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It is shown that the integral of the current density over any section of the unit cell of a crystal vanishes for 
any wave vector ko at which the energy has an extremum as a function of the wave vector k (even though 
the current density itself does not vanish). provided the wave vector is neither a reciprocal-lattice vector 
nor lies midway between reciprocal-lattice vectors. A method is presented for calculating the effective mass 
near the edge of an energy band. Unlike the familiar method in which perturbation theory is used to 
calculate quantities to the second order in k-ko. which requires that the energy eigenfunctions and 
eigenvalues for all the bands be known at k = ko. the proposed method requires the solution of only one 
eigenvalue equation-the one for the edge of the band of interest. In addition. there is an inhomogeneous 
equation to be solved; A particular solution of this equation is indicated. and this considerably simplifies 
the problem. The effective mass is expressed in terms of an integral of the wave functions. In the Wigner-Seitz 
approximation the problem reduces to the solution of two or three second-order ordinary linear 
homogeneous differential equations. The eigenvalue need be determined for only one of these equations. In 
the one-dimensional case the eigenvalue problem to be solved involves only a single ordinary differential 
equation; i.e .• only one wave function need be known, the effective mass being given in terms of it by a 
simple formula [Eq. (25) in the text]. To illustrate the method the effective mass is calculated in the 
Wigner-Seitz approximation for compressed hydrogen, and in the one-dimensional case a quasiclassical 
expression is derived for the effective mass and the width of the energy band in terms of the quasiclassical 
momentum in the classically inaccessible region. 

The initial approximation in the theory of solids may 
be taken as that in which quasifree electrons move in 
the crystal periodic field formed by the fields of the 
nuclei of the lattice atoms and the self-consistent field 
of the electrons. A periodic solution of the Thomas
Fermi equation (with or without corrections) may be 
employed to represent this field. The solution of the 
Hartree- Fock equations, or even the simple Hartree 
equations, involves a great deal of computational work. 

The solution of the Schrodinger equation for an elec
tron in the periodic field of the crystal can be written 
as a Bloch function(l,2] 

(1 ) 

where CPnk is a periodic function with the periods of the 
crystal lattice and k is defined to within an arbitrary 
additi ve reciprocal-lattice vector. Hence the energy 
eigenvalue En( k) is a periodic function of k with the 
periods of the reciprocal lattice. 

In the presence of external fields that vary slowly in 
space and time, the quasimomentum 11k of the electron 
varies just as would the momentum of a free "quasi
particle" under the action of the same force, but with 
the reciprocal effective mass tensor defined as 

( 1 ) a'En(k) 
- =-----
m·,.. h'ak,ak,' 

(2) 

The effective mass near the edges of the energy 
bands, i.e., near the extrema of the En(k), play an im
portant part in semiconductors, and sometimes in 
metals and dielectrics. In such a case it is not entirely 
necessary to find the complete function En(k). If we 
write k = ko + q (ko is the point at which En(k) has an 
extremum), we have 

where a is of the order of a lattice period and Ifi~,k 
satisfies the equation 
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(3) 

liZ l ' , ili2 I ( li,2q2) , 
-2-;;- V I/1nk+U(r)I/1n,k-;;;-(qV)I/1nk= En(k)-~ I/1n,k. 

By treating the third term as a perturbation, we can in 
prinCiple find En(k) near k = ko in the usual way (the 
so-called k· p method): 

Ii' , Ii' I (V I' 
E (ko+q)=E (ko),+-q _ ~ q },,',n 

n n 2m '-i m' En(ko)-En.(ko) 
n'"",n 

and then one can evaluate the reciprocal effective mass 
tensor (2). In order to do this, however, we must find 
En(ko) and lfin k for all values of n in order to calcu
late the matriX ~lements (q V )n' n, and this is prac-, 
tically impossible. Cases in which there are groups of 
comparatively few degenerate or almost degenerate 
levels En(ko) would be exceptions. 

It would seem more reasonable to express En(ko + q) 
in terms of a correction to the function Ifi~ k determined 
from the expansion ' 

1/1' n .• =1/1". k,+iqa Xn •• + ... , (4) 

where the function Xn,ko is determined from the in
homogeneous equation 

fl' Ii' al/1n," (5) 
-- V'x" •• +(U(r)-En(ko»)xn, •• =--n-

2m ' ma uZ 

(the z axis is chosen here in the direction of the vec
tor q). We have 

, Ii' '( S' al/1n,., ) E"(ko+q)=En(ko)'+Z;;q 1-2a Xn,.,---az-d, , 

where dT is a volume element. By following this path 
one will obtain a different formula for En(ko + q). 

For any periodic field, En has an extremum at ko 
= O. If the value of ko corresponding to an extremum of 
E(k) can be expressed in terms of integral or half
integral reciprocal-lattice basis vectors, the corre
sponding wave function will be real, and hence the cor
responding current density at any point will vanish. If 
ko does not satisfy this condition, lfin,ko will be complex 
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and the current density will not vanish. Such values of 
ko occur, for example, in silicon and germanium[31. It 
will be shown below that even in this case the states for 
which E(k} is extremal do not contribute to the current 
through the crystal, since the integral of the current 
density over the section (or the volume) of a cell 
vanishes. 

The main purpose of this paper is to propose a dif
ferent method for calculating the effective mass near an 
extremum of En(k) which, unlike the preceding methods, 
does not require the functions lPn,ko and En(ko} to be 
evaluated for other values of n. 

CURRENT DENSITY AT k = ko. EFFECTIVE MASS 
FORMULA 

If we write the Schrodinger equation for lPk and 
lPko+q (q is small), multiply the first of theseOequa
tions by lPko+q and the second by lPk ' subtract one 

o 
from the other, and so on, we obtain 

E(k)-E(ko)=~ r V (Ij).; V¢.,c.-¢ •• H v¢.:)d~ 
2m J 

[ ]
_1 fl' 

X f 1j) .... 'I'.; dT = 2m ~ (Ij).; V'I'ko+q 

-'I' •• HVI/l •• ,)ds[ f '1'.,+,'1'.; dT] _I. (6) 

Here the dT integration is taken over the volume of a 
unit (or primitive) cell, and the ds integration over the 
closed surface bounding that cell. We drop the sub
script n throughout because here and in what follows 
we shall be concerned only with quantities pertaining to 
a single band. 

Further, as in Eq. (3) we write lPko+q = lPko+qe iqr 

and expand as in (4); lPko+q = lPko + iqaXko + . .. The 
reason for introducing if!k +q is that, by virtue of (1), 

o ~ ~ 

bilinear combinations of the form ifiko+qLifit, where L 
is an arbitrary local linear operator, do not contain the 
factor exp {iko . r}; they can be expressed in terms of 
CPk* and CPk +q and therefore have the period of the 

o 0 ~ 

lattice. The same can be said of the quantities XkoLif!ko' 
After making these substitutions we obtain 

fl' E(ko+q)-E(ko)=~{ ~ e'" [ (1j;.; v¢ •• -¢ •• V1j;.;\ 

+iqa (I/l·Vx,,-x,.v¢.: + :a 1'1' •• 1') +qqa¢:.] ds }( f I/l.:¢.,+O dT) -I. (7) 

All the terms i,n the brackets have the period of the 
lattice, and since they are vectors, the integral over the 
closed surface of the cell would vanish if it were not 
for the factor exp (iqr). 

Since in Eq. (7) we are interested only in terms of 
the order of (qa)2, we can drop the last term at once on 
the basis of what was just said. Only the first term 
makes a contribution of the order of qa to the numera
tor of (7). However, since E(k) has an extremum at 
k = ko by hypothesis, expansion (7) should begin with a 
term proportional to q2. From this it follows that 

p e"'(I/l.;VI/l •• -¢ •• V",.;)ds 

=e'Q"(e'Q'-1) f ("'k;V", •• ~", • .v",.;)ds=O; 

here a is the distance between opposite faces of the 
cell, q is a vector normal to these faces, and the last 
integral is taken over any section of the cell parallel 
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to these faces. Thus, even though the current density 
does not vanish in general, the integral of 

j=II(",.:V", •• -", •• V",.;) lim 

over any surface of the cell does vanish. States with 
k = ko do not contribute to the total current through the 
crystal. 

There remains only the second term of (7), which is 
proportional to q2 and gives the effective reciprocal 
mass tensor; 

q'(m')-I=m-1 pe"'iqa (",.:Vx •• -x •• v",.: 

(8) 

The expression in parentheses in (8) must necessarily 
be periodic on the entire surface. This may be an arbi
trarily translated Bragg.cell, a unit cell, or (in the 
case of like atoms and a simple fcc or bcc lattice) a 
Wigner-Seitz cell. 

In view of the fact that the closed integral in (8) 
would vanish without the exponential factor exp (iq . r), 
we can write (8) in the form 

(m'\-I=m- I g'a ~ [ 1j).:Vx •• -x • .v",.:+ ...!..I", •• I'] ds (S 1", .. 1' dT r: 
qa (8a) 

If we take q perpendicular to some face of the unit or 
primitive cell, take the z axis in the direction of q, and 
take a as the distance between opposite faces, we ob
tain 

Here and below all the wave functions are those for 
k = ko, so we omit the subscript ko. The surface inte
gral in (9) can be taken on any section of the cell per
pendicular to q, i.e., to the z axis, since the integrand 
in the numerator is independent of z. 

According to (5), the solution for X can be expressed 
in the form 

x=-z¢la+1j\. (10) 

The first term in (10) is a particular solution of (5) and 
does not satisfy the periodicity condition. The term "$ 
in (10) is a solution of the homogeneous Schrodinger 
equation that is linearly independent of lP, increases 
linearly with z on the average, and is periodic in the 
directions of the x and y axes. If we substitute (10) 
into (9) we get 

a- a",' )-' 
(m')-'=m-'Il'S('I" a~-1j\Tz)dxdY(SI"'I'dxdYdZ • (11) 

since (9) vanishes for the particular solution for X in 
(10) and liJ is so chosen as to change by the amount lP 
at equivalent points of the cell when z changes by a 
with a shift in x and y corresponding to the shape of 
the cell. 

When the Wigner-Seitz cell is used, the periodic func
tion cP must satisfy the requirement that the normal 
derivative at the boundary of the cell must vanish, i.e., 
that cP have the same value on both sides of the cell. If 
lP is real, then it must satisfy this condition. The 
periodicity condition may also be satisfied by requiring 
that lP = 0 at the boundaries of the cell. The Schrodinger 
equation assures that the derivatives will be continuous. 

It is a good approximation to replace the Wigner
Seitz cell by a sphere centered on an atom and having 
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a volume equal to the volume per atom of the crystal. 
The radius R of the sphere would be (r161T )1/3 a "'" 0 .39a 
for an fcc lattice and (ra1T)1/3a for a bcc lattice, where 
a is the length of an edge of the (unit) cell of the cubic 
lattice. In this case if iJi is real we have either oiJi/ or 
= 0 or iJi = 0 at r = R. 

The form of the particular solution of Eq. (5) for the 
function X remains the same. Hence if the potential is 
spherically symmetric and we write 

1Jl=8,{r)P,{cos ttl, 

then, setting a = R in (10), we obtain 

(12 ) 

z r [ 1+1 / ] x= --¢+iji=--8,{r) --P'+I{COSi})+--PI-I(costl) (13) 
R R 21+1 2/+1 

+05',." (r)P'+I (cos ttl +o5'l-t {r)P/-t (cos tt), 

where ~ (like S) satisfies the equation 

ft' 1 a' (ro5',) ~ L (£+1) h2) -----.-+ U(r)+---. - o5'/=E(ko)o5'/. 
2m r ar' 2mr' 

(14) 

Thus, in order to satisfy the periodicity condition for 
X at r = R one must solve one (if l = 0) or two equations 
(14) under the condition that rS(r) - 0 as r - 0 with a 
known value of E(ko ) and one equation (14) for the 
eigenvalue for Sl(r). If we substitute (12) and (13) into 
(8a) for these cases and perform the angular integra
tions in the numerator and denominator, we obtain 

• -I _I' [ (1+1 S' / 05' ') (m) =m R 8, 21+:; '+I - 21-1 ,-, (15 ) 

(1+1" I 05') S'] (RJ '" ( 'I)-' -\21+3- 11 '+1 + 2i-l I-I , ,V r)r-rr , 

Here all the values of S and ~ (except in the integrand) 
as well as their derivatives with respect to r (indicated 
by primes) are taken at r = R. This will also be the 
case in what follows. 

Since the periodicity condition requires that either 
Sz = 0 or Si = 0, only one of the terms in parentheses 
within the brackets in Eq. (15) will differ from zero. 
The function X has the symmetry of oiJi/oz. Conse
quently, if we consider states with S' = 0, we can ob
tain S from Eq. (13) together with the condition that 
X(R)=O: 

05"+1 = ~~~1 S" 05"_1 =21~1 S, (r=R); (16a) 

if we consider states with Sl = 0, however, we have 
OX/or = 0 at r "'" R and obtain 

05":1 =2::~ s', .5",-1 =2/:1 S' (r=R) (16b) 

Later we shall examine some specific examples. 

"COMPRESSED HYDROGEN" 

Let us assume that the hydrogen is so strongly com
pressed that its molecular structure is quite destroyed 
and its atoms form a bcc lattice, as do alkali metal 
atoms, or perhaps an fcc lattice (in the Wigner-Seitz 
approximation, when the Wigner-Seitz cell is replaced 
by a sphere, it does not matter which). In this case the 
length of an edge of the cubic unit cell is of the order of 
an angstrom or less. In what follows we shall use 
atomic units (ti = m = e2 = 1) and write 

K=rS(r) . (17) 

This example is intended as an illustration only, so we 
consider only the first Brillouin zone, Le., ko = 0, and 
take the "wave function" for k = 0 in the form 
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(18) 

This wave function corresponds to an assumed "self
consistent field of electrons" and a proton with the 
potential 

U(r) =-2{1+~) [e'(lH)' -1]-1. (19) 

This is a Hulthen potential, which reduces to the Cou
lomb potential of the proton for small r and falls off 
exponentially as though screened by electrons for large 
r: U(r)'" -2(1 +j3}·exp{-2(1 +/3)r}for 2(1 +j3}r 
»1. 

However, a more accurate representation of the 
degree of screening is given by the "force" 

-dU/dr=- (1+~)' sh-'{1+~)r. 

According to the periodicity condition we must have 
S' = 0, and this gives dg/dr = g( R)/R for r = R, or 

(19a) 

(20) 

From this equation we find that /3R - I3R as R - 0, 
/3R = 0.79 at R = 0.5, /3R = 0.916 at R = 1, and /3R - 1 
as R - "". The kinetic energy at r = R is equal to 
2( 1 + /3)[ exp{2( 1 + f3} R} - 1 r1 - /32/2; it is always nega
tive. 

Since l = 0 in this case, we have to solve one of Eqs. 
(14 )-for l = 1. It turns out that with good accuracy 
S = Ar in the region r:s R (the coefficient A is some
what larger for r « R than for r "" R). The coefficient 
A is determined from (16a): 

(21) 

On substituting all this into Eq. (15) and interchanging 
the numerator and denominator, we obtain 

3m [e2iW_i l_e-Z(Z+ii)R] 
m'=- ---1+r'R+---__ [e'R_e-('H)R)-'. 

R 2~ 2(2+~) 
(22) 

Numerically, we find that m* = 1.09 for R = 1 and m* 
= 1.053 for R = 0.5. We note that the potential in the 
vicinity of R"" 1 is very small: U( 1) = 0.085, while the 
force, which should vanish, is equal to 0.33 in place of 
unity. The kinetic energy for R = 1 is negative and 
equal to -0.34 at the point r = R. 

According to Eq. (22), m* - 1 as R - 0 and m* 
- 1.3 for R» 1. Of course the latter result cannot 
correspond to reality, since a Mott transformation 
should take place as R increases somewhat beyond 
unity, as a result of which the electrons find them
selves in the field of an unscreened proton and the wave 
function (18) must be replaced by a hydrogen wave func
tion g(r) = re- r (Le., a metal-to-dielectric phase 
transformation takes place). 

ONE-DIMENSIONAL CASE (A MODEL CRYSTAL 
WITH SEPARABLE VARIABLES) 

Let iJi be represented in the form 

IJl=S(x)'1{Y)~(z). (23) 

The best function of this type can be obtained from a 
variational principle. Each of the functions ~, T/, and !;; 
satisfies a corresponding Schrodinger equation, and the 
function iJi, their product, satisfies a Schrodinger equa
tion in which the true potential is replaced by a poten
tial consisting of the sum of the potentials occuring in 
the one-dimensional Schr'odinger equations for the 
separate functions ~, I), and !;;. Then the second 
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linearly independent solution of the Schrodinger equa
tion for lJi = ~1Jt, which occurs in (10) and (11) and 
makes X periodiC, is expressed analytically in terms of 
lJi as follows: 

ip=", s'",-' dz' U",-' dz' ria. s(X)T) (yn (zJj ~-' dz' (j ~-' dZ') -'; 
"" • '0 (24) 

here a is the period in the direction of the z axis, 

Substituting (24) into (11) and taking the reciprocal, 
we obtain the following expression for the effective 
mass in the direction of the z axis: 

m'=ma-' [J (f "'-' dz ) -I dx dy ] -I S "" dx dy dz"" ma-' f ~-' dz j~' dz. 
o 0 • (25) 

Here lJi is necessarily real, since in view of what was 
said above about the current density, E(k) can have an 
extremum only for ka = 0 or ka = IT, In the one-dimen
sional case, the current necessarily vanishes at an 
extremum of E(k), 

Unfortunately, Eq, (25), as first written, is accurate 
only when U(r) = Uxy(x, y) + Uz(z), In particular, if 
the potential is small enough for perturbation theory to 
be applicable we obtain 

m'=m (1.+ L, 16m'/i-' 1 U"I'g,'g-' +, .. ) , (26a) 

for the lowest state (lJi = 1 + .. ,). From Eq. (25) (as 
first written), however, we obtain: 

m'=m (1 + L, 16m'/i-'IU"I'g-'+.,.). 

• 
(26b) 

It is easy to see that Eqs. (26a) and (26b) are equivalent 
provided U(r) = Uxy(x, y) + Uz(z) (UgO is a Fourier 
component of the potential U( r), g being a reciprocal
lattice vector). If the variable z in the potential is 
separable and gz = 0, only the Fourier components UgO 
of the potential for which g2 = gt i.e., gi = gy = 0, will 
differ from zero. At the same time, it is evident that 
(26a) and (26b) do not differ much from one another, so 
that in the general case it is baSically only the first 
terms in expansion (26a) that are important. (The per
turbation-theory proof of the necessity of (25) was sug
gested by A. M, Dykhne,) 

In (25), 1;2 may vanish as (z - Zp)2 + O( Z _ Zp)4 
(there are no terms in (z - Zp)3 because of Schro
dinger'S equation). The contour in the complex z plane 
for the first integral may pass either above or below 
the point zp where e vanishes-it does not matter 
which. Thus, if the integration is not performed ana
lytically, we have 

2 2 2 2 ' ''.' 
- --;:-;;- - '''-;;:- - ••• - -~-,,-- - ~ ;. ~p ep <~p , 

'ol £1 ':12 e2 ~n_1 8 n -l 1'1 En 
(27) 

for numerical integration along the real axis, where the 
points zp = z 1, Z2, .. , , zn -1, zn are the values of z at 
which I; vanishes, I;p and t" are the corresponding 
derivatives of t with respec¥ to z at these points, and 
the smallness of the segments €p is specified in (27). 

For the Kronig-Penney model, Eq, (25) gives the 
result at once since all the integrals are elementary, 
The result agrees with the ordinary result, which is 
obtained in a much more cumbersome manner but which 
yields the complete function E(k) and not merely its 
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values near the extrema. The same can be said of the 
case in which the quasiclassical formulas are applicable. 

For Simplicity let us suppose that there are just two 
regions in a single lattice period a: the region 
0< z < b, in which p2 == 2mn-2(E - U(z)) > 0 (p is the 
quasiclassical momentum divided by n), and the region 
b < z < a, in which p2 < O. We assume that the condition 
for the applicability of the quasiclassical approximation 
holds in both regions (exc~pt at the "turning points", 
and not merely because 2mn-2a2 U( z) varies slowly). 
E is determined by the Bohr-Sommerfeld quantum 
condition in the classically accessible region: 

I I f pdz a. !l2m/i-'(E-U(z))j"'dZ ~(n+~) n; n=1,2,3 ... (28) 

In the classically accessible region we have 

~= Ipl-'I'sin (f p dz +!:..). 
" 4 

(29) 

In the classically inaccessible region, where E - U(z) 
< 0, the solution of the Schrodinger equation for t can 
be continued in two ways so as to be periodic: 

1 II I: 1 a 

~=(-1)nlpl-·'·exp{ -TJ Ipldz }ch (flpldZ-TJ Ipldz) (30a) 

or 
2 a 

~=(-1)n+llpl-'I'exp {-+ ~ Ipldz }Sh (~lpldZ -+ I IpldZ) , (30b) 

It is assumed that n» 1 in (28), and further, that . 
S Ipldz~1. 
b 

One of the solutions (29), (30) for t, depending on n, 
changes sign on passing through the period a. This 
corresponds to an extremum of E( k) at ka = IT. States 
(30a) and (30b) differ from the nearest state with k = 0 
by the energy 

2h' • • t 
tJ.E=-exp {- S Ipldz}(S Ipl-t dZ) -, (31) 

m b 0 

as can be proved by calculating the Jacobian and inte
grating over a period as is done in problem 3 in Landau 
and Lifshitz's book[4) (p, 213). 

Now it does not seem difficult to calculate the effec
tive mass from Eq. (25), since the first integral in that 
equation can be easily evaluated, and in the second 
(normalizing) integral, we can, as usual, replace 
sin2 ... by its average value 0.5 and integrate over the 
classically accessible region. We obtain 

m'=ma-' [2+(-1)" exp { SlpldZ }2thl( ~ S IpldZ)] S· dz 
b J. 2. 0 2p 

• • d 
"'C-1)n exp { J Ipldz}ma-' J-z 

, . 0 2p 
(32) 

and the same result with the opposite sign for the 
second solution (30). Formulas (31) and (32) are con
sistent with the relation E( k) = E( 0) + ( 7'2) ~ E( 1 
- coska), which is obtained in the complete solution[5). 
In the case of the quasiclassical solution with no inac
cessible region the effective mass vanishes in the ap
proximation under conSideration, as in an "empty" 
lattice (except for the first zone). 

I thank A. M. Dykhne for valuable advice, and I. I. 
Gurevich and A. I. Gurevich for repeated discussions. 
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