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Four-wave parametric interaction of light waves in two-photon absorption is investigated. It is shown that, 
significantly different parametric-generation regimes may take place, depending on the ratio of the powers 
of the triggering and pumping fields (Fig. 1). An optimal ratio of the powers exists, for which the 
coefficient for conversion of the pumping into the generating field is maximal. The singularities of four­
wave interactions due to phase locking of the generated fields lead to conditions under which the 
conversion coefficient is not restricted by population saturation due to two-photon absorption. Calculations 
are presented for the optimal conditions of generation at the combined and difference frequencies in the 
vacuum ultraviolet range. In particular, the possibility of creating a source which is tunable in the 650-656 
A range is discussed. 

1. INTRODUCTION 

The interest recently advanced in resonant four-wave 
parametric processes is due primarily to the fact that 
they make it possible to obtain coherent radiation sources 
with continuously tunable frequency, including the infra­
red, ultraviolet, and vacuum ultraviolet (VUV) regions of 
the spectrum, if tunable lasers, say liquid-state, are used 
for their triggering. By now, four-wave processes have 
been observed experimentally, based on generation of 
the Stokes component of stimulated Raman scattering 
(SRS) [1, 2J and on the basis of two photon absorption 
(TPA) of the pump field [3J in metal vapor (see Fig. 1). 
Coherent radiation in the IR and VUV bands was obtained 
in these studies and could be tuned over a rather wide 
frequency range. However, there is still no sufficiently 
complete theoretical description of these processes, 
although the first discussion of one of them dates back 
to 1964 (4J. 

Four-wave resonant interactions are usually treated 
(see [5J) in the same manner as nonresonant parametric 
interactions of waves, for example third-harmonic 
generation in a transparent medium [6 ,7J. The polariza­
tion of a medium at the frequency W4 = WI + W2 ± W3 

(Fig. 1) is assumed to be proportional to XE 1E 2E 3, where 
X is the corresponding nonlinear susceptibility of the 
medium and E. are the amplitudes of the waves with 
frequency wj • lIt is assumed here that resonance intro­
duces only a change in the value of X, and that wave 
interaction takes place effectively only over a length 
(okr1 determined by the mismatch ok between the wave 
vectors of the fields. For real situations, which take 
place in the experiment (large radiation flux densities, 
reaching several gigawatts, and appreciable thicknesses 
of the working medium), this description is utterly inade­
quate because the resonant parametric processes pro­
ceed in the general case in an entirely different manner 
than the nonresonant ones. Thus, phase locking of the 
generated fields takes place in resonant processes, as a 
result of which the conversion can take place over 
lengths greatly exceeding the synchronism length; the 
dependence of the amplitudes of the interacting fields on 
the coordinates can in this case be entirely different 
than in the case of nonresonant processes1). In addition, 
such a description does not take correct account of the 
inverse conversion of generated fields into a pump field, 
so that it becomes impossible to determine the maximum 
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FIG. 1. Resonant four-wave para­
metric processes based on TP A of 
pump fields and on SRS; WI and Wz 
are the frequencies of the pump 
fields (or of the pump and the SRS), 
W3 is the frequency of the triggering 
field, and W4 is the frequency of the 
generating field. 
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attainable generated fields and the optimal generation 
conditions. 

We conSider in this paper four-wave parametric 
processes based on two-photon absorption of the pump 
field (see Fig. 1). 

2. EQUATIONS FOR THE AMPLITUDES AND PHASES 
OF THE INTERACTING FIELDS 

The procedure for calculating the polarization pro­
duced in a medium by many-frequency parametric proc­
esses was developed in [9, 10J. Using this procedure, we 
easily obtain the medium polarization produced under 
the influence of the fields 

e,[it; exp (i(Il;t-ilcjz) +c.c. 

whose frequencies satisfy the condition 
W(l.+(!)~=W,,+Wll=W21+.1, (1) 

where j = Q, (3, y, 0; ej, Wj and kj are respectively the 
unit vectors of the polarization, the frequencies, and the 
wave vectors of the interacting fields, Iffj are the complex 
amplitudes of these fields, W21 is the frequency of the 
transition between levels 2 and 1 of the beam, and ~ is 
the frequency detuning. Substituting the expressions for 
the polarization in Maxwe 11' s equations and conSidering 
one-dimensional time-stationary interaction of waves 
with zero frequency detuning, we ol;>titin equations for the 
slow real amplitudes Xj(z) = tS'j (z)e1<pj (z) and the phase 
differences ® = <P Q + <P f3 -<Py - <Po + zok of the interact­
ing fields: 

dXa 2nO).nN " Tz= ~~ (d,r,'x~'x"+d,r,r,x~x,x,cose), (2a) 

dx, _ 2nO),nN " Tz--~ (d,r, x, x,+d,r,r,xc<x~,cose), (2b) 

de 2nnNr,r, [ ( X, X') -=I5k+--,- XaX, -0),+-0), d, 
dz Il c X, x, (2c) 

( Xa X')] +X,X, -O)~+-O)a d, sine. 
XII Xa, 
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where Ok = kO! + kj3 - ky - kO' and N is the particle-num­
ber density. The equations for xj3 and Xo can be obtained 
from (2) and (2b) by making the substitutions O! += j3 and 
y ;!: 0. 

In the case of a medium consisting of immobile mole­
cules having the same orientation, Eqs. (2) describe the 
interaction of the fields with allowance for saturation of 
the populations of levels 1 and 2, in which case d1 = d2 
= T (T is the reciprocal of the line width of the transition 
1-2), . 

where Pjq are the dipole moments of the transitions be­
tween the levels j and q (we assume them to be real 
quantities); an expression for r2 is obtained from (3) by 
making the substitutions O! - Y and j3 - 0. The popula­
tion difference levels 1 and 2 is 

(7 is the lifetime of the particle in the state 2). 

In a gas medium we have 
T-' 

d, . 
T-'+r(ka+k~)vl' 

T-' 
d, r-'+[ (k,+k,) v]' 

(5a) 

where v is the velocity of the molecule, and Eqs. (2) 
must be averaged over the orientations of the molecules 
and the Maxwellian velocity distribution, which reduces 
to an averaging of products made up of the quantities 
d1,2nrlnr2' In the general case this averaging is impossi­
ble' but such an averaging can be carried out for fields 
weaker than saturating. 

Averaging over the velocities [llJ yields2) 
'I'n '1';: 

(d,> = Ika+k,lv' (d,> = Ik,+k,lv ' (5b) 

where v is the averaged velocity of the molecules, and 
the quantities r~, r~, and r1r2 can be averaged over the 
molecule orientations by using the properties of the iso­
tropic fourth-rank tensors [12j in terms of which they 
can be expressed: 

(r,r,)= E {[ (w,,+m,)-' (£0;,+£0,)-'+ (m,,+ma )-' (00;,+00,)-' 1 

A (gAI+eA,:IA') +[ (m,,+m~) -, (w,,+m,) -'+(O),,+O)a) -, (0);,+0),) -'] (6) 
X (gA,+!A,+eA,)} 

where 
A,='/,,(4a-b-c), A,='/,,(4b-a-c) , A,=(4c-a-b), 

a= (PI,P,') (PI;P;,), b= (PI.,PI;) (p"p;,), c= (PI,P;,) (Pq,p,,). 

e=(eae,) (e~e,), f=(e"e,) (e~e,), g=(eae~) (e,e,). 
(7) 

The quantities (rD and (rn can be obtained from (6) by 
putting O! = Y and j3 = O. 

Equations (2) describe the following processes: 

a) Resonant four-wave parametric interactions based 
on two-photon absorption of the pump field [3 ,5J with en­
hancement (Fig. la) or absorption (Fig. Ib) of the trig­
gering field of frequency W3' The process with enhance­
ment of the triggering field can be called also generation 
of the difference frequency, and that with absorption of 
the triggering field can be called generation of the com­
bined frequency. To obtain equations describing these 
processes it is necessary to put O! = 1, j3 = 2, y = ± 3, 
and 0 = 4 in (1) and (2), where the plus sign of the index 
y pertains to generation of the difference frequency, and 
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the minus sign to generation of the combined frequency 
(the relations w_j = -Wj and k_ j = -kj hold for the fre-

quencies and wave vectors of the fields). 

b) Parametric processes based on generation of the 
Stokes component of SRS [1,2, 4J, accompanied by enhance­
ment (Fig. lc) or absorption (Fig. Id) of the triggering 
field. When the frequencies of the triggering field and 
the pump field are equal the field interaction shown in 
Fig. Id is anti-Stokes stimulated Raman scattering, the 
singularities of which, due to phase locking, were inves­
tigated in [8J. To obtain equations describing these 
processes, it is necessary to put O! = 1, j3 = -2, and 
y = ±3 and 0 = 4 in (1) and (2). We note that when the 
medium is exposed to the pumping and triggering fields, 
simultaneous generation of a difference (Figs. la and lc) 
and combined (Figs. Ib and Id) frequencies is possible. 
An analysis of the competition of these processes calls 
for the solution of the problem of five-wave interaction. 
We shall investigate the generation of the difference and 
combined frequencies under the assumption that only one 
of them takes place. This situation can be realized, for 
example, by introducing into the medium a substance 
that absorbs the corresponding frequency W4. 

3. DIFFERENCE-FREQUENCY GENERATION 

We consider the case of exact phase matching: ok = O. 
The role of the mismatch of the phase velocities of the 
waves will be discussed later on. 

As can be easily seen from (2c), at (r1r2) > 0 the 
plane ® = 1T is stable. If (r1r2) < 0, then the stable plane 
is ® = 0; the equations for the field amplitudes remain 
unchanged in this case. For the sake of argument, we 
assume (r1r2) > O. Putting ® = 1T in (2) and introducing 
the notation 

~=Az, 

(8) 

we write down the equations for the amplitudes of the 
pumping field (xp = XO! = xj3)' the triggering field 
(Xt = Xy)' and the generated field (Xg = xo) in the form 

dxp/d~=-xp(Xp'-SXt xg)fn, 

dXt/d~=qtxg(xp'-SXt xg)fn, 

dxg/d~=q'l,xt(xp'-SXtXg)fn. 

In the derivation of (9) it was assumed that 

F = (r,r,) / (r,') 'I'(r,') '1,= 1. 

(9a) 

(9b) 

(9c) 

(10) 

The equality (10) is rigorously satisfied for oriented 
molecules. For gaseous media, F < 1. It can be deduced 
from (6) and (7) that this parameter is close to unity in 
most cases. For example, (10) holds true when the in­
teracting fields have identical polarizations, if the 
dipole-moment vectors Pij participating in the formation 
of the composite matrix elements (3) are collinear. The 
influence of the deviation of F from unity on the behavior 
of the fields will be discussed later 0 

The first and second integrals of the system (9), 
under the initial conditions 
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can be written in the form 

Xt2~XtO'+(q/qg)Xg:, (11) 

Xg~ {-V :tg 
Xt' [ (?; ) '- ( :;J l 6==YqgQr (12) 

Relation (11) is valid at all values of Ok. 

It is easy to see from (9) that the equilibrium state 

(13) 

is stable. Substituting (11) and (12) in (13) we obtain an 
equation for the equilibrium amplitude of the pump field: 

_ [( Ip, )' (I p ) , ] Ip - tjIt, T - -,- =0, (14) 

The solution (14), together with (11) and (12), determines 
the values of the equilibrium amplitudes Kt and Kg' 

Figure 2 shows the integral curves (12) and the equili­
brium -state curves (13) for different ratios of the limit­
ing values of the triggering and pumping fields 
A = XtO Ixpo. It is clear from this figure that the limiting 
value of the generated field is small for both small and 
large values of A. If the parameter A is small, the 
amplification process proceeds slowly, so that the pump 
fields reaches an equilibrium state after experiencing a 
strong two-photon absorption. In the case of large A, on 
the other hand, the inverse parametric conversion of the 
amplified fields into the pump field takes place effec­
tively, so that the damping of the pump field and the 
growth of the triggering field are negligible, but the 
equilibrium state sets in at a small value of the genera­
ted field (see (13». Thus, there exists an optimal ratio 
Aopt at which the amplification of the fields is maximal. 

To find the optimal ratio of the limiting values of Ito 
and ~O' it is_necessary to determine the maximum of 
the function Ig = f~O' ItO), which is implicitly specified 

by the system of equations (13) and (12). The final equa­
tion for the optimal ratio of ItO and IpO takes the form 

(15) 

In the general case it is impossible to obtain an analy­
tic expression for the conversion coefficient. By way of 
example, we consider the optimal conversion regime in 
the particular case ~ = 1 (for example, ~ = 1 at wg/wt 

= 7 and s = 1.5). From (11), (12), and (13) we get 

- p' ( /, )-'" Ip=Ip, 1 +-­
tjlt, 

_ 1 It, (Ip,+lp) , 
It = - ~.;...:....:--=-'-'-

4 I p,[ p 

(16) 

It follows from (16) that at Aopt = 0.211)-1 there takes 
place an optimal conversion regime, and the optimal 

FIG. 2. Generation of the difference 
frequency at Sk = O. Curves I, 2, 3, 4-
curves of the states of equilibrium for 
AI> A2 > A3 > A4 = 0, respectively 
(A = ltO/1pO); 5,6, 7-integral curves 
for Ab A2, and A3, respectively; 8-geo-

'""'-_--'-=-______ metric locus of the points of equilibrium 
states. 

249 Sov. Phys.-JETP, Vol. 41, No.2 

conversion coefficient relative to the energy of the trig­
gering field is 

and relative to the energy of the pump field is 
_opt -opt --
Kp =1 g IIp, "" 0.17r' Y wg/W,t 

At Wg IWt = 7 we have Kppt = 104 and K~Pt = 0.31. 

4. GENERATION OF COMBINED FREQUENCY 

(17) 

(18) 

Just as in the generation of the difference frequency, 
we consider first the case of exact phase matching of the 
interacting waves. From (2.c) we see readily that a 
value ® = 1T is established at z = O. However, with in­
creasing field xg, the term proportional to Xg/xt and 
entering with a negative sign in the coefficient W of sin ® 

can exceed the sum of the remaining terms in this co­
efficient, and this changes the phase difference from 
® = 1T to ® = 0; then the inverse process of parametric 
conversion of the field Xg into Xt will set in. 

A rigorous solution of the problem calls for simul­
taneous solution of Eqs. (2), which is impossible. We 
seek an approximate solution of (2), assuming ® = 1T, 

and then use this solution to find the values of the fields 
at which the jump of ® takes place. 

The equations for the field amplitudes at ® = 1T take 
the form (9), but the sign of the right-hand side of (9b) 
must be reversed. The first and second integrals and 
the curves for the stable equilibrium states take the form 

(19) 

(20) 

(21) 

Substituting (19) and (20) in Eqs. (2c) for the phase dif­
ference, we obtain the follOWing expression for the 
coefficient W of sin ®: 

(22) 

The function W changes from + 00 to -00 when In(~ol~)~ 
changes from zero to 1T, and passes through zero in the 
region of values 1T 12 < In( ~O I~~ < 1T. In the region 
W > 0 there exist two different conversion regimes, 
which can be easily determined by plotting the integral 

---------:' 
---_ 2 ----

I 
----~-------

b 

FIG. 3. Generation of combined frequency at Sk = 0; a and b corre­
spond to the first and second conversion regimes (AI> A2). I-Equilib­
rium-state curves, 2-integral curves,lp and Ig-intensities of the pump­
ing and generated fields in the equilibrium state, Ipl and Irax-intensities 
of the pumping and generated fields at the point of phase discontinuity. 
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curves (20) and the stationary-state curves (21) at dif­
ferent ratios A = lto /IpO (Fig. 3). 

A. The first regime takes place if the following con­
dition is satisfied: 

(23) 

In this regime, the interacting fields reach a station­
ary state, and the process in question evolves in analogy 
with the generation of the difference frequency. The 
equilibrium value of the pump field is determined from 
the equation 

(24) 

It can be seen from (20) and (21) that the maximum 
conversion coefficients in terms of the triggering-field 
energy 

(25) 

and in terms of the combined energy of the triggering 
and pumping fields 

K=~=~ exp(-nl2;) 
It,+Ip' 2w t 21] + exp (-n/2~) 

(26) 

occur at a definite value of A: 

·\opt~exp (-n/2£)/21] (27) 

B. At 

(28) 

the condition W = 0 is reached before the interacting 
fields reach the equilibrium state. The generated field 
is maximal at a value Ip= Ipl determined by solving the 
equation W = O. If the inequality (28) is strong (weak 
triggering fields), then the inverse parametric conver­
sion of the generated wave into a pump field is negligible, 
so that the interaction can be described by assuming that 
the pump is changed only as a result of the two-phonon 
absorption. Only in this case, as can be easily shown, is 
the maximum conversion coefficient Kt independent of 
ltO' In fact, in this situation the main contribution t? W 
is made by the second term of (22), and the phase dIS­
continuity, and consequently also the maximum field, 
occur at a value In(~o/~)~ = 7T/2; the maximum con­
version coefficients are determined here by expressions 
(25) and (26) at arbitrary values of lto' with K « 1. We 
shall show below that only under this situation are the 
results obtained in [5J valid. 

5. EFFECT OF WAVE MISMATCH 

We have considered above a model with ok = O. We 
have shown within the framework of this model that 
maximum conversion coefficients can be obtained if the 
interaction length is sufficient to attain fields close to 
stationary. In real media usually ok ;, 0 and it may turn 
out that the linear-synchronism length (okr1 is smaller 
than the distance over which the stationary state would 
be reached at ok = O. It turns out that, under certain 
definite conditions coherent interaction of the light waves 
can be effected in resonant four-wave processes over 
lengths exceeding the linear-synchronism length; conse­
quently, fields close to the stationary values (14) and 
(24) can be reached also when ok ;, O. 

In fact, at W > ok (W is the coefficient of sin ® in the 
phase equation (2c)), phase locking of tke interacting 
fields takes place in the system (13 J ; if Wlz=o »ok, the 
system arrives rapidly at a state with e ~ 11 + ok/W, and 
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the process can be analyzed approximately by assuming 
ok = 0 in the first stage. The conditions under which 
phase locking ensures the attainment of fields close to 
stationary can be obtained for the case of generation of 
the combined frequency by using expression (22) for 
W(~). 

When the difference frequency is generated, an ex­
pression for W(~) can be obtained by substituting Xg 

and Xt from (11) and (12) in Eq. (2c): 

1-y' 1+ 2 

W(Ip)=Li~Ajn (-_1]A+S'Io_Y_ y - I /')' (29) y i_yO 

Here LrPA = (2AIpof1 is the characteristic two-photon 

absorption length, and y = (~/~O)~' At the point of in­
cidence (z = 0) the function (29), just like (22), becomes 
infinite. It follows therefore that phase locking always 
takes place during the initial stage of the interaction. 
The phase locking can stop either before or after the 
equilibrium state for ok = 0 is reached, depending on the 
value of ok and on the initial field intensities. An ap­
proximate value of the pump intensity at which the 
stopping takes place is determined from the equation 

W(I~toP)=6k. 

Obviously, the stopping of the phase locking will not oc­
cur before the stationary state is reached if W (\) > ok. 

Let us consider by way of example a situation where 
~ = 1. The expression for W(Ip) in the case of difference­
frequency generation can be expressed in terms of the 
limiting intensities ~O and lto' by using (16) and (29). 

Then the range of values of ~O and lto at which phase 

locking ensures fields close to the equilibrium values 
(16) is given by the inequality 

(30) 

After the fields attain values close to equilibrium, 
they will attenuate slowly. Indeed, inasmuch as in this 
region ® ~ 1T + (Ok)/W(~), we can easily find from (2a) 
that the pump varies like 

[ ( 1>k) 2 Z ] -I 

Ip""lp 1+ W ~ , 
TPA 

(31) 

i.e., the characteristic length of its damping is (W /ok)2 
times larger than the length of two-photon absorption 
LrPA = (2A~r1. With the aid of (31), (11), and (2b) we 

can easily show that the generated and triggering fields 
will also be damped in the region of values Xg ~ Kg and 

Xt ~ Xt' but somewhat more slowly than the pump field. 
The fields behave slowly when the combined frequency is 
generated. 

At large wave mismatches ok and at low intensities of 
the incidence fields, when (30) is replaced by a strong 
inverse inequality, the stopping of the phase locking 
occurs far from the equilibrium state. In this case one 
can neglect the reverse transfer of the generated and 
triggering fields to the pump field, and conversion takes 
place over a length ~ 11 10k r1. If furthermore the two­
photon absorption of the pump field (and consequently 
also of the fields Xg and xt ) is small over this length, 

then the field intensities behave in the same manner as 
in nonresonant four-wave interactions. Only in this case 
are the results of (5J valid. We note that the efficiency 
of generation of both the combined and the different fre­
quencies is low in this case (Kp' Kt « 1). 
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In concluding this section, we note that the small 
deviation of the parameter F (see (10)) from unity re­
sults in the same modification of the equations for the 
field amplitudes as the deviation of the phase difference 
® from 7T as a result of incomplete synchronism. There­
fore at 1 - F « 1 the solution of Eqs. (2a) and (2b) 
changes little in a region far from the stationary solu­
tions of Eqs. (9). After the fields reach values close to 
equilibrium, the deviation of F from unity leads to a 
damping of the fields even in the case when Ilk = 03 ) • 

6. CONVERSION LENGTH AND THE INFLUENCE OF 
POPULATION SATURATION 

We define the conversion length L as the distance 
over which a specified conversion coefficient (or a speci­
fied value of Ig, say ~ = 0.9Ig) is reached. It follows 
from (9a) that 

L=_l_Ij' dIp 

2A I Ip(Ip-sHglt) fn (/p,lg'/t) 
PI . 

(32) 

(here ~1 corresponds to a specified value Ig)' The in­
tegral in (32) can be calculated by using the integrals of 
motion (11) and (12) or (19) and (20) for the respective 
cases of generation of the difference and combined fre-
quencies. 

Let us consider, for example, the generation of the 
difference frequency in a medium consisting of immobile 
oriented molecules. In such a medium we have 

(33) 

where 

(34) 

is the amplitude of the saturating field. Substituting (11), 
(12), and (33) in (32) and integrating, we get in the par­
ticular case ~ = 1 

L=L.-l-£' = LTPA In[ Ip,-Jp lp,+lp] 
- 2l''lA(l+'lA) Ip,+J p Ip.-Jp 

+ L A Ipo'(Ipo-lp,) (Ip,lp,-Jp') (35) 
TPA'l I' I 'I . 

sat P pi 

The quantity ~ in this equation is determined from (16). 

The first term (L l ) of (35) is the conversion length in a 
medium without saturation, while the second (L2) des­
cribes the increase of the conversion length as a result 
of the saturation of the populations. The contribution of 
L2 to the conversion length is appreciable if IpO »Isat. 

Obviously, the influence of population saturation on the 
four-wave interaction process in gaseous media is quali­
tatively the same as the medium of oriented molecules. 
For gases, however, it is possible to use (32) to calcu­
late the conversion length only when the fields do not ex­
ceed the saturation value and fn ;" 1; in this case the 
conversion length coincides with L l • 

It was shown above that Ilk f. 0 it is possible to obtain 
fields close to ~, Ig, and ~ in the presence of phase 

locking. In this case, the conversion length is also des­
cribed by expression (32) (or (35)). We can therefore 
state that phase locking is realized, then the population 
saturation does not change the conversion coefficient, but 
leads only to an increase of the conversion length. The 
latter may turn out much larger than the linear-synch­
ronism length. 

It is stated in [5J that the conversion coefficient is 
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limited by saturation. This statement is valid only when 
the phase locking is stopped long before the stationary 
state is reached. In this case the population saturation 
decreases the local effectiveness of the interaction, and 
the conversion takes place only over the linear-synch­
ronism length. 

7. NUMERICAL ESTIMATES AND CONCLUSIONS 

Let us stop to discuss the optimal generation of the 
combined and different frequencies in vapors and gases. 
We formulate first the conditions that must be satisfied 
to realize such a regime. 

The ratio of the incident values of the triggering and 
pumping fields xtO/~O should satisfy the conditions (15) 

and (27) respectively in the case of generation of the dif­
ference and combined frequencies. The field values xto 
and xpO should be sufficient to ensure phase locking up 

to a generated-field value close to equilibrium in the 
case of exact synchronism (ok = 0). To this end it is 
necessary to satisfy the condition W(lto, ~O' ~) > (ok), 
where _W is determined by expressions (29) and (22), 
while ~ = xp is a solution of Eqs. (14) and (24). 

If simultaneous satisfaction of the conditions for the 
optimal ratio ~O /xpO and phase locking is impossible 

because the power of one of these fields is insufficient, 
then it is desirable to increase the power of the second 
field to a level at which W ;" ok. 

As the first example, we consider the possibility of 
generation of a difference frequency in HgI vapor under 
the influence of radiation of a neodymium laser tuned to 
a wavelength 1.075 Jl [15] and its fourth harmonic; for 
the latter, two-photon resonance is obtained between the 
ground state 6s2S and 8s'S (tiW21 = 74404.6 cm- l [16J ). We 
assume for the estimates the values <rD ;" 10-100 cgs esu 
and s = 1.5. Then the solution (16) is valid. At a pres­
sure 10 Torr (t = 2000 C, N = 2.7 X 1017 cm -3 [17J) and 
T = 5 X 10-9 sec we have d = 2 X lO- lO sec and A = 4 
X 10-6 cgs esu [see (8) and (5b)]. If k = 0.2 cm-l , then at 
an incident pump power 75 MW/cm2 the optimal genera­
tion regime is obtained at a triggering field power 
15 MW /cm2 and the phase-locking condition (30) is satis­
fied. Th~pump conversion coefficient (18) is equal to 
~ = 0.9~Pt ;" 0.28, and the triggering-field coefficient 

is ~ = 0.9Kfpt;" 1.25. We note that in this case the 
pump intenslty is smaller by a factor 2.2 than the satur­
ation value. 

Let us consider the generation of a summary fre­
quency in MgI under the influence of the radiation from 
two dye lasers [5J (at Ap = 4597 A, two photon absorption 
takes place between the states ~S2S and 4s'S). If wg/Wt 
= 10, then the quantities (rD and (rD, estimated from 
formulas (6) and (7), with allowance for the contribution 
made to the two-photon absorption and the SRS by the 
states 3p' pO and 4p'po, are equal to ~ 1.4 X 10-99 and 
2 x 10-98 cgs esu, respectively; then s = 3.8 and ~ = 2.7. 
At a vapor pressure 10 Torr and T ;" 5 X 10- 9 we get 
d ;" 8 X 10-11 sec and A = 3.6 X 10- 6 cgs esu. At 4) Ilk 
= 0.3 cm-t, ~O = 25 MW/cm2 and ~O;" 2.7 MW/cm2, the 
first conversion regime is realized (see Sec. 3), phase 
locking ensures a state close to equilibrium, and the 
conversion coefficients with respect to the combined en­
ergy of the triggering field and the pump are K = 0.31 
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Conversion coefficients and conversion and stopping 
lengths in the generation of the difference frequency in NeI 
exposed to the ninth harmonic of a neodymium laser and 
to a laser with a rhodamine-6Zh sqlution 

A 

0.167 184 
0.66 41.8 
1.33 11.5 
2 6.5 

31 
27.5 
15 
12 

38 
38 
10 
5.8 

6.5 
24 
13.5 
10.8 

L, eM 

0.96 
0.77 
0.40 
0.25 

I L,s~op" em 

0.21 
0.77 
1.85 
6.25 

Here _A = I to/1pO; .!:- is the length in which the conversion coefficient 
Kt = 0.9 Kt (Kp = 0.9 Kp) is reached; tstop is the length over which phase 
locking stops. 

and ~ ~ 3.5. The conversion length corresponding to 
K = 0.9K is 15 cm. 

In conclusion, let us estimate the possibility of gener­
ation of the difference frequency in NeI (2p6 / S - 5p"[1 Y2]) 
exposed to the ninth harmonic of a neodymium laser and 
to a laser with a solution of rhodamine-6Zh (to satisfy 
the two-photon resonance condition it is necessary to 
change the neodymium laser tuning by 32 cm-1 [15J.) We 
put N = 1020 cm -3, d "" 10-11 sec, (rD "" 10-102 cgs esu, 
and s = 1. 65. Then ~ = 1 and the solution (16) is valid. 
We calculate the conversion coefficients KP and ~ at 

ok = 0, and ~ and Kt at ok = 5 cm-1 and a pump power 
375 MW /cm 2, and also the conversion length L and the 
stopping length of the phase locking Lstop for different 

. ratios A = Kto /xpo. The results of the calculations are 
summarized in the table. It is seen from the table that at 
A = 0.167 the stationary value of Xg is maximal, but it is 
not reached, since the phase-locking is stopped before 
that. The optimal regime at ok = 5 cm -1 corresponds to 
A = 0.66. Further increase of A leads to a decrease of 
the conversion coefficient; the phase locking then makes 
it possible to realize coherent interaction at lengths 
greatly exceeding (okr1 • We note that the conversion 
coefficient in this regime depends little on the length of 
the chamber with the working gas. 

Thus, the last example demonstrates the possil?,ility of 
producing a tunable source in the range 650-656 A. To 
trigger it (at A = 0066) in a system with confocal focus­
ing [18J, the required pump power is 1.6 kW and the re­
quired triggering field power is 6 kW. 

I)The role of phase locking in parametric generation' of the anti-Stokes 
component of SRS was demonstrated theoretically and experimentally 
in [8]. 

2)Since practical interest attaches to the interaction of waves with small 
wave mismatch 10k 1 <!!!; 1 kj I, it is assumed in (2) and henceforth that 
(d l ) = (d2) = d. 
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3)A similar phenomenon takes place in resonant frequency doubling in 
gases [14]. 

4)The wave mismatch can be varied in certain limits by introducing inert 
gases into the working medium. 
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