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Results are presented of a theoretical investigation of superluminescence in molecular media (organic dyes, 
CO2 molecules). The calculations are based on a three-level model in the given pulsed-pump field 
approximation, and under the condition that the produced superluminescence does not influence the motion 
of the level populations. Account is taken of molecular relaxation processes. The influnece of group 
retardation effects on the formation of the superluminescence pulses is studied. It is shown that when 
dispersion and transverse relaxation act simultaneously, superluminescence pulses of stationary form with 
exponential gain are produced. The amplitude profiles of the stationary superluminescence pulses are 
investigated. 

1. INTRODUCTION 

The problem of obtaining ultrashort pulses at fixed 
frequencies has by now been technically solved. These 
pulses are obtained for its accomplishment, using 
either solid state lasers[l,2] and mode-locked dye 
lasers[3-S], or multistage amplifiers)1I-7] 

Super luminescence of organic dyes pumped by power­
ful ultrashort pulse generators is a sufficiently effective 
method tuning radiation frequencies[8-10] and also serves 
as one of the mechanisms of shortening the duration of 
the pulse)!l] The results on the experimental realiza­
tion of super luminescence in dyes have been discussed 
in the literature. "Front-back" asymmetry of the radi­
ation has been observed for the longitudinal variant of 
pumping.[a,U] The spectra and the angular structure of 
super luminescence have been studied)9,U] The possi­
bility has been noted of a regime of stationary mode 
amplification. [12] 

For correct interpretation of the experimental data, 
it is necessary to take into account not only processes 
of energy relaxation for the level populations (the longi­
tudinal Tl and the vibrational Tv relaxation times), 
but also phenomena connected with the presence of a 
"phase memory" of the system (the transverse relaxa­
tion time T2) If the length of the cell exceeds the group 
length, then account of the effects of group retardation 
of the waves is also necessary. Such a conSideration 
can lead to useful information both on the properties of 
the superluminescence radiation and on the internal 
characteristics of the material (for example, it can 
serve as a method of measurement of short relaxation 
times). 

In the present work, results are given of a theoreti­
cal study of superluminescence in a three-level medium 
with account of the factors enumerated above. The 
analysis can be used for study of superluminescence in 
dyes and in other molecular media (for example, C02 
molecules). The basic results of the work were re­
ported at the vn All-Union Conference on Coherent and 
Nonlinear Optics.[IS] 

2. FUNDAMENTAL EQUATIONS 

The study of superluminescence in organic dyes is 
carried out on the basis of a Simplified three-level 
energy modelYf] Levell belongs to the ground singlet 
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electron state So, levels 2 and 3 are vibrational sub­
levels of the electronic state SI' 

This model allows us to take into account processes 
of vibrational relation, which becomes necessary in the 
regime of ultrashort pulses, the length of which is com­
parable with the vibrational relaxation time Tv. In 
dyes, Tv ~ 1O-u _l0-12 sec. 

We shall describe the three-level medium by the 
quantum mechanical equations for the denSity matrix 
with longitudinal and transverse relaxations,Pf] The 
field, which is a superposition of the pumping wave of 
frequency wp = WSh and the superluminescenc.e of fre­
quency Wc = W21 we shall assume to be classical and to 
satisfy the wave equation. The study of the contracted 
equations, obtained by the method of slowly varying am­
plitudes, is carried out in the approximation of a given 
pumping field for which the pumping amplitude Ep(z, t) 
is a function only of the running time T = t - z/ up (up 
is the pump group velocity). 

We shall also assume that the ariSing superlumines­
cence does not affect the level population motion. Fur­
ther, we neglect nonstationary effects connected with 
the finiteness of the time T~ of damping of the polari­
zation at the pumping frequency, i.e., we set T~« Tp 
(Tp is the pump pulse length). 

Under the assumptions made, the differences in the 
level populations are functions of the running time T: 
N2dz, t) = N 21(T), N31(Z, t) = N31(T). The forms of 
these pulses are found when solving the equations given 
in(12]. The superluminescence amplitude EC<z, t) and 
the polarization PC< z, t) at the frequency Wc = W21 

satisfy the following equations: 

~ {)E, ± {)E, =-i~P, 
u, at {)z u,' 

(1 ) 

{)P, P, i PnoUe 
--,+--=-d;N,,(-r)E,+-, at T,' n T," (2) 

where T~ is the polarization damping time at the fre­
quency of superluminescence, and d~ is the square of 
the modulus of the dipole matrix element. The sign (+) 
corresponds to super luminescence which propagates 
together with the pump in the direction of the z axis 
("forward" superluminescence), the sign (-) pertains 
to superluminescence in the opposite direction ("back" 
super luminescence). 
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To take account of the spontaneous luminescence, 
random noise polarization Pnoise(z, T) has been intro­
duced in the right side of Eq. (2). If the sources of 
spontaneous noise have dimensions much less than the 
wavelength, and are uniformly distributed along the cell, 
then the noise polarization 0 is correlated with respect 
to z. One can also assume it to be O-correlated with 
respect to T if-the pump duration Tp» T~. 

Then 

(Pnoise(Z', 't')Pnoise(z, 't»=gn,('t)6(z'-z)6('t'--r), (3) 

where g = const, and n2( T) is the population of the upper 
laser level. 

Equations (1) and (2) with the noise polarizations (3) 
will be studied for a rectangular pumping pulse: 

E (T)={Epo, h:I";;'tp/2, 
Po, 1't1;;'-rpf2. 

(4) 

Here, we shall take into consideration two mechanisms 
of nonstationarity: the nonstationarity associated with 
the finite damping time of the polarization T~ at the 
frequency Wc = W2h and the "wave" non stationarity , 
which arises in the presence of mismatch between the 
group velocities of the pumping waves and the super­
luminescence. 

3. PROPERTIES OF SUPERLUMINESCENCE PULSES 
IN A MEDIUM WITH SHORT RELAXATION TIMES 

If the duration Tp of the pumping (4) Significantly ex­
ceeds the times Tv of vibrational and Tl of radiation 
relaxations, then the difference in the populations of the 
laser levels N21( T) duplicates the shape of the pumping 
pulse :[12] 

N,,(T)= {-IN"'I ,1't1;;''tpf2, 
IN,,'I~-iN,,'I, ITI";;';p/2, (5 ) 

where {3 = 2( 1 + fi2/2dpTI T~E~orl. 
In this case, we can obtain more complete informa­

tion from Eqs. (1) and (2) on the properties of the super­
luminescence pulse in a molecular medium. 

3.1. Effects of Group Retardation 

We first neglect the nonstationary phenomena con­
nected with the finite time T~, assuming T~ « T C (T C 

is the characteristic time for the change of the ampli­
tude of the superluminescence). In this approximation 
it is easy to obtain a graphic picture of the formation of 
the superluminescence pulse in a dispersive medium. 
The effects of group retardation of the pump waves and 
super luminescence become important in cells of length 
l > lv~ = d\ v",\. Here v~ = 1/up ~ 1/uc is the mis­
match of the group velocities. 

Solving the set of equations (1) and (2), we find that 
the averaged intensity of the super luminescence for 
I)-correlated noise polarization (3) is of the form 

1,('1') =g ( 2:~' ) '. { j n, (11.,-Z' V.,) exp ( -2cr, f N2I (11.,-Z"V.,) dz") dz' } 
~ ~ , 

xexp ( 2.cr, j N 2I (I1.,-Z'v.,)dz') , 

" 
(6) 

where 1J± = t ± z/uc is the traveling time of the super­
luminescence pulses, and o"c = 21Twcd~T~/fiuc is the ab­
sorption cross section at the frequency of the super­
luminescence. The signs (-) and (+) refer respectively 
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to the "forward" and "back" superluminescence in­
tensity. The solution (6) is obtained at the zero boundary 
condition I(~) (zo, 1J~) = 0, where Zo is determined from c 
physical considerations. 

The shapes of the super luminescence pulses in the 
case of normal dispersion are shown in Fig. 1. As the 
pulse propagates in the medium, a broadening of the 
pulse occurs: the points of the leading edges xi = -Y2 
- zi/lv-("forward" superluminescence) and xi = Y2 
+ (l - zi)/lv+ (''back'' superluminescence) travel with 
the velocity Uc > up, while the wavefronts travel with 
velocity up in the pump direction. Cessation of the 
amplification takes place over the group lengths (Fig. 
2, c). In the case considered, the asymmetry of the 
superluminescence radiation with respect to energy is 
clearly manifest. Depending on the length of the cell, 
the ratio of the energies of the "forward" and "back" 
radiation is determined by the formulas 

,= {I \"-1 [1[ exp (2rol._) -1]- [ex" (4f,I-_)-1] 
Xexp( -2rol) ]-4ro'tp} (v+[ 4[exp (21'01.+) -1] 

- [('xp(41'"I.,) -1 Jexp (-21',1) ]-1ror.p}-', 
l>lv+, lv_, 

,=4r,'t p[exp (2f 01) -1] {v + [I, [exp (2r ,Z.+) 
-1]-[exp (4f,/,+) -i]exp (-21'01) ]-4f,'tp}-', 

lv+<Z<I,_. 

Here ro = noO"c is the stationary amplification coef­
ficient in the case of unmodulated pumping. 

(7) 

For very small cells of length l < lv-' lv+, group 
effects do not develop and the "front-back" asymmetry 
disappears (y = 1). 

We note that at large amplification (rOlv~» 1) the 
Eqs. (7) Simplify and take the form 

Equation (8) coincides with the asymmetry coefficient 
for stimulated Raman scattering (SRS) given in[l5]. 

(8) 
(9) 

The value Of the asymmetry coefficient y, calculated 
from (9) for the corresponding values of the parameters, 
agrees with the experimental data.l U ] 

Simultaneous account of the mismatches of the group 
velocities and of processes of molecular relaxation of 
the medium introduces Significant difficulties in the 
solution of the set of equations (1) and (2). Therefore, 
before proceeding to an investigation of the joint effects 
of both nonstationarity mechanisms, we consider the 
effect of a finite time T~: on the formation of the 
"forward" superluminescence pulses in the case in 
which group effects can be neglected. 

r;! reI. units 

II or 

FIG. I. Pulses of "forward" superluminescence (,,_ > 0, intensity re­
duced by a factor of 200; r 0 = I cm-I , 1/1,,_ = 2,1/1,,+ = 40, x = T!Tp): 
a) z < 1,,_; b) 1,,_ <:: z < I; c) z = I; and "backward" superluminescence; d) 
z > 1- 1,,+; e) z < I - 1,,+; f) z = O. 
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3.2. "Forward" Superluminescence under Conditions 
of Group Synchronism in Media with Finite Time T~::; TC 

We shall consider cells of small length 1 < lll-' Here 
it is not necessary to take into account the difference in 
the group velocities, and we set Uc = up = u. Solution of 
Eqs. (1) and (2) are found by the Riemann method. For 
zero boundary conditions, we obtain the following ex­
pression for the averaged intensity of the superlumines­
cence: 

[,=g C;,~: ) , f n,(,')exp[2(T-T')IT,'jdT' j R'(z, z', T, T')dz'. (10) . , . 
Here n2( T) is the population of the upper laser level, 

which differs from zero at 0:::;: T:::;: Tp. (In this subsec­
tion, the start of the pump pulse is shifted to the coordi­
nate origin for convenience in calculations.) R( ~) is the 
Riemann function. 

In the region 0:::;: T:::;: Tp, 

R(z, z', T, ")=[o(l'1r,(~-1)(z'-z)(,'-,)/T,'). (11) 

Here Io( ~) is the modified Bessel function. 

We now investigate the behavior of the superlumines­
cence pulse (10) for high amplification roz» 1, {3 = 2. 
If the condition T~/Tp < 1/ r 0 Z is satisfied here, then 
the superluminescence intensity takes the form 

/, - --, J.= ___ ~_J' {1-<I> (l'21'oz - Y2,IT,') }exp(2r,z), 
f:!,T,' 

roZT::C~T:S:;;;'tp, 

/,,= J"Tp {<I> (1':hIT,' -1'2r,z)-I)") (l'2(T-Tp)IT;- -1'2I',z) }exp(2roz), 
l2r,z Tl' 

Here 10 = gn2(21TwC)2/Sv'1Tu2TprO and 11>([;) is the error 
integral. 

For the case T~/Tp ~ l/roz, we get formulas simi­
lar to (12). The growth of the intensity (12)'with coordi­
nate z takes place more slowly than exp (2roz). This 
fact was noted previously in(15) for nonstationary SRS. 

As follows from Eqs. (12), the shape of the super­
luminescence pulse depends on the ratio Ti/Tp (Fig. 2). 
For small T~/ Tp, when the processes of damping of 
macroscopic polarization take place rapidly, the super­
luminescence pulse has an almost rectangular shape 
with steeply rising fronts (Fig. 2a, b). Upon increase in 
the ratio T~/ Tf' a smoothing of the fronts takes place 
and the shift 0 the maximum in the direction of the 
trailing edge of the inversion pulse N21( T) takes place. 
For large values of T~/Tp > 1/roz, the superlumines­
cence radiation can turn out to be localized in the region 
T> Tp (Fig. 2e). 

Thus the ''wave'' nonstationarity for T~ « Tp leads 
to a cessation of amplification over the group lengths 
and shifts the superluminescence pulses to the leading 
edge of the pulses NdT) if 11_ > O. In the opposite case, 
in a medium with finite time T~ ~ TC and 11_ = 0, only a 
decrease in the rate of the amplification takes place, 
along with a shift of the pulses in the opposite direction. 

The Simultaneous action of both nonstationarity 
mechanisms can lead (in the case of normal dispersion) 
to the formation of stationary mode pulses of super­
luminescence, which have exponential amplification. 
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1" reI. units 

FIG. 2. "Forward" superlum­
inescence pulses in a medium with 
fmite time T~ under conditions of 10 

group synchronism at the length 
z = 10/ro<x = T/Tp): a) T~/Tp 
= 0.03; b) Tr/Tp = 0.05; c) Tr/Tp 
= 0.07; d) Tr/Tp = 0.12; e) Tr/Tp 
= 0.2. 

J q or 

Consideration of these pulses will be given in the next 
section . 

3.3. Regime of Stationary Mode Amplification 

The general solution of the set of equations (1) and 
(2) for a superluminescence pulse propagating "for­
ward" in a medium with normal dispersion and finite 
time n, for zero boundary conditions, is of the form 

J,=g(~~:: f {exp [ 2(1~~11) Jell]' jIl2(11'-VZ')R'(z,z',l]"l')dZ', 

- , (13) 
where '1/ = t - x/uc and R( ~) is the Riemann function. 

In the case in which N2d T) has a rectangular shape 
(5), the population of the laser level n2( T) is different 
from zero for -Tp/2 + liZ,:::;: 1) :::;: Tp/2 + liZ. In this, 
region the following relation is valid for the Riemann 
function 

R(o, z', 'I, l]')=/,(},"",(p-I) (']'-'1) (z'-z) IT;) , (14) 

Approximate calculation of the integrals in (13) for high 
amplification roz» 1 gives: at distances z exceeding 
the group length 111' the solution (13) takes the form 

(15) 

Thus, at certain distances from the entrance to the cell 
z> 111' a regime is established in which the intensity 
profile has a stationary shape A~( T), and the amplifica­
tion increases linearly with increase in the coordinate 
z. Similal' stationary regimes were obtained for SRS 
and for parametric amplificationY7 j 

We now study the stationary amplitude profile. We 
shall seek a solution of the set of equations (1) and (2) 
for z > 111 in the form 

(16) 

Neglecting the noise sources, we obtain an equation for 
the amplitude of the stationary superluminescence 
pulse: 

d'A, (1 rM)dA, 1 () rjA 0 -+ --- -+-[N2I ,T (J,- M ,=. (17) 
dT' T,' V dT vT," 

We note that an equation of Similar type was obtained 
in(16) for the envelope of stationary Stokes pulses in 
SRS. 

In the case of rectangular pumping pulse (4), which 
creates the inversion N21(T) in the form (5), the solu­
tion of Eq. (17) is of the form 

( 
T ) [p , p-a ] 1 Ac X=- =Cexp -T----X , x~--, 
T;p' 4 2 2 (IS) 

( T) -C sin S(x-'I,) ( a ) 1 
A, x=-:- = . exp --x, Ixl..;;;-;;-, 

TJ> 5mS 2 ~ 

A, (x= 2..) =0, x;;;' ~. 
rp 2 

Here p/2 = .JroTp/37I1T~ - S2, a/2 = Tp/~ 

- .JroT~(fl- 1}/IIT~ - S2, C = const, the parameter S 
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is found by solving the equation sin S = Sin, n 
= 'p v' ro13h'T~. It is found that S can take on a discrete 
set of values Sk (for Sin « 1, we have SI;:::; 1T( 1 - l/n). 
This set of values of Sk corresponds to the growth-rate 
values 

(19) 

The mode growth rate r~) is always less than the 

stationary growth rate r 0 = niJO'c. 

The mode amplification regime has a threshold even 
in the absence of linear nonresonance losses in the 
medium. The pump threshold power density is deter­
mined by the condition 

where 

(h) ~:~~ 
Plitt =Psat 2-~~ , 

/i'e 
Psat = 8 rJ '1' P1' ' j[ P 1: I 

For large values of the pump power density 

(20) 

P » Psab the difference in the populations of the work­
ing levels N21 is maximal: 

(N,,) mL,=n,o-n,o+2 (n,'-n, ('), 

and the increment tends toward its limiting value 
r~)({:l = 2) (Fig. 3). 

(21) 

The threshold of the mode regime (20) depends on the 
concentration of active particles no (Fig. 3). There 
exists a limiting concentration 

thr 1 [V V1"'"J nQ =- --+--S/<- , 
cr, 4T,' Tp' 

(22) 

below which the mode amplification regime does not 
develop, since in this case the threshold power density 
(20) becomes infinitely large. 

When the pumping threshold (20) is reached, a sta­
tionary superluminescence pulse is formed, which is 
localized near the leading edge of the pump (Fig. 4a). 
As the pump power increases, the crest of the super­
luminescence pulse shifts toward the trailing edge of 
the pump (Fig. 4b, c) until inversion saturation sets in 
(21). The shape of the superluminescence pulse remains 
unchanged with further amplification (Fig. 4e). 

The stationary super luminescence pulses have the 
described shape if it is possible to neglect the proces­
ses of relaxation with times Tl and Tv. Account of 
these processes becomes necessary in a regime of 
picosecond pulses. 

4. SUPER LUMINESCENCE FOR PICOSECOND 
PUMPING. STATIONARY MODE PULSES 

If the duration of the pumping pulse Tp is compara­
ble with the vibrational relaxation time Tv and smaller 
than the longitudinal relation time Tl (for dyes, Tv 
~ 10- 11_10- 12 sec, Tl ~ 10-8_10-9 sec), then the inver­
sion pulse N21 can no longer be regarded as rectangu­
lar. In this case (Tv :S 'p « T 1) the following expres­
sions are valid for the population differences 
N21( T ):[12] 

N"Cc)=-IN,,'j, T~-Tp/2, 

N"(T)=iN,,olil-N,,', ITI~Tp!2, 

, • , 0 (T-Tpl2 ) 0 '-,. 'tp lI 21 (T)=}\" pexp --T-- -IN" I, T~2' (23) 

Here (3 is the same parameter as in Eqs. (5), T is the 
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--::::::=====- b 
~ _____ d 

o /0 

FIG. 3. Dependence of the growth rate in the fundamental mode 
of superiuminseeence on the pumping power density for various con­
centrations (T~ = 10-12 sec; JJ = 10-12 sec/em, Tp = 10-11 sec); a) no = I/ac; 
b) no= 0.8/ac;e) no= 0.7/ac; d) no= O.S/ae· 

FIG. 4. Amplitude profiles of the fundamental mode of superlum­
inescence for various values of the pump power (f 0 = 1.5 cm-I , T~ 
= 10-12 sec, P = 10-12 sec/cm, Tp = 10-11 sec, X = T/Tp); a»)3 = Ihhr = 1.23; 
b»)3 = 1.50; c»)3 = 1.73; d»)3 = 2.0. 

characteristic damping time of the trailing edge of the 
inversion and is det:ermined by the times Tv and T 1. 

Solution of Eq. (17) for the population difference of 
the form (23) leads to stationary superluminescence 
modes. The excitation threshold, increment and thresh­
old concentration for the fundamental mode are the 
same as in the case considered of a rectangular inver­
sion pulse (5). The presence of an exponential trailing 
edge in (23) changes the shape of the superlumines­
cence pulse. The most significant changes.affect the 
trailing edge of the amplitude profile. For the funda­
mental mode at T ~ 'p/2, we have 

A;" (.x=~) = {CSin(Y-Y,)eXP(-'I,ax), 'I,Q~'/,+TTp-'ln~, (24) 
Tp 0, x;;.'I,+TTp -, In ~, 

where 
C";"const, Y=2Tl'r,~7\'r,,, c"p[ --Tp(X- I/2)/2Tj, 

Y, ~2Tl'ro/vT,,, aI2=TplT;'-l'roTp' (~-1) /vT,,-ct'. 

The shape of the trailing"edge (24) is determined by the 
values of the parameters T/,p, T~/Tp, and 13. We con­
sider the case of strong pumping (P » Psat. 13 = 2). If 

T,'lTp;;.O.5Inl'O.36Tp'IT·'-1, TlTp<O.6, (25) 

then the shape of the trailing edge (24) can change, de­
pending on the concentration of active particles no. For 
small values of the concentration nthr < no < n~rit 
= 0.181Tfiuc/l/T2wcd~, the trailing edge falls off smoothly 
to zero (Fig. 5a); for large no > n~rlt, it oscillates. The 
number of oscillations (number of minima and maxima 
at T ~ Tp/2) is equal to k if the parameters of the sys­
tem satisfy the relation 

-1/2+k~1.17d,1'fno(iJJYn/iu,v~I/2+k, k=1, 2, ... (26) 

If the same ratios T~hp and Thp do not satisfy the 
require ments (25) simurtaneously, then the trailing edge 
(24) oscillates at all concentrations (Fig. 5b, c). 

The relations (24)-(26) can be used for an estimate 
of the times T and T~. 
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FIG. 5. Pulse shapes of the fundamental mode of superlumineseenee 
for pumping power density P> Psat (f3 = 2) for various values of the 
time T (T~ = 10-12 sec, Tp = 10-11 sec, II = 10-12 sec/em; x = T/Tp): a) T 
= 2 X 10-12 sec; b) T = 8 X 10-12 sec; c) T = 9.5 X 10-12 sec. 

5. CONCLUSION 

Using as an example a three-level model, a theoreti­
cal analysis has been carried out of the development of 
superluminescence in pumping with durations TlJ Tv 
« Tp, and Tv 5: Tp « T l • The effect of group retarda­
tion of the pumping waves and super luminescence and 
the finiteness of the damping times of macroscopic 
polarization n are taken into account. 

It is shown that the presence of group-velocity mis­
match in the case in which neglect of the time ~ is 
possible leads to a cessation of amplification over the 
group lengths. Here "front-back" asymmetry of the 
superluminescence radiation is observed. Under condi­
tions of group synchronism and finite values of n, the 
rate of amplification is somewhat reduced in compari­
son with the case of monochromatic pumping. 

The simultaneous effect of molecular relaxation of 
the medium with time T~ and the effects of group re­
tardation on the development of super luminescence is 
similar in its general outlines to the action of similar 
mechanisms of nonstationarity on the Stokes pulse in 
SRS[161. 

Allowance for the motion of level populations leads 
to somewhat different features in the stationary mode 
regime of superluminescence. As a consequence of the 
saturation of the population inversion in a powerful pump 
field, it happens that the growth rate rM does not in­
crease linearly with the pump power, and asymptotically 
approaches its limiting value for the prescribed 
parameters of the system. This brings about the ap­
pearance of a concentration threshold of the mode re­
gime. 

The characteristic shape of the stationary pulse of 
the fundamental mode of superluminescence with an os­
cillating trailing edge corresponds to the specifics of 
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the process of vibrational (Tv) and radiative (T 1) re­
laxations in the three-level medium, which can be of 
significant practical interest as a criterion for the esti­
mate of the relaxation times. 
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