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A two-dimensional model for nonadiabatic transitions in triatomic systems is considered. The phase shifts 
for resonance scattering by a potential surface having the shape of a slightly elliptic (T< 1) double cone are 
found in the quasiclassical approximation. The widths of the obtained resonances exhibit a threshold 
dependence on the magnitude of the orbital quantum number m for me = 2y'2"1T- 1E 3/2T. The existence of such a 
threshold in partial cross sections is, from the point of view of classical mechanics, connected with 
oscillations in the angular momentum of the motion in the elliptic conical well. 

The chief characteristic of nonadiabatic transitions 
in triatomic systems is the multidimensional nature of 
the motion of the atoms. In the simplest case such a 
motion is two-dimensional. An example is the quantum 
system consisting of three identical atoms in the 28 
states and having a configuration close to an equilateral 
triangle, when the role of the two coordinates essential 
for a transition is played by nonsymmetric normal coor­
dinates that destroy the symmetry of the regular trian­
gle. The adiabatic terms of such a system form a double 
circular cone, which makes it possible to separate the 
motion of the system in the variables rand cp, and solve 
the nonadiabatic-transition problem in the quasiclassical 
approximation [1]. 

Under certain limitations, the two-dimensional nature 
of the motion is sufficient for the investigation of the 
transitions that occur in collisions of atoms with diatomic 
molecules and in triatomic nonlinear molecules [2]. As 
an example, we can cite the electronic transitions in­
duced in atoms by collisions with rigid molecules, when 
the vibrational quantum number of the molecule does not 
change as a result of the collision. In accordance with 
the general rules [3], terms of the same symmetry inter­
sect in this case on the surface of a double cone arbi­
trarily positioned above the plane of the two configura­
tional coordinates, as which we can choose the distance 
R between the atom and the center of gravity of the 
molecule and the angle between R and the molecular 
axis. The forces acting on a representative point along 
the chosen coordinate axes are, in this case, different, 
and, even if the cone is positioned vertically, the curves 
of its intersection with the constant-energy planes are 
ellipses. Exact separation of the variables for the entire 
adiabatic surface is impossible to attain in this case. 
The resulting problem cannot be solved with the aid of 
the known methods of investigating problems with boun­
dary conditions defined on an ellipse r 4] • 

However, the problem of nonadiabatic transitions in 
systems with elliptic conical terms is fairly easy to 
solve in the semiclassical approxima~ion if it is assumed 
that the classical trajectories of the motion are recti­
linear [5 ,6]. To what extent such an assumption is justi­
fied is a question that can be answered only after the 
consistent solution of the pertinent quantum problem. 

1. FORMULATION OF THE PROBLEM. THE 
EQUATIONS FOR THE TRANSITION AMPLITUDES 

In the basis of the nonadiabatic electronic wave func­
tions in the dimensionless variables characteristic of 
linear fields, the chosen model reduces to the 
Schrodinger equation 
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(1) 

where Px and Py are momentum-component operators, 
O'x and O'y are Pauli matrices, and hand f2 are the 
dimensionless components of the force along the impor­
tant coordinate axes: 

( 
? ) 'f, 

f,.,=F", F,~F, . 

The adiabatic terms of the system under consideration 
form the double elliptical cone 

E",=± (f,'x2+f2'y2) 'f,. • 

Therefore, as in [1], when E > 0, we can consider the 
problem of the elastic resonance scattering by the conical 
well of the upper adiabatic state. But the problem of the 
computation of the corresponding phases in the present 
case requires the prior determination of the correct 
asymptotic forms of the wave functions, since there is 
no cylindrical symmetry in the chosen coordinate sys­
tem. This is extremely complicated to do in the 
r-representation, since the simple partial waves 
I/J = eimCPF(r) get strongly mixed up as r - 00. Also 
strongly coupled are the elliptic waves I/J = M(r, cp)F(r) 
(where the M(r, cp) are suitable angular functions that 
take the elliptical symmetry of the cone into account). 

It is more convenient in this sense to use the momen­
tum representation: 

'I'", = SSdk"dky 'If,,2(k".ky)exp(ik~+ikyy). (2) 

In this case the amplitudes W1,2(kx, ky) do not change 
upon going round the coordinate origin and, in polar co­
ordinates, 

k"=j,p cos cp, ky=f,p sin cp 

satisfy the system of equations 
f) i f) 

e'.(Tp+p~)) 
( '1', (p, cp) ) =0. (3) 

'I', (p, cp) 

-if!, 

Here we have used the designation 

e='/2p'(1+tcos 2cp)-E, (4) 

and T is the eccentricity of the ellipses of intersection 
of the cones E1,2 with the constant-energy planes, i.e., 

't= (f.'-/,')/(j,'+f,'). (5) 

Going over to the new functions 
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(6) 

we obtain the following system of equations: 

(
' a{}p - ie, -: :<p ') (!) = 0 

i a all' 
----, -+ie 

, p a<p ap , 

(7) 

which can be reduced to the basic (for what follows) sys­
tem 

(
p+e'-i (~: + ; ), 

e. , 
I' 

;' ) 
V'+e'+i ( e: + ; ) 

this system being, under certain conditions, weakly 
coupled. 

(8) 

Let us now construct the momentum representation 
for the adiabatic functions ' 

fll(x, y)=U'l'(x, y). (9) 

where the matrix U diagonalizes the interaction in Eq. 
(1): 

_'I ( 1, 1) (riO", 0 ) /. Y 
U=2' -1, 1 0, e"/' ' 6 = arctgy-;;-. (10) 

We find in terms of the polar coordinates 

x=r cos <po, y=r sin <po 

with allowance for the formula (6) the expressions 

( :: ) = 2-';'j.j. J S P'h dp dIP exp[ipr(ft cos <p cos <po+I, sin <p sin <Po) 1 

X [cos 6~'<P C~Ll ) + i Sin6~<P ( ~Ll ) ] . 
(11) 

The basic system (8) shows that as p - 00 the domin­
ant terms of the asymptotic forms of ~ and 0 oscillate 
(T < 1) like eiP~1 (k1 - 1). Therefore, as in [1), the 
dominant contributions to the asymptotic forms of 
0)1,a(r - 00) is made by the saddle point p = kaffr 
(ka - 1). This circumstance enables us to compute the 
dominant terms of the asymptotic forms of 0)1,a(r - 00), 
using the method of steepest descent (pr » 1) to evalu­
ate the cp integral in (11). The saddle points cp1,a are de­
termined from the equation 

It sin <pt" cos <po-I. cos tpt,' sin tpo=O 

and are separated by a distance 1T from each other. As a 
result, the dominant asymptotic forms of 0)1 ,2(r - 00) 
are given by the integrals 

( fll t (r, tpo) ) ~. 1 j dp [e;(PP-'/I) ( ~(p, tp) ) 
-fll,(r,tpo) Y2np 0 Ll(p,tp) 

(12) 

where 

( 1-T) 'h 
p=r(1 +T cos 2tpo) "'. tp = arctg 1 +T tg tpo. (13) 

Upon going round the coordinate origin (cpo - cpo + 21T), 
the adiabatic functions 0)1, a(r, cpo) change their signs; 
therefore, the adiabatic functions in the p-representation 
should also change their signs: 

( ~ (p, tp) ) = _ ( Ll (p, tp+2:t) ) 
~(p,tp) ~(p,tp+2n) (14) 

The calculations carried out in Sec. 2 show that this ex­
pression corresponds to the condition: 
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( Ll (p, tp+n) ) = e;(m+'!.l' ( ~(p, tp) ) , 
!(p, tp+n) ~(p, <p) 

where m is an integer; therefore 

( IlI t (r, tpo) ) = _1 j dp [ e;(PP-'''' ( !(p, tp~ ) 
-fll,(r,tpo) l'2np ° Ll(p,tp, (15) 

_(_1)me- i (PP-'!<) (Ll(P'tp»)] , 
!(p,<p) 

For T = 0 this result goes over into the corresponding 
result of the paper (1). To investigate the scattering, it 
is sufficient to consider only the function o)a(r, cpo), 
which corresponds to standing waves at the COnical peak 
of the lower adiabatic state. 

2. THE QUASICLASSICAL APPROXIMATION FOR 
THE ANGULAR FUNCTIONS AND THE ORBITAL 
ENERGIES 

The determination of the asymptotic forms (15) re­
quires the solution of the complex system of equations 
(8) with the boundary conditions (14). Significant simpli­
fications of this system are possible if the ellipticity of 
the terms is sufficiently small. Indeed, the intermixing 
of the amplitudes of ~ and 0 occurs primarily in the 
vicinity of the zeros of the adiabatic splitting 

( e' (e ')' 
e/+--) +-',,-=0. 

p p-

For p - 0 and p - 00, we have iE~/P1 « IEp + E"pl. 
Therefore, under the condition that 

( ~' )'« Il~ (e/ + : ) I ' 
which is equivalent to PoT « 1, the system (8) splits up 
into separate equations for ~ and ~: 

( V'+e'=Fi (e: + pe ) ) (l~) = O. (16) 

In these equations the term (E~ + E"p) has a significant 
influence on the behavior of the solutions only for p - 0, 
when the ellipticity of the terms is negligible, and for 
p - po = M" (see (1). Consequently, under the condition 
PoT « 1, the Eqs. (16) can be further simplified: 

(V'+e'=Fi(eo:+ ;0)) (:) =0, £0= ~. -E. (17) 

We shall seek their solutions in the form of an expansion 
in terms of .the complete set of solutions to the equation 

d' 
( -.+am+p·(e·-e.'») M.,(p,tp)=O 

dtp-

with a boundary condition corresponding to (14): 

(18) 

M.,(p, tp)=-M .. (p, tp+2n) , (19) 

where the am are the eigenvalues of the Eq. (18). The 
functions Mm can clearly be assumed to be orthonorm­
alized. Then for the coefficients ~m and om in the ex­
pansions of ~ and 0 in terms of the Mm we obtain the 
following equations: 

( d' "am, ( , eo )) (~ .. ) 
dp' + e,,- -7=F L eo p +p Ll m 

(20) 

+ l:(2(Mm ~Mm) ~ + (M •• ~.Mm))(~~J=O. 
m' 

They are the basic equations for the computation of the 
scattering phase shifts, but they require a preliminary 
investigation of the orbital equations (18). 

With the exception of the low-momentum region, 
where 
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a,.,=(m+'h)', Mm =exp{±i(m+'!.) <p}, 

Eq. (18) is sufficiently easy to solve only under the as­
sumption that the angular motion is quasiclassical; for 
in the general case (18) is a Hill-type equation, and even 
for p - 00, when it goes over into the Mathieu equation, 
its solutions (which are then the standard Mathieu func­
tions) do not satisfy the condition (19). The possibility 
of using the quasiclassical approximation is connected 
with the fact that in Eq. (18), represented in the form 

(d'/dq>'+Z'( a'+ (~+cos 2'1')') )Mm(<p) =0, (21) 

where 
"am - p2e/· 280 

a-=4--,-,-, ~ =-. ,-, 
p't p't 

the parameter Z = y~3T can, for not too small values of 
T, when the solutions to (18) become trivi~l, be issumed 
to be large wherever the solution Mm = e1(m + 1 2)cp is 
inadmissible. Therefore, with the exception of the reg­
ions near the points CPi' where the quasiclassical ap­
proximation breaks down, the prinCipal solutions to (21) 
can be represented in the form 

4 • 
Mm = Z'" (a'+ (~/C08 2'1') ') 'f< exp ( ±iZ J (a'+ (~ + cos 2'1') ') 'J, d<p) . (22) 

Equation (21) should be solved exactly near the points 
CPi' The obtained exact solutions should be matched with 
the asymptotic forms (22). The computations lead to the 
following results. 

1. The region It3I < 1, a 2 > O. Near the Singular 
points (see Fig. 1) CPl = Y2arccos(-J3), CP2 = 1T - CPl, CP3, 
and cpt, where above-the-barrier reflection can be im­
portant, Eq. (21) can be solved in terms of the parabolic­
cylinder functions. This leads to the following transition 
matrix relating the constants A. to the various sides of 
the CPi's: -

(19) goes over in the case under consideration into the 
relation 

det (RH) =0, (26) 

we find the following equation for the orbital energies 
am: 

(1+2e-'"') cos ~ cos T)=sin £ sin T). (27) 

It contains the total phases above the wells: 

£=8,-~, T)=8,-~ 

with allowance for the shift ~ in the region of maximum 
reflection, The asymptotic relations in the parameter 
region under consideration have the forms: 

cos (8,+8,) =0, 1~1, 

cos (8,+S,)=-'/,cos (8,-8,), 1<1. 

2. The region It3I < 1, (}'2 < 0, where the pOints cpi, cpi 
(see Fig. 1) are fairly close to each other. The transi­
tion matrices U, L, and R and the condition for the de­
termination of the levels have the same forms as in the 
case 1. The actions for the wells are computed between 
the turning pOints of the classical motion. As a result, 
we find the equation 

(1 +2;'-'"') cos £' cos T)' =sin ~'sin 1'\', (28) 

in which 

£'=8t'-,1., T)'=82'-~, 
.,' 

8,'=Z S (a'+(~+cos2q;)')'J,d<p, 
_9,' ... 

S,'=Z J «£'+(~ + cos 2<p)')'/' d<p, 
1ft" 

and cpi and cpi are the turning points: 

where 

(23) The first asymptotic relation in this region corresponds 
to a quasiclassical quantization in isolated wells: 

1 (£' ( 1 ) ¥=--z---- ~=argr ') +i¥ +¥-¥lnl¥l, 
, 4' (1- ~') 'I. ' _"" 

(24) 

and r(x) is the gamma function. The complete transition 
matrix connecting A±(cp) and A,,(cp + 21T) in such a case is 
determined by the expressions 

( e'S' 0) ( is' 0) R=[J, L = 0' ·s U ' . u, 
. ',e-! I 0, e- 'S: 

(25) 

and the quasiclassical actions are computed above the 
shallow and deep wells (Fig. 1): 

•. .' 8.=Z S (a'+(~+cos2<p)')'/'d<p, 8,=Z S (a'+(~+cos2<p)')'/'d<p. .. 
Taking into account the fact that the boundary condition 
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FIG. I. The potential energy 
of the orbital motion for lill < 1. 
V{o,p) = -:Z2(il + cos 2o,p)2. 
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cos st' cos s;=o, 111 ~1, 
the second is similar to the corresponding relation in 
the region 1: 

cos (S.'+8,') =-'/'C05(S,' -S;), hi <1. 

3. The region 1131 < 1, (}'2 < 0, where the turning 
points cpi, cpi can be regarded as isolated points. The 
transition matrix for an individual barrier is construc­
ted, using the exact solutions near cpi, cpi in the form of 
linear combinations of the Airy functions Ai(cp - cp~) and 
Bi(cp - cpi), and has the form 1 

(29) 

where 
WI" 

D=Z S (-a'-(~+cos2<p)2)'/'d<p ... 
determines the quasiclassical barrier penetrability. The 
expressions for Land R and the boundary condition have 
the same forms as in the region 1. The equation for the 
determination of the levels can be represented in the 
form 

(2e'D+' /.e-2D ) cos St' cos S,' =sin St' sin S,'. (30) 

On account of the main quasiclassical condition D » 1, 
it actually corresponds to quantization in isolated wells 
and goes over into Eq. (28) when I y I » 1. 
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4. The region 1f31 < 1, a2 < 0, where the turning points _wz'PI 

f{J~ and f{J; cannot be regarded as isolated points. In this -W 2 IP) 
b 

case the solution near f{J~ and cp; can be approximated by 
the parabolic cylinder functions, and the passage through 
the isolated points cp~ and cp; is accomplished with the 
aid of the Airy functions. As a result, we obtain for L 
the expression 

L = ( e's" 0) (e-"'" '/,e"/I) (eD, 0) 
0, e- iS ,' eilr./f., 1/2e-i1l/' 0, e-D 

(31) 

in which M corresponds to transitions from the region 
cp~ < cp < cp~ into the region f{J~ < cp < cp;: 

Here 

M = (-(2/n)"'r(1+V)e"SinI.V' -cos nv) 

( n )'" e-" . (32) 
COS:JlV, - - ---siul'tv 

2 r(Hv) 

21.=('1'+'/,)-('1'+'/,) Inlv+'/,I, 

v+~=-~z a.2-(~-1)'. 
2 4 (1_~)'/' 

(33) 

Using now the relation (26), we find the following equa­
tion for the orbital levels: 

(Be ZD + ~ e-'D)cosS,'cosS"=sinS.'sinSo', (34) 

where 

B= (2/n)"'r (1+v)e", S,'=n(v+'/,). (35) 

For the quasiclassicallevels in the shallow wells 
(II » 1), it goes over into Eq. (30). The lowest levels 
correspond to B f 2. 

5. The region 1f31 < 1, a2 < - ({3 - 1)2 and suffiCiently 
close to the bottom of the shallow well. In this case 
II + % < 0, and the quantization rules become, for the 
first time, Significantly different from those obtained in 
the regions 2-4. In particular, in this region, using a 
method similar to the one used in the region 4, we find 

where 

( COS'S; ) • • • . Ae'D+-u--e-'D cosS, =sinS. sinS" 

• - e2A. 
A=1'2n-­

r(-v) . 

(36) 

(37) 

The Eq. (36) qualitatively differs from (34), since, in 
contrast to the first asymptotic relation in the region 2, 
it yields, when D ~ 1, only one condition, cos S~ = 0, 
corresponding to quasiclassical quantization in a deep 
well. 

6, 7. The regions 1f31 < 1, a 2 < 0 and sufficiently 
large in absolute value. Approximating the solution (21) 
by Airy functions near the isolated pOints cp f and CP2 in 
the region 6 and by parabolic cylinder functions near the 
points CP2 and cp; in the region 7, we find from (26) the 
following quantization rule: cos S~ = 0, which is valid for 
both regions and which is not an asymptotic relation for 
D»1. 

8. The region 1{31 > 1. In this case there are no 
shallow wells; therefore, when a 2 is larger than the 
height of the orbital-potential barrier, the matching re­
duces to the satisfaction of the condition cos Sl = 0, and 
the quantization in the wells follows the equation cos S~ 
= O. 

9. The vicinities along the p axis of the points with the 
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/1=-1 /1=0 /1=( 

FIG. 2. a) The orbital tenns of the problem in the momentum rep­
resentation; b) the detailed behavior of the orbital terms in the region 
1131 < I. 

parameters 1f31 = 1 and a 2 = 0 are singular regions of 
Eq. (21), where the potential figuring in this equati.?n 
(i.e., in (21)) and having, for 1f31 < 1, a very shallow well 
is replaced by a fourth-order hump when 1f31 = 1. The 
corresponding standard equation has four neighboring 
singularities, and has not been investigated at all. How­
ever, the dimensionless coupling parameter analogous 
to y has in this case the form y' = clz 4/3, and, in view 
of the fact that Z ~ 1, y' is almost always large, and a 
quasiclassical quantization is possible, except in the 
region of very low orbital energies, through which a 
small number of terms pass. The latter quantities can 
be found in these regions by joining the corresponding 
terms for 1f31 < 1 and 1f31 > 1, since there are no phys­
ical reasons for singular behavior of the terms in this 
region. 

Thus, with the aid of Eqs. (27), (28), (30), (34), and 
(36) and the quantization and correspondence rules in the 
regions 7, 8, and 9, we can find the orbital terms 

(38) 

for any momenta. Their qualitative behavior is shown in 
Fig. 2a and 2b. 

With the exception of the strong-interaction region 
1 y I, 1 Y'l < 1, the orbital terms are quasiclassical and 
correspond in the region y < 0, I yl »1 to quantization 
in two isolated wells or quantization in a single well in 
the region y > 0, I y I ~ 1. In particular, in the region 
of the hump of the potential (Fig. 2b), which determines 
the resonance-scattering widths, the first asymptotic 
relation in the region 1 can be reduced to the form 

«a.'+~2+1)2_W)'!·(E(k)-F(k)+(1+n)rr(n, k» =n(m+'/,)/2Z, (39) 

where E, F, and n are the complete elliptic integrals of 
the first, second, and third kind with modulus k and 
parameter n: 

k' = ~ [1 __ a.2+~2_1 ] 
2 «a.2+~2+1)':"'4~2) 'I, ' 

1 a.'+~'+1 
n =-i-[ «a.2+~'+1)'_4~2)'/ 1 J. 

An investigation of Eq. (40) shows that near p = Po its 
solution for m ~ 1 has the form 

where!; varies slowly in the interval 

1;;'~;;'21'2!n 

(40) 

(41) 

as m 2 varies from m 2 »E3T2 to values of m 2 satisfying 
the inequality (m - 2v'21T-1E312 T) «E3/2T. In this case, in 
the region of sufficiently low momenta, the interaction 
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e- 21T')I between the terms becomes appreciable, and the 
use of the adiabatic terms loses meaning. 

3. INVESTIGATION OF THE RADIAL EQUATIONS 
DETERMINATION OF THE LEVEL WIDTHS 

The radial equations (20) describe the motion in a 
system of coupled orbital terms -w:U. The highest de­
gree of intermixing of the states is then attained in the 
region e- 21T')I ~ 1. In the region ')I < 0, I ')II »1 the mo­
tion occurs along nonadiabatic (intersecting) terms, the 
probability of transition between which is determined by 
the exponentially small matrix elements 

d d' 
M,=(MmdpM .. -). M,=(Mm dP' Mm-). 

responsible for transitions between the almost isolated 
wells shown in Fig. 1. In the region ')I > 0, ')I » 1 the 
system moves along adiabatic terms. In this case the 
matrix elements of the orbital functions are of order 
M1 ~ l/po, Mz ~ l/p~, but the term spacing, even when 
m ~ mc and (am - am' )/pz ~ poT, is considerably larger 
than M1 and M2. Thus, the motion from p = 0 along any 
term lying below the term -w:U (-w~ in Fig. 2a) and 
reaching into the region of maxi~um intermixing leads 
to the appearance, as p - "", of the system in all the 
terms -w~ < -w:Uo: the states with -w:U > -w:Uo inter­
mix slightly. Therefore, in the following computations 
we shall limit ourselves only to the investigation of scat­
tering with orbital numbers m > mo = 21/zE3/zT (which 
corresponds to -w:U > -w:U ), when the Eqs. (20) be-
come uncoupled: 0 

(42) 

Then, on account of the condition poT « 1 (it implies a 
small width of the intermixing region), the maximum 
value of am in the region of the hump can be computed 
with the aid of the formulas (41), assuming that for not 
too large values of m the hump has a parabolic shape. 
The latter corresponds to "rectilinear" trajectories in a 
conical well, when the radial quantum number n »m 
(see [l J ). It is precisely this case that is investigated 
below. 

The system (42) with allowance for (7) for the adia­
batic terms -w:U > -w:Uo has at pOints far from the 
turning points (i.e., the zeros of w:U) the following quasi­
classical solutions: 

• • 
~.,=c, cos g exp {i S W," dp } + c, sin g exp{ -i S w," dP}. 

(43) 

~ .. =-c, singexp {i S w'" dp }+ c,cos gexp { -; J wmdp}. 

where C1 and Cz are constants and 
1 a:~ 

g=2arctgi plp'/2-El' 

For p - 0, ~ - (m + Y2)2 we find, retaining only the 
regular terms (see [lJ), that 

~m=coP"(lm-",(Ep) -ilm+",(Ep». 

!lm=-Cop'l, (Im_'I, (Ep) + ilm + 'I, (Ep) ). 

In the region of the hump of the potential (Fig. 2a), the 
Eqs. (42) must be solved exactly. Such solutions are, 
under conditions when n »m, expressible in terms of 
the parabolic cylinder functions, and lead to the follow­
ing formulas for the continuation of the solutions (43) 
from the region p - 0 into the region p _ 00: 
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c, +=0: (e- iO+ (l-e-"") "'e-"·-O». 

c,+=o:(e'"+ (l-e-"") 'I, (e"O-O». 
(44) 

Here CI! is an unimportant constant and n is the quasi­
classical phase in the well of -w:U (Fig. 2a): 

Q = S wm(p)dp. ., 
The prinCipal Landau- Zener parameter !J, has, in view 
of (41), the form 

1'= (m'-m,')/2 (2E)'/,. (45) 

and (J, the additional phase advance in the transition reg­
ion, the form 

a=lt/4+1! In I!-I!+arg r(1-il!)_ 

These results and the assumption that the motion 
(for m > mo) is adiabatic in character enable us to find 
the scattering phase shifts, USing the method of steepest 
descent to evaluate the p integral in the expression (15). 
For the asymptotic form of the partial amplitude at the 
conic peak in this case we obtain 

Ill,(r,<po)~ p~,.Mm(Po,<p)cos( L(p)+ ~ ). (46) 

where L(p) is the potential-scattering phase shift in the 
conical well without allowance for the nonadiabatic 
coupling: 

po m+l 
L(p)=poP- J fi)mdp+-Z-lt. 

and po is the saddle pOint determined by the equation 

w .. (po) =p. 

The resonance phase shift x/2 has, in view of (44), the 
form 

(47) 

For the widths of the resonances En in this case, we ob~ 
tain the expression 

r (dQ -. 
-= -) [1+(I-e-"")''']-'e-'"". 
2 dE Eo 

(48) 

The dominant exponential behavior is determined here 
by the formulas (45) and (41). 

The main result, as can be seen, consists in the sig­
nificant increase in the level widths in the elliptical 
conical well in comparison with the widths in a circular 
conical well. The width turns out to be comparable to 
the level spacing for all momenta m < mc. This is a 
consequence of the fact that for m < mc there is no 
decay barrier (Fig. 2b). The exponential decrease of r 
begins only when m > mc. 

4. DISCUSSION OF THE RESULTS 

The existence of a threshold momentum mc for the 
resonance scattering has a classical origin and is con­
nected with the fact tha.t in the case of classical motion 
in an elliptical conical well the angular momentum is not 
an integral of the motion. The behavior of the angular 
momentum 

M(t) =xy-yx 

in time is described by the expression 

M(t) = M(O) + (f,'-I,') h/"x::f,'Y'),I' dt. 
o 
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which simply follows from the equations of classical 
motion. 

Taking the formula (5) for the case when T < 1 into 
account, we can write the last expression in the form 

, 
M(t) = M(O) + T S rsin 2<p,dt. 

, 
where the trajectory ret) is computed for the circular 
cone. The amplitude of the oscillations in the angular­
momentum value 

f 

t,.M= T S rdt 

is easy to compute for trajectories that are almost rec­
tilinear between the turning pOints (i.e., for n »m), 
when we can set dt = drlv'2(E - r) and take as the limits 
of the integration over r the values 0 and E. In conse­
quence, we have 

21/2 

flM.=-E'/'T 3 . 

In the general case the trajectory of the classical mo­
tion in a circular cone is not closed; therefore, for 
~M > M(O) the system will at some moment of time 
certainly pass through the coordinate origin, where the 
vertices of the adiabatic terms adjoin. This will lead to 
a total transition from the well to the conic peak, which 
corresponds to level widths comparable to the level 
spacing. The classical value of !; that follows from the 
formula for ~M, !; = 2312/3, falls in the interval 
(1, 2../21T- l ). 

Thus, the primary effect of the scattering-the exis­
tence of the threshold angular momentum mc-is due to 

246 Sov. Phys.·JETP, Vol. 41, No.2 

the oscillations in time of the momentum, and cannot be 
obtained under the assumption that the trajectory is 
linear at any t. The existence of a threshold momentum 
depending on the collision energy leads to a sharp dif­
ference between the partial cross sections with small 
m < mc and large m > mc momenta, when the scattering 
becomes resonance scattering. The variation of the en­
ergy of the colliding particles then enables us, in prin­
ciple, to find the ellipticity parameter T of the terms. 

An analysiS of the corresponding trajectories shows 
that a threshold angular momentum exists also in scat­
tering in a tilted conical well, and depends on the mag­
nitude of its inclination to the vertical. 
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