in the two-wave approximation of the dynamic diffraction theory. Numerical calculations are 
performed for scattering by a ferromagnetic iron crystal. The most characteristic manifestations of 
Mossbauer-radiation scattering by magnetically ordered crystals are noted, viz., the "three-hump" shape of 
the reflection curve, six beat periods in the Pendellosung, and the possibility of obtaining polarization of 
scattered radiation under controlled experimental conditions. 

1. INTRODUCTION 

Theoretical and experimental investigations of coher­
ent scattering of Mossbauer radiation from crystals 
have revealed many features of this radiation, of inter­
est both to solid-state physics and to nuclear physics 
(see, e.g.,(1-101, where additional references can be 
found). ConSiderable attention is attracted, in particu­
lar, by the investigation of the M6ssbauer coherent 
scattering by magnetically-ordered crystals and by 
crystals in which the M6ssbauer nuclei are located in 
sites with zero electric-field gradient. In such crystals, 
for example, the anomalously large transparency of the 
medium to Mossbauer radiation can become most 
clearly pronounced (the effect of suppression of in­
elastic nuclear channels)(1,lOl. Another interesting 
property of M6ssbailer scattering by magnetically 
ordered crystals (and more generally by crystals in 
which hyperfine splitting of the Mossbauer spectrum 
exists) is the dependence of the polarization character­
istics of coherent scattering on the structure of mag­
netic (hyperfine) fields in the crystal. However, the 
question of the polarization properties has been con­
sidered in detail only for Mossbauer scattering by thin 
crystals[S,lll. In the case of crystals of arbitrary thick­
ness, the polarization characteristics were investigated 
for the Simplest situations[9,lZl. 

In this paper we analyze the polarization properties 
of Mossbauer coherent scattering in magnetically 
ordered perfect crystals of arbitrary thickness. One 
stage of this analysis is the determination of the eigen­
solutions of Maxwell's equations for Mossbauer radia­
tion under conditions when the Bragg conditions are 
satisfied and the investigation of the polarization proper­
ties of the eigensolutions. It turns out that the polariza­
tions of the eigensolutions are directly connected with 
the magnetic ~tructure of the crystal, are notortho­
gonal to one another in a typical situation, and vary with 
changing 'Y -quantum energy as well as with the devia­
tion of the scattering angle from the exact Bragg condi­
tion. The aforementioned polarization properties, in 
conjunction with different damping decrements of the 
eigensolutions, lead to a qualitative difference between 
the M'ossbauer scattering by magnetically ordered 
crystals and x-ray or M'ossbauer scattering by nonmag-
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netic crystals. In particular, the scattered radiation 
can have a polarization that is almost complete and de­
pends on the magnetic structure of the crystal although 
the initial radiation is not polarized. The polarization 
of the scattered radiation and that transmitted through 
the crystal turns out to be dependent on the energy of 
the 'Y quanta and on the thickness of the crystal. 

The nonorthogonality of the polarizations of the 
natural waves leads to unique interference phenomena 
which do not appear in the scattering of other types of 
radiation by crystals. Thus, in the pendulum (Pendello­
sung) effect it is possible for six periods of the beats of 
the scattering intensity to appear with varying thickness 
of the crystal (or energy of the 'Y quantum), unlike the 
two periods in the case of x rays. In this paper, in addi­
tion to a general analysis of the polarization properties 
of the Mossbauer scattering and their connection with 
the magnetic structure of the crystal, we conSider in 
detail concrete situations that are of interest from the 
experimental point of view and lead to Simplification of 
the general expressions. Numerical calculations are 
performed for some of the cases. 

2. SYSTEM OF DYNAMIC EQUATIONS 

We consider the scattering of M'ossbauer radiation 
by a magnetically ordered crystal containing Mossbauer 
nuclei, at quantum incidence angles satisfying the 
Bragg condition. To find the electromagnetic field in 
the crystal, it is necessary to solve Maxwell's equations 
which, as is well known[9, 101, reduce under the conditions 
in question to the following system of equations: 

(k,'/x'-1)E,=F"E,+F12 E" 

(k2'lx'-1)E2=F"E,+F~,E2' 
(1 ) 

where K is the wave vector of the y quantum in vacuum, 
while kl' kz, E1, and E2 are the wave vectors and am­
plitudes of the primary and diffracted waves in the 
crystal. The operator Yip, the form of which is given 
below, describes the scattering of a wave with wave 
vector kp into a wave with wave vector ki by the unit 
cell of the crystal. The wave vectors in (1) are con­
nected by the Bragg condition 

(2) 
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where T /21T is the crystal reciprocal-lattice vector. 
Using the connection between kl and k2' which follows 
from the boundary conditions for a crystal in the form 
of a plane-parallel plate, we can represent the system 
(1) in the form 

lei - '/$(F - 6)JE = (el - dJ) E = 0, 

where I is a unit matrix of fourth order; 

(3) 

(here A and B = I E21/1 Ell are scalar quantities, while 
n and n' are the polarization vectors of the primary and 
diffracted waves); F is the matrix of the coefficients of 
the right-hand side of system (1). The four-row 
matrices b and Ii are specified by the relations bik 
= 15ik if i ~ 2, bik = b15ik if i > 2, (15)~ = 0 if ..l> 2, and 
(15)ik= 1515ik if i> 2, where b=COSKIS/cosk2s,s is 
the unit vector normal to the plane of the crystal and 
directed to the interior of the crystal; the quantity 
15 = T( T + 2 K)/ K2 characterizes the deviation of the angle 
of incidence of the radiation on the crystal from the 
exact Bragg condition; 

e= (k.'lx'-1); k,'/x'-1=6+Blb. 

The condition under which the system (3) has a solution, 
namely 

(4) 

determines E, i.e., the values of the wave vectors kl 
and k2, while the solution of the system (3) yields the 
corresponding amplitudes El and E2 as functions of 
the incidence angle (or /}) of the primary wave on the 
crystal. Thus, from the number of roots of Eq. (4) we 
obtain four eigensolutions of the system (3), and the 
field in the crystal is represented by a superposition of 
the eigensolutions: 

• 
E(r, t)= L/p(npeXp{ikir}+Bpn~eXp{ik~r})e-iwt, (5) 

p=l 

in which the index p labels quantities pertaining to the 
p-th eigensolution. The coefficients Cp in (5) are de­
termined from the boundary conditions on the amplitude 
of the primary and diffracted waves. 

3. EIGENSOlUTIONS OF DYNAMIC SYSTEM 

To obtain a general expression for the eigensolutions 
of the system (3), it is convenient to resolve the vectors 
of the natural polarizations np and np along of the 
polarization unit vectors in the form 

np=a,pX, (1) +a,pX, (1), 

n/= (a,pX, (2) +a .. x, (2) )IB" 
(6) 

where xi( 1) and Xi(2) are the polarization unit vectors 
for directions 1 and 2, respectively. In this case Bp 
turns out to be identically equal to (I a3p 12 + I a4p 12 )1/2, 
and the quantities aip are expressed in terms of the 
elements of the matrix F (written in turn in terms of the 
unit vectors xi( 1) and Xi(2)), the eigenvalues Ep of 
Eq. (4), and the parameters /} and b by the relations 

(7) 

where Dki is the cofactor of the element dki of the 
matrix d( Ep) defined in the second relation of (7), while 
A is a normalization coefficient. Thus, the coefficients 
of the expansion of the field amplitudes in terms of the 
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polarization unit vectors are expressed in the eigensolu­
tion in terms of the cofactors of the elements of any row 
of the matrix d( Ep). For the sake of argument we as­
sume that they are expressed in terms of the cofactors 
in the first row. Representing the vectors of the natural 
polarizations in the universally accepted form 

np= (cos apX, (1) +e'~p sin apX, (1) e"p, 

no' = (cos a/x,(2) +e'~p' sin a/X, (2» e"', (8) 

we obtain for the parameters a, f3, and 11 the expres­
sions 

cosa/=Ialopl, 

eIIIP=~ 
la2p1 ' 

ei'llp'=~ 
la2P 1 ' (9) 

The foregOing formulas, which connect directly the 
polarization of the eigenwaves and the quantities Bp 
with the magnetic structure of the crystal, contain also 
the dependence on the parameter (the angle of incidence) 
and determine all the singularities and the polarization 
characteristics of coherent M6ssbauer scattering by a 
magnetically-ordered crystal. 

Since the analysis of the presented eigensolutions 
calls in general for numerical methods, because one of 
its stages is the determination of the roots of the 
fourth~degree equation (4), we note here some general 
properties of the eigensolutions. 

Certain properties of the eigensolutions follow 
directly from the form of the matrix F = F(R) + F(N), 
the Rayleigh component F(R) of which coincides with 
the corresponding matrix for the diffraction of x rays(l3], 
and the nuclear component F(N) can be represented in 
the form 

(10) 

where fcoh (k . e; k' . e') is the amplitude of the coherent 
scattering of y quantum with wave vector k and polari­
zation vector e into a quantum with wave vector k and 
polarization vector e' by a Mossbauer nucleus, V is 
the volume of the unit cell of the crystal, the vector r 
specifies the position of the Mossbauer nucleus in the 
cell, the summation is over all the Mossbauer nuclei 
within the unit cell, and the subscript q labels quanti­
ties pertaining to the q-th M6ssbauer nucleus. 

Since the expression for the coherent nuclear ampli­
tude contains energy denominators that contain the 
imaginary quantity ir/2[S,14], the matrix of Eq. (3) (see 
(10» is in the general case not Hermitian. Consequently, 
the polarizations of the eigensolutions are generally 
speaking not orthogonal to one another, i.e., np 'np'* 
;00 0 and np .np'* ;00 O. 

Since the matrix of Eq. (3) contains the parameter /) 
which characterizes the angle of incidence of the radia­
tion on the crystal in the region of the diffraction re­
flection, the polarization of the eigensolution turns out 
to be in the general case to depend not only on the mag­
netic structure but also on O. Outside the region of the 
diffraction reflection (0 - ± oX) ) for the two eigensolu­
tions we have I E21/1 Ed - 0, and the eigenpolariza­
tions of the wave El tend to the eigenpolarizations for 
the direct passage of Mossbauer radiation in the direc­
tion of k l.[15] The two other eigensolutions correspond 
to direct passage in the k2 direction. 
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4, SOLUTION OF THE BOUNDARY-VALUE 
PROBLEM 

If the wave incident on the crystal has a polarization 
vector e = cos aXz(l) + eif3 sin axd1), then in the Laue 
case (b > 0), using the boundary conditions 

E C,JJ.n; =0, .E C.n.=e, 

• 
we obtain from (5) for the intensity of the radiation 
passing through the crystal in the primary and second­
ary directions 

where ~LP == ~Lp at a = 0 and ~tp == ~Lp at a = 11/2 
and f3 = o. 

The beams passing through the crystal are partly 
polarized and are described by the following polariza­
tion density matrices: 

pr = :r.E Ir(x.)p(nr(X.», 
._1,21 

p. = I: .E I.(x.)p(n.(x.», 

(14) 

'_',21 

, 
Ir(e)= .E ICp(e) 1'11.1' 

where p ( e) is the polarization matrix of the photon 
(11) density with polarization vector e . . -, 

+2ReL. C. (e) C; (ehpl.(n.n,;), 
.» 

p.t 

+2Re E C. (e)C; (e) 1.1.'B.B.(n.'n.") , 
p>o 

where 
Cp(e) =~LP(e)/ ~L' 

~L is the determinant of the matrix aik (see (7)), 
~ L,I?( e) is the determinant obtained from ~ L by putting 
in lts p-th column 

aIP=ei~ sin ct, a 2P=cos CL, a"p=:::::ca,p=O, 
'Y.~exp {ie.xL/2 cos KS}, 

and L is the thickness of the crystal. 

The polarization vectors of the radiation passing 
through the crystal are determined by the relations 

1: C.(ehpnp E Cp(e)B.l.n; 

• p 

nr(C)= n.(e) = 

I L. c.(ellpn·1 IE Cp(e)Bp(.n; I 
p p 

(12) 

As follows from (11) and (12), the intensities and the 
polarizations of the radiation in the primary and second­
ary directions produce beats as functions of the crystal 
thickness (the Pendellosung effect). Unlike x rays, for 
which there exist two periods of beats in the M6ss­
bauer diffraction, owing to the non-orthogonality of the 
eigenpolarizations (of the vectors np) it is possible in 
the general case to realize six periods of beats in 
terms of the different values of the quantities lOp - lOp' 
with p,e. p', which determine the periods of the beats. 
For a fixed crystal thickness, the beats manifest them­
selves in a change of the energy of the y quanta, in 
connection with the energy dependence of the amplitudes, 
and hence of the differences lOp - lOp'. As follows from 
(11), the eigenwaves corresponamg to the zeroth roots 
of (4) propagate through the crystal without being 
damped, i.e" for the corresponding waves there is the 
effect of suppression of the inelastic channels(1,lOl. 

In the case of an unpolarized primary beam we ob­
tain from (11) for the intensities of the radiation pass­
ing through the crystal 

. Ir= 21~ I' {E 1.1,:1'11.1' 
L p 

'_1,2 

+2Re E ~L"~L."lpl"(npn") }, 
p>l 

'-1,20 

(13) 

1.= 21~~1' {.E I~L"I'B.'llpl'+2Re .E AL.'tiL."B,JJ.l.l"(n;n.")} 
p p>k 
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In experiment, as a rule, one observes quantities 
that are integrated over the angle (in the Bragg-reflec­
tion region) and over the energy. The integration of 
expressions (12) with respect to 0 causes the results of 
the polarization measurements to be described, even in 
the case of a fully polarized primary beam, by a polari­
zation matrix corresponding to a partly-polarized beam: 

Pr(e)= 
J Ir(e, Il)p(nr(e, Il»dll 

J Ir(e,ll)dll 

J [.(e, Il) p (n.(e,ll) )dl> 
!l.(e) = (15 ) J [n(c,ll)dll 

An analogous procedure is used for averaging over the 
energy with allowance for the line shape of the primary 
beam, the scatterer, and if necessary the detector (for 
a resonant detector), 

In the Bragg case (b < 0), using the boundary condi­
tions 

we obtain for the coefficient Cp in the expansion (5) 

C (e) = _~B.(e) 
p ~n' (16) 

The determinant ~ Bp( e) is obtained from ~ B in the 
same manner as ~Lp(e) is obtained from ~L (see 
formula (11)); the remaining notation in (16) is the same 
as before. 

The intensity and polarization JT( c) and nT( c) of 
the radiation transmitted through the crystal are deter­
mined, just as before, by the first relations in formulas 
(11)-(15), but with coeffic,ients Cp defined by formula 
(16). The determinants ~k ' which now enter in (13), 
are conn,ected with ~Bp bylihe same connection as be­
tween ~~p and ~Lp. 

The corresponding values for the radiation reflected 
from the crystal are described by the expressions 

4 

J,,(e) = E ICp(e) i'B.'+2 Rj) .E Cp(e) C .. (e) B,JJ. (n;n.") , (17) 
p_i p>k 

n.(e) = L,Cp(e) Bpn; / 1,.E C.(e)Bpn; I, (18) 
p p 

I. = 21:B12 { E I~B:I'B,,'+2 Re E ~B;~B.i·BpB.(n;n.")}' (19) 
p p>1t. 
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Just as in the Laue case, the intensities and the polari­
zations of the beams transmitted through the crystal 
and reflected from it experience beats with changing 
thickness of the crystal and with changing)' -ray energy. 

We present the explicit form of the eigensolutions of 
the system (3) for a biquadratic secular equation. The 
case of a biquadratic equation is realized for the con­
ditions of physical interest in a diffraction experiment, 
for example, if a magnetically preferred (say antiferro­
magnetic) axis exists in a cubic crystal, and the vectors 
kl and k2 make equal angles with this axis. 

To analyze this case, it is advantageous to use as the 
polarization unit vectors in (3) the unit vectors of the 
eigenpolarizations for direct passage in directions 1 
and 2. In terms of these unit vectors, the matrix F be­
comes simpler, since its elements, which describe 
scattering through zero angle, take the form 

and the relation Fg - F~ = F~ - F~ is satisfied for 
the diagonal elements. For the symmetrical Bragg case 
(b = -1), the condition under which the secular equation 
(4) becomes biquadratic is 

(20) 

When condition (20) is satisfied, the eigenvalues and 
eigensolutions of (4) (see formula (7)), in terms of unit 
vectors that coincide with the eigenpolarization vectors 
for the direct transmission, are determined by the 
formulas 

where 

1 Il 
e=e - 4-(Fuu+F11"-F"U-F,,") --2 

1 Il' =±Y2{2-Il(gl!+g,,)+(gu'+g,,'-~+) 

{ ,[ , (F 2I"F""-F,.UF"U)] ± (gu-g,,) Il -21l(gu+g,,) 1 + ,-, 
g" -g" 

+g"'+g,,'-L\+-4detF},,'},,' ; (21 ) 

a='/2(F,,"+F,,"-Il), g='/2(F,,2"+F,,"-Il) , g,,='1. (F,,"-F,,") , 

g22='h (F,,"-F,,") , 

Ll,=det Fn , Llz=detF21' 6.+~FI2t2F2121+FJ21tF2t 1l+FI222P2/2+F2/2F122I, 

Formulas (21) and (22) determine completely the eigen­
solutions of the system of dynamic equations. Under the 
same conditions, the secular equation for the Laue case 
reduces to a biquadratic one at 

The formulas presented in this section describe the 
reflection and transmission of M6ssbauer radiation and 
its polarization characteristics for crystals of arbitrary 
thickness with any type of magnetic ordering. Of con­
siderable practical interest are the limiting cases of 
thin and thick crystals, for which the analysis of the 
results becomes much simpler. 
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5. DIFFRACTION REFLECTION FROM THICK 
CRYSTALS 

In the case of thin crystals 1m k~sL « 1 (p = 1, 2, 3, 
3,4), formulas (17)-(19) go over into the well-known 
expressions of the kinematic theory[31• For thick 
crystals, 1m k~SL » 1, only two of the four eigenwaves 
are excited in the crystal in the Bragg case, namely 
those having the maximum damping. The contribution 
of the two other eigenwaves to the solution (5) turns out 
to be exponentially small. Assuming that the maximum 
damping is possessed by eigensolutions 1 and 2, we ob­
tain from (16) for the coefficients Cp, which do not con­
tain small quantities, 

which coincides with the expansion coefficients of the 
amplitude of the incident waves in the eigenpolarization 
unit vectors nl and n2. In this case the reflection curves 
of the waves whose polarizations coincide with the eigen­
polarizations are described by the angular dependence 
of the quantities Bland B2. It must be borne in mind 
here that, generally speaking, the eigenpolarizations 
vary along the reflection curve. Since the eigenpolariza­
tions n~ and n~ are not orthogonal in the general case, 
it follows that the reflection curve for unpolarized radi­
ation is not simply the arithmetic mean of the curves 
for n~ and n~, but contains also an interference incre­
ment. The reflection coefficients then take the form 

1l='/,(1-ln,n;I')-'[B.'+B,'-2ReB1B,(n.'nz'·) (n,'n,) J. (24) 

The polarization denSity matrix of the scattered radi­
ation is described by the expression 

p=A {B,'p(n.') +B,'p(nz') -B,B,[ (nl'n,)p(12) + (n,n,)p(21) j}, (25) 

where the matrices p(ik) are specified by the relations 
p(ik)pq = nip = nkq, and A is a normalization factor. 
The matrix (25) corresponds to a scattered-radiation 
degree of polarization 

2[ (f-)'+IDI']," p (26) B,'+B,'-2B,B, Re[ (n,'n,) (n/n,'") J • 

The vector of the polarization that is partly repre­
sented in the scattered radiation is determined, in 
terms of the unit vectors Xl(2) and X2(2) (see (6)), by 
the parameters a and (3, which satisfy the relation 

(27) 

where 

j-='h{B,'( I n,,'I'-ln,,'I')+B,'( I n,.'I'-ln,,'I') 
-2B,B, Re[ (n,'n,) (n,,'n,."-n,,'n,,") n, 

D=B/nu'nt/'+B22n2t'*nZz' -BtBz[ (nt*n2) nu'nzz'*+ (nz*Ot) nzt'ntz'·]' 

and npm is the projection of the vector np on the m-th 
polarization unit vector. From (25) and (26), just as in 
the preceding section, we can obtain the characteristics 
integrated over the incidence angles and over the y-ray 
energy. 

Using expressions (23)-(27), we can analyze the 
general character of the dependence of the intensity of 
the reflected radiation and its polarization on small 
changes of the incidence angle near the Bragg condition. 
For the sake of argument, we shall assume below that 
a symmetrical Bragg case is realized. It is convenient 
to consider first the case of the Hermitian matrix 
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F - 6, which corresponds to neglect of absorption. In 
this case it follows from the properties of the solutions 
of the system (3) that Bi == 1 if the root Ei of the secu­
lar equation (4) is complex. This means that in the en­
tire range of angles t:. e (or of the corresponding values 
of the parameter 6), where all four roots of the secular 
equation (4) are complex, the reflection coefficient of a 
wave with any polarization becomes equal to unity. In 
the range of angles where two roots are real and two 
are complex, the reflection coefficient reaches unity 
only for a preferred proper polarization that is deter­
mined by the solution that attenuates in the interior of 
the crystal. In the region of four real roots, the reflec­
tion coefficient for a wave with any polarization is 
smaller than unity. Large angles of deviation from the 
Bragg condition correspond to four. real roots of (4) and 
to a reflection coefficient R that tends to zero. There­
fore a typical reflection curve of unpolarized radiation 
takes the form shown in Fig. 1. 

The parameter ranges Ii! < 6 < Oz and 65 < Ii < 6s 
correspond to two real and two complex roots of the 
secular equation. In these regions, the reflection coef­
ficient is R::::. Yz. The reflected radiation is fully polar­
ized, and its polarization vector coincides with the 
polarization vector determined by the second relation 
in (8) for the eigensolution that attenuates in the interior 
of the crystal. In the region 03 < 0 < 04 we have R = 1, 
and the reflected radiation is not polarized. Figure 1 
shows a situation in which the region of total reflection 
of any polarization is separated from the region of 
selective reflection of the polarization. Depending on 
the concrete form of the matrix 10', the poSitions of the 
regions of total and selective reflection may change. In 
particular, one or both regions of the selective reflec­
tion can be directly adjacent to the total-reflection 
region. 

When absorption is taken into account, the general 
"three-hump" character of the reflection curve is pre­
served. Everywhere, however, with the possible excep­
tion of individual points, the reflection coefficient turns 
out to be smaller than in the absence of absorption (this 
qualitative behavior is shown by the dashed curve of 
Fig. 1). 

FIG. 1. Typical picture of reflection of unpolarized radiation from 
a magnetically ordered crystal (solid curve-without allowance for 
absorption, dashed-with allowance for absorption). 

~ ~ 

"~1l -8 -q 0 li -5 -l 0 
t.8·/O' 

FIG. 2. Reflection curves for the eigenpolarizations (I-eigenwave 
strongly interacts with the nuclei, 2-eigenwave weakly interacts with 
the nuclei). Bragg reflection (110), 1'/ = 80%, "f'<!uantum energy E 
= E312- 1I2 , <I> = O. 
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The formulas of the present section and of the two 
preceding sections solves in general the diffraction 
problem not only for magnetic hyperfine splitting of the 
Mossbauer line in the crystal, but actually also for 
quadrupole and combined hyperfine splittings (actually, 
nowhere did we use the explicit form of the operator F). 

6. RESULTS OF NUMERICAL CALCULATIONS 

To illustrate the properties of Bragg reflections 
from magnetically ordered crystals, we present the 
results of the calculation of the diffraction of resonant 
14.4 keY y radiation of the isotope Fe 57 by a thick per­
fect ferromagnetic iron crystal at room temperature. 

The reflection curves of radiation with polarizations 
that coincide with the eigenpolarizations (polarization 
vectors nl and nz) are shown in Fig. 2. The calcula­
tions were performed for the reflection (110) (2 eb 
= 24.5°) from an iron single crystal enriched with Fe 57 

up to 80%, the y-quantum energy coincides with the en­
ergy of the energy of the }'Z - 7"z transition, and the 
angle <I> is equal to zero. It is assumed here and below 
that the magnetic field H lies in the scattering plane 
and q, is the angle between H and the scattering plane. 

The qualitative difference between the two curves of 
Fig. 2 is due to the polarization dependence of the nu­
clear resonant scattering. Curve 1 corresponds to 
polarization of the scattering beam, which is very close 
to the polarization ni that ensures maximum amplitude 
of the nuclear scattering through the % - % tranSition 
for a y quantum propagating in the kl direction, and 
has the form typical of purely nuclear resonant scatter­
ing. The polarization of the scattered radiation is close 
here to the polarization nf that ensures maximum am­
plitude of the nuclear scattering for a y quantum 
propagating in the direction kz. Curve 2 corresponds 
to polarization of the primary beam very close to the 
polarization nt (nt stands for a vector orthogonal to 
nt ), for which the amplitude of the nuclear scattering 
in the }'Z - Yz transition vanishes and takes a form 
typical of Rayleigh scattering. In this case the polariza­
tion of the scattered radiation is close to nt'. 

The variations of the polarization along the reflec­
tion curves 1 and 2 are shown in Fig. 3. The dashed 
line pertains to polarization of the incident wave, and 
the solid lines to the scattered wave. The polarization. 
in Fig. 3 is described by two parameters a and cp, 
where tana is the ratio of the axes of the polarization 
ellipse and cp is the angle between the major axis of the 
polarization ellipse and the scattering plane. As seen 
from the figure, the polarizations of the scattered (re-

FIG. 3. Angular dependence of 
the parameters ex and 'P, which de· 
scribe the polarization of the eigen­
waves (the solid and dashed curves 
pertain to the scattered and trans­
mitted waves, respectively). The 
values of the parameters are the 
same as in Fig. 2. 
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flected) waves along the reflection curves 1 and 2 are 
elliptic, are not orthogonal to each other, undergo rapid 
changes in a small section of the reflection curve, and 
tend in the limit as I A e I - 00 to the eigenpolarizations 
for direct transmission (close to nt and of). 

Calculations show that the dimensions of the region 
in which a strong change takes place in the natural 
polarizations depend on the ratio of the nuclear and 
Rayleigh scattering amplitudes. If the nuclear amplitude 
exceeds the Rayleigh amplitudes, then the region of 
variation of the polarization turns out to be much 
smaller than the region of diffraction reflection. In the 
characteristic that are integral with respect to the 
angles, the change of the eigenpolarizations can be 
neglected and it can be assumed that in the entire re­
flection region they coincide with nt and nt (nf and 
ut'). The shapes of the reflection curves corresponding 
to different polarizations turn out to have significantly 
different dependences on the y-quantum energy. The 
form of curve 1 depends on the y-quantum energy and 
reveals the interference of the nuclear and Rayleigh 
scattering. The reflection coefficient for the second 
eigenpolarization has a characteristic Rayleigh shape 
and remains practically unchanged when the energy 
varies near resonance. By virtue of this fact, at y­
quantum energies corresponding to constructive inter­
ference of the nuclear and Rayleigh scattering, the 
larger area is the one under curve 1, and quanta with 
polarization nf will predominate in the scattered radia­
tion (Fig. 4a). However, if the energy of the incident 
radiation is such that the nuclear and Rayleigh scatter­
ings cancel each other in maximum fashion (Fig. 4b), t 
then the angular dimensions of the region of scattering 
of y quanta with polarization nt may turn out to be 
larger. The curves shown in Figs. 4a and 4b were ob­
tained at E = Es/z-J/z + 2 r and E = E S/ Z- 1/ Z - 4r, re­
spectively. 

The calculation results presented above pertain to a 
y-ray energy close to resonance, and yield scattering 
characteristics, particularly polarizations, which are 
very close to the values corresponding to scattering via 
the single transition Yz - Yz. At a considerable distance 
from resonance, and even near the resonant Zeeman 
transition, which corresponds to a small amplitude of 
the nuclear scattering, several Zeeman transitions be­
come significant and the scattering characteristics, in­
cluding the polarization characteristics, are no longer 
determined by a single transition (see below). 
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FIG. 4. Reflection coefficient of the eigenwaves in constructive 
(a) and destructive (b) interference of nuclear and Rayleigh scattering 
(curve I is shown solid and curve 2 dashed). Curves (a) were obtained 
at E = Em -l12 + 2r, and curves (b) at E = E312-1/2 - 4r. The remaining 
parameters are the same as in Fig. 2. 

FIG. 5. Influence of non-orthogonality of the eigenwaves on the 
reflection coefficient of unpolarized radiation (solid curve). The dashed 
curve shows the arithmetic mean of the reflection curves for the eigen­
polarizations. E = EI/2- 1/2, «I> = 20°. The remaining parameters are the 
same as in Fig. 2. 
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Owing to the non-orthogonality of the polarizations 
for curves 1 and 2 (Fig. 2), the reflection coefficient 
for the unpolarized radiation, in accordance with for­
mula (24), differs from the arithmetic mean of curves 
1 and 2. For the curve shown in Fig. 2, this non-ortho­
gonality is small, and the difference between the re­
flection coefficient and the arithmetic mean of the two 
curves is not Significant. In the general case, however, 
the effect connected with the non-orthogonality can be 
quite large. This is illustrated in Fig. 5, on which the 
arithmetic mean of the two reflection curves is shown 
by the dashed line, and the reflection coefficient, calcu­
lated from formula (24), is given by the solid line. The 
curves were obtained for q, equal to 20° and for a y­
ray energy coinciding with the energy of the Yz - Yz 
transition. 

The energy dependence of the integrated characteris­
tics of the scattering is illustrated by Figs. 6 and 7. 
The integrated reflection coefficient R, the degree of 
polarization P, and the parameters a and cp that de­
scribe the polarization represented in the scattered 
radiation are given for two magnetic-field directions 
(<p = 0 and <P = 60°) at an incident-beam energy width 
coinciding with the natural width of the Mossbauer line. 
In the lower diagram, the energy dependences of a and 
cp are shown solid and dashed, respectively. 

The integrated-reflection curves demonstrate clearly 
the influence of the direction of the magnetic field at the 
nuclei on the intensity of the reflected radiation. The 
case <P = 0 is characterized by the fact that nuclear 
scattering sufficiently large for transition with M = ± 1 
turns out to be greatly attenuated for transitions with 
M = O. This is manifest in the form of the energy de­
pendence of the integral reflection coefficient. In the 
region of transitions with M = 0, the scattering exhibits 
minima, whereas near transitions with M = ± 1 the re­
flection coefficient has a clearly pronounced dispersion 
form, reaching a minimum on one Side of the exact 
resonant value of the energy and a maximum on the 
other. At a magnetic-field orientation corresponding to 

11(£)/11100 ) 

"~t~ ~! k ~: ,,~i 
O.ff ~_....!-~--r' I I I I' .L 

P 
I 

O,ff 

o -h' Zff! ffO 

i I I I I I 
I I I Ii: 

3Iz-I/Z -1/Z-I/2 -1/2--1/2 
1/2-I/Z 1/2-1/2 -J/2--1/2 

FIG. 6 

11(£)/11(00) 

I.:. ~ ~~~~I-' 
~\)~~~~ 
~ 

: I 

0.5 I' I I I . 
I ,I! ! '--L-

P . I • , 

I 

FIG. 6. Energy dependences of the integrated reflection coefficient 
R, of the degree of polarization of the scattered radiation P, of the 
parameters ex and 'P for Bragg reflection (110) of an unpolarized -y-ray 
beam from an iron single crystal. The vertical dashed lines show the 
positions of the nuclear resonances. 11 = 80%, «I> = 0° , the energy width 
of the incident beam coincides with the width of the Mossbauer line. 

FIG. 7. The same as in Fig. 6. Angle «I> = 60°. 
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ell = 60° , the amplitudes of the nuclear scattering via the 
transitions with M = 0 and M = ±1 are comparable in 
magnitude, and the energy dependence of the reflection 
coefficient for all the lines in the spectrum has a dis­
persion form. 

The degree of polarization of the scattered radiation, 
being a function of the y -quantum energy, is sufficiently 
high near the resonances for which the amplitude of the 
nuclear scattering is not small in comparison with the 
Rayleigh scattering, and has two maxima near these 
resonances. The maximum to the left of the resonance 
corresponds to the value of E at which the nuclear and 
Rayleigh scatterings cancel each other in maximum 
fashion. The integrated intensity has a dip in this case, 
and the vector of the partial polarization is close to 
nt'. The second maximum of the degree of polarization, 
located to the right of the resonance, is realized at an 
energy value corresponding to constructive interference 
between the nuclear and electron scatterings. The cor­
responding integrated reflection coefficient is maximal 
in this case, and it is quanta with polarization close to 
nf that are mainly represented in the scattering. 

The curves show that by changing the direction of the 
magnetic field in the crystal, or by tuning to different 
resonance, it is possible to change appreciably the 
polarization of the scattered radiation. Thus, coherent 
scattering of y radiation by a ferromagnetic crystal 
yields highly-polarized y-ray beams of practically any 
polarization (although the incident radiation not polar­
ized). 

7. CONCLUDING REMARKS 

The results of the preceding sections show that 
Mossbauer scattering by magnetically-ordered crystals, 
and primarily its polarization characteristics, have 
many qualitative features that do not appear in Moss­
bauer scattering by paramagnetic crystals. These fea­
tures become most clearly pronounced in the differen­
tial cross section for the scattering of polarized quanta 
(and in the detection of the polarization of the scattered 
radiation). This is clearly demonstrated by the fact 
that the reflection curve has a quantitatively different 
form than in the case of the unsplit line (see Fig. 1), 
and also by the constancy of the polarizations of the 
eigensolutions along the reflection curve. Since the 
characteristics measured in the experiment are usually 
integrated (with respect to the angle or energy), we 
shall dwell here on the manifestation of these features 
in the integral quantities. 

For unpolarized primary radiation, the character of 
the polarization of the scattered radiation is determined 
directly by the magnetic structure of the crystal, Le., 
it depends on the orientation of the magnetic moments 
of the atoms and on their positions in the unit cell, and 
the degree of polarization of the scattered radiation 
(which depends in the general case on the y-ray energy) 
can become comparable with unity (see Fig. 7). There­
fore, in addition to the above-noted possibility of ex­
tracting information on the magnetic structure of the 
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crystal from an analysis of the polarization of the scat­
tered radiation, Mossbauer scattering affords the possi­
bility of obtaining polarized y-ray beams. By varying 
the orientation of the magnetic moments in the crystal 
(for example, by applying an external field), it is easy 
to change the polarization of the scattered radiation. In 
the case of a ferromagnetic crystal, it is possible to 
obtain in this manner practically any polarization (from 
linear to circular) of the scattered radiation. 

The specific features of scattering from magnetically 
ordered crystals is manifest also when no polarization 
measurements are made (the initial beam is not polar­
ized, and the polarization of the scattered radiation is 
not detected). In this case, for example, the energy de­
pendence of the integrated reflection turns out to be 
different than in the case of the unsplit line. The reason 
for this is the non-orthogonality of the polarizations of 
the eigensolutions and the related energy dependence of 
the interference terms in expressions (13) and (19), 
from which the integrated reflection coefficient is de­
termined. 
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