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An algebraic approach to the solution of the inverse problem of scattering theory for charged particles in 
the plane of the complex orbital angular momentum I at a fixed physical value of the energy is examined. 
Formulas are obtained for the nuclear interaction potential in which absorption is taken into account and 
the "nuclear" phase shift 8(10., k) is assumed to be of the same form as in Eqs. (3) and (4). 

1. It is known that the inverse problem of scattering 
theory has a solution in the following cases: 1) if the 
phase shifts at all values of the energy, the normaliza
tion constant, and the bound-state energy are specified 
for a fixed value of the orbital angular momentum; 2) if 
the phase shifts at all values of the orbital angular mo
mentum are specified for a fixed value of the energy. In 
the first formulation, this problem was solved by 
Gel'fand and Levitan [1J, Kre'in [2J , Marchenko [3 J, and 
others. The solution for the case of charged particles 
was obtained by Gugushvili and Mentokovskil [4J. In the 
second formulation, the solution of the problem can be 
found in the papers of Burdet, Giffon, and Predazzi [5J 

(for uncharged particles) and Poplavskil [6J (with allow
ance for the Coulomb interaction). In all cases, the au
thors started from considerations of the general theory 
of boundary-value problems. The algebraic approach to 
the solution of the inverse problem in the first formula
tion was considered by Theis [7J • 

In this paper we propose an algebraic method of solv
ing the problem by using phase shifts, specified at a 
fixed energy, at different values of the orbital angular 
momentum. 

2. We consider the radial Schrodinger equation for 
the partial wave 

" (2~} - t/" a ) y (r)+ k ------ VCr) y(r)=O, 
r2 r 

(1) 

where k = (2ME)li2/ti, a = 2MZze2/ti2, A = l + %. In this 
equation ti2(A2 -7'~/2Mr2 and ti2a/2Mr are respectively 
the centrifugal and Coulomb potentials, and ti2V(r)/2M 
is an arbitrary potential (for example, this can be the 
nuclear-interaction potential). The quantity k assumes 
physical values, while A is complex. 

We shall show below how to obtain the potential V(r) 
if the scattering function S(A, k) corresponding to the 
sum of the three aforementioned potentials can be repre
sented in the form 

SeA, k) =exp{2i[lj (A, k)+6(A, k)]}, 

exp [2i6(A, k) I=R(A, k)IR(A, -k), 

(2) 

(3) 

)..'-'/ a 
u"(r)+ (k'---r---;:-) u(r)=O. (5) 

We shall henceforth be interested in the regular solution 
cp(A, k, r) and the Jost solution f(A, ±k, r) of Eq. (5), 
which satisfy the boundary conditions 

lim <p (A, 1£, r)r-('+'I,) =1, (6) 

lim I(A, ± k, r) exp [± i (kr - ~ In 2kr)] =1. (7) 
~- ~ 

Using the notation 
[u; v1=u(l')v'(r)-u'(r)v(r), 

we introduce the Jost functions 

I(A, ±k) =[f(A, ±k, r); <peA, 1£, r) I. (8) 

Recognizing that [f(A, k, r); f(A, -k, r») = 2ik, we can 
express cp(A, k, r) in terms of f(A, ±k, r): 

<peA, k,r) = - 2~k [/(A, - k)/(A, k,r) - I(A, k)/(A, - 1£, r) I. (9) 

The solution (9) has as r - 00 the asymptotic form 

. I(A, - 1£) ,[ a ] <p(A,k,r)-e"(,,k) 1£ sm kr-2k'ln2kr+'l(A,k) , 

where 

I(A, k)/I(A, -1£) =exp[2i'l (A, 1£) I 

is the scattering function. 

We introduce the notation 

I(A, -1£, r)=I" I(a.(k), -1£,1')=1., a.(k)=a", 

<peA, 1£, r)=<p" <p(~,(k), k, r)=<p" ~,(k)=~" 

[<p.; IAl [<p.; 1.1 
a'll"= ~.,2_A.2' aVIl=~ ... 2_a,..,Z· 

On the basis of (13) and of the relation 
/I 1/ ')..Z_~.,,2 ... 

<p./A - <p. f, = --,.,.- <p,/" 

which follows from (5), we obtain 
a,,' =-<p.IJr2 • 

(10) 

(11) 

(12) 

(13) 

(14) 

R(A, k) = IT [A - a.(k) I / IT [A -~. (k) I, 
, , 

3. We shall show that the scattering function (2)-(4) 
(4) can be obtained by choosing the potential V(r) in (1) to be 

the function 
where 1] (A, k) are the phase shifts for the Coulomb and 
centrifugal potentials; li (A, k) is the additional shift due 
to the presence of the potential V(r); OIJ.J. (k) and f3v(k) 

are complex constants which are different for all IJ. and 
v, with Re OIJ.J. (k) > 0, Re f3 v(k) > O. 

We present first the known results for the case V(r) 
= O. We rewrite (1) in the form 
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VCr) = -2 [( Ar:<P')' + Ar:<P·] , (15) 

where A should satisfy the system of equations 
(16) 

(summation is carried out over the repeated indices v 
and J.J.). We first verify that 
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(17) Consequently 

is the solution of Eq. (1). To this end we substitute (17) 
in (1). Taking (13)-(15) into account, we obtain 

C,a,,=;O, (18) 

where 
A' 'I' f' A 

C =;A "+{k'-~-~+2[(~'<:P·) +~]}A (19) y., r2. r r rJ ~. 

At A = alJ. we have, according to (16), y Jl = O. In this 
case the system of homogeneous equations q,lIvlJ. = 0 
relative to Cv' which is obtained from (18), contains only 
the trivial solution Cv = 0, inasmuch as tav t 1= 0 if 

p. 
ap' and i3v are different. Consequently, Av is a solution 
of (1). Therefore YA is also a solution of this equation. 

To construct the Jost solutions of Eq. (1) with the po
tential (15), we investigate the asymptotic form of the 
solution (17) as r - 00. To this end we obtain Av from 
the system (16) 

A.=-Mi,./ta,.t, (20) 

where av is the cofactor of av • Substituting (20) in 
p. p. 

(17), we obtain 
f. I I.a" I 

y,=~ a"'--T . 

We consider the element 
_ I.a,., _ . [1- f,,[<jl,; f,l\~.' - a,') ] 

a,. T - a", j,[<jl,; i,,] (~,' _ '),.') . 

According to (7) and (10), flJJcpv; f>..]/fA[cpv; fll ] -1 as 
r - 00. Consequently, 

. ( i.a" ) A' - a,,' . 
hm aV\-I--- =-'--2 hma'\"l' 
,~oo i, '),. -~, ,~oo 

therefore 

~i.!': y, = {Ii ('),.' -a.') I IT ('),.' -~,') }um f" 
, , 

and the function 

F, = y, IT ('),.' -~;) I IT ('),.2 - a.') 
, , 

is a solution of Eq. (1) and has as r - 00 the asymptotic 
form (7), i.e., FA is the Jost solution. 

According to (4) and (12), FA can be represented in 
the form 

F(A, - k,r) 
Y(A,-k,r) 

R('),.,k)R(-A,k) . 
(21) 

To fi~d the regular solution of (1), we construct the solu
tion ~ >.. of this equation in analogy with (9) in the form 

- 1 
cD, = - :w;[f(A, - k)y (A, k, r)- f(A, k)y('),., - k, r)] (22) 

and determine its asymptotic form as r - O. Substituting 
(17) in (22) (recognizing at the same time that 
cp(i3v(-k), -k, r) = cp(j3v(k), k, r)), we obtain 

- <jl' I fob., I cD,=<jl,+A,b"=-I-1 a,.--- , 
a"J.I CP1. 

b,,=[<jl,; <jl.]/(p,'-A'). 

We consider the element 
_f.b,,_ [1 f.[<jl,;<jld(~.'-ao')] a.o q;;:--a,. - <jl,[<jl.; fo](~,'-'),.') .. 

To establish the asymptotic form of this expression as 
r - O~ we used the following definition of the Jost func
tion [8j 

f('),., ±k) = lim [2'),.r'-'I'i(A, ±k, r)]. (23) 

On the basis of (6) and (23) we have 

: ~_ ~,-A as 
<jl,[<jl,; i,,] ~,+a. 

r-O. 
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therefore 

~~~ Q),. = {II (Ha.) III (H~,) } ~~~ <jl" 
I I 

and the function 

(\) •. =<D, iI (,,+~,) IiI (Ha.) 
I I 

is a solution of Eq. (1) that has the asymptotic form (6) 
as r - 0, i.e., ~A is a regular solution. 

According to (4) and (12) we can represent ~>.. in the 
form 

<D(1., k, r) =a> 0" k, r)IR(-'),., k). (24) 

Substituting (21) and (24) in (22) and letting r go to infin
ity, we obtain 

<D (i. k r) _ed,":,+W.hll f(A, -k)R('),., -k) 
, • k 

X sin[ kr -~ln2kr+fJ ('),., k)+6('),., k) J, 2k . 
where 

i('),.,k) R('),.,k) =ex (2i[ ('),. k)+6('),. k)]} 
i('),., -k) R('),., -k) P 11, , 

is the scattering function (2)-(4). 

On the basis of (14), (15), and (20), the potential V(r) 
is equal to 

V(r)=-2 [(_ f.iiv,,~,)' _f.ii,.<jl;] 
la,.lr- la"lr (25) 

[( ii",a,:)' t ii,.a.:l [(lav.I')' llaw l'] =-2 -- ,+----- ,=-2 -- +--- =-2~,lnla,.I, 
la",1 r lav,,1 la".! r la",1 

where 

~.=~~(r~). r or or 
If the potential V(r) is real at r > 0, then it follows from 
(1) and (7) that 

f(A, -k)=f'W. k), R(A, -k)=R'('A', k). 

Then the S function (2)-(4) will satisfy the unitarity con
dition, i.e., S-I(>.., k) = S*(A*, k). 

The results can be used to find the nuclear potential 
V(r) from the "nuclear" phase shift O(Aj' k) that are 
known from the phase-shift analysis at different values 
of the orbital angular momentum (Aj = %, %, %, ... ). 
These shifts depend not only on V(r), but also on the 
Coulomb and on the centrifugal potentials. If they can be 
approximated in an acceptable manner by the function 
(3), then (25) can be used to calculate the pure nuclear 
potential. 

I)Paper delivered at the session of the division of Nuclear Physics of the 
USSR Academy of Sciences, February 1974. 
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