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A variational calculation of the critical existence Rc, between colliding nuclei is carried out. Values of Rc, are 
calculated in the region 90 ~ Z ~ 100 with allowance for the fmite size of the nucleus. It is found that Ro, is 
substantially greater than the nuclear radius rN (for example, Ro,:::::50 F for uranium nuclei). The results 
permit refmement of the prediction of the cross section for spontaneous creation of positrons in Coulomb 
collisions of heavy nuclei. 

1. FORMULATION OF PROBLEM AND 
DISCUSSION OF RESULTS 

In connection with discussion of experiments on spon­
taneous creation of positrons in collision of heavy 
nuclei, [1-9J the need arose to solve the two-center prob­
lem for the Dirac equation. [10-12J Since the variables in 
the Dirac equation with a potential V(r) 
= -ct(ZI!rl + Z2!r2) are not separated in any orthogonal 
coordinate system (in contrast to the nonrelativistic 
Schrodinger equation, which permits separation in ellip­
tical coordinates ~, 7]), it is impossible to obtain a solu­
tion in analytic form. At the same time the results of 
the calculation (and particularly the critical distance 
Her) are important for formulation of the experiment, 
since the positron production cross section, the positron 
energy spectrum, and the very possibility of performing 
the experiment with heavy nuclei known at the present 
time, depend greatly on the numerical value of Her (see 
refs. 5 and 6 for more detail). 

We recall that Rcr is the value of the internuclear 
distance R at which the energy of the ground-state term 
of the quasimolecule (Z1, Z2, e) crosses the boundary of 
the lower continuum. Since the nuclear velocity vN « c, 
the electronic terms can be calculated in the adiabatic 
approximation, i.e., for stationary nuclei. In this article 
we report results of a numerical solution of the rela­
tivistic two-center problem. Calculation of Rcr was 
carried out by a variational method. [10, 13J Here, as has 
already been noted, [1OJ to obtain satisfactory accuracy it 
is necessary that the trial functions correctly transmit 
the nature of the Singularity of the exact solution near the 
nuclei and at infinity. 

The form of the Singularities of the exact solution is 
found in Sec. 2,. In Sec. 3 we consider the two-centei' 
problem for spin s = 0 (the Klein-Gordon equation). In 
this case, which is considerably Simpler in the calcula­
tional aspect than the case s = 1;2, it is convenient to 
investigate the questions of the selection of the class of 
trial functions and the rapidity of convergence of the 
variational method. In Sec. 4 we present the results of 
calculation of Rcr for s = 1/2 (an electron in the field of 
two heavy nuclei); here the nuclei are assumed to be 
pointlike. In Sec. 5 it is shown that for Z < 137 allow­
ance for the finite size of the nucleus can be carried out 
by perturbation theory, and the corresponding change in 
Rcr is found. The final values of the critical distance 
are given in Table I. The calculation of RGr in _a certain 
sense completes the theoretical investigatlOn [1 6, 12-15J of 
phenomena occurring in a supercritical Coulomb field 
and permits prediction of the absolute cross section for 
spontaneous creation of positrons.. 
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TABLE I 

Nucleu1 z Hnp F I ~R". F I Et' 0" 

MeV mb 

Til 90 43,2 I 0.43 540 37 
U 92 51.0 0.38 480 66 
Pu 94 59.5 0.32 430 110 
em 96 68.3 0.29 390 178 
Cf 98 77.7 0.26 360 278 
Fm 100 87,8 0,23 330 420 

A somewhat unexpected result (not obvious before 
numerical calculations were carried out) is the com­
paratively large value of the critical distance for uran­
ium and nearby nuclei. In this region Rcr is 5-10 times 
the nuclear radius rN' in spite of the fact that the super­
criticality parameter 0 = (2Z - Zc)/Zc is still small 
(0.06 < 0 < 0.17 for 90:5 Z:5 100). Naturally, this 
facilitates the performance of the experiment. 

The spontaneous creation of positrons in collisions of 
heavy ions occurs for an energy E of the incident nucleus 
(in the laboratory system) greater than a threshold en­
ergy Et: 

E> E,=2 (Ze) '/R". (1.1) 

Values of Et may be found in Table I; we note that Et! A 
"" 1-2 MeV7nucleon. In the approximation of low super­
criticality (0 « 1) the total cross section for spontaneous 
positron production is factorized: [5J 

cr(E, Z) =cr,F(EIE,). (1.2) 

The factor 01 depends only on the nuclear charge Z and 
increases rapidly in the interval Z = 90-100 (see Table 
I). With increasing Z the threshold energy Et decreases. 
For these reasons it is desirable to perform the experi­
ment with the heaviest possible nuclei. In Eq. (1.2) we 
have deSignated by F the universal function of the ratio 
7] = E/Et calculated by us previously. [6J At threshold 
(11 - 1) the function F(7]) is exponentially small-here 
the Coulomb barrier for slow positrons appears. There­
fore in the threshold region it is difficult to observe 
spontaneous creation of e+. However, with increase of 7] 
this smallness rapidly disappears,' and for 7] > 3 the 
function F(7]) varies from 0.5 to 1. The cross section for 
spontaneous production of e' in this region amounts to 
tens of millibarns-see Fig. 1. 

To observe this effect it is not necessary to have 
collision of beams of completely stripped (bare) nuclei. 
As noted earlier, [4,5J an experiment can be set up with 
a beam of bare nuclei ZI incident on an ordinary heavy 
target Z2 if ZI ~ Z2. Obviously it is necessary to detect 
not only the positrons but also the nuclei, fixing the 
scattering angle 8. Here a sharp peak will be observed 
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FIG. I. Cross section for spontaneous production of positrons in 
slow collisions: I-two bare uranium nuclei, 2-bare nucleus with a 
neutral atom (ZI = Z2 = 92). 

in the energy spectrum of the created positrons near 
the upper end of the spectrum. [6, 9J 

Since new heavy-ion accelerators [16,17J will be com­
ing into operation in the coming years, we can expect 
that this experiment will be carried out in the near 
future. Observation and study of spontaneous creation 
of positrons would mean a complete verification of quan­
tum electrodynamics in strong external fields. [l,18J 

Here and subsequently n = c = m = 1, EO is the energy 
of the level in units of mc 2, R is the distance between 
nuclei, rN is the nuclear radius, O! = e2/tic = 1/137, 
~ = 2ZO!. To simplify the calculations we will limit our­
selves to the case of identical nuclei: Zl = Z2 = Z. 

2. THE ASYMPTOT.E OF \{I{r} AT SMALL AND 
LARGE DISTANCES 

We will determine the behavior of the wave function 
near the nuclei and for r - 00 (r = (r1 + r2)/2, ri is the 
distance from the electron to the i-th nucleus). We will 
begin with the case r »R. 

In this region the potential of the two-center problem 
approaches spherical symmetry: 

V(r)= _l.(~+~) = -1.[H(~)'P2(COS8)+ ... ]. 
2 r l r, r 2r 

For a scalar particle at EO =-1 

(t.-2U.)¢=0, 

1 ~~' ~R' (2.1) 
u.= - V--- V'=----+-P,(cos8)+O(r'). 

2 r 21" 4r' 

Corresponding to this we will set rlj! = Xo + X2P2(COS 8) 
+ ... Substituting this series into (2.1), with accuracy to 
a common factor (determined by normalization) we find 

x.(r) =exp(-1'8~r)r"·{Hcr'''+ ... }, 

X2(r)/x.(r) = (R/2r)'{Hc,r'''+ . .. }, 
(2.2) 

where C1 and C2 are certain constants. 

The case spin 1/2 is somewhat more complicated. 
The squared Dirac equation at the boundary of the lower 
continuum reduces to the form (2.1), where now[2,14J 
Uo is replaced by U1/2 : 

U,' = - V -~ V2_~t.V+_3_(Vl')2 __ 1_[VVx pIa. (2.3) 
, 2 4V 8V' 2V' 

The first two terms coincide with the effective poten­
tial for a scalar particle, and the third term vanishes for 
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the two-center problem.1) The term proportional to 
('i1V/V)2 describes an additional repulsion which in­
creases the critical charge for s = 1/2 in comparison 
with s = 0 for the same value of R. Finally, the last term 
corresponds to the spin-orbit interaction; its sign is not 
determined. In a central field V = V(r) this term van­
ishes for the ground state: 

1 V' V' 
--2V[VV.x p )a=--(Ia)=(x+1)-, 

2rV 2rV 

since K = -1. Therefore in the two-center problem this 
term is small both for r »R and near each of the 
nuclei (i.e., in the same regions where the potential ap­
proaches spherical symmetry). 

Discarding terms smaller than r -3 as r - "", we have 

2~ ~'_3/, ~R' i i) a. i) 
t."'-{----+-p,(cosa)+--(a ------)}'"=0 

r r' 2r' r' • as sin a iicp , 
(2.4) 

where 

a,= (a. cos cp+ay sin cp) cos a-a, sin a, a.=-a. sin cp+a, cos cp. 

In matrix form 
_ ( - sin a cos se- i.) (0 - ie-i.) 

06- cosSei' sinS' 0'1'= ieilJl 0 . 

We will seek a solution of Eq. (2.4) in the form 

1 (",.(r)+"'I(r)p,(cosa)+ ... ) 
",(r)=-- . ' 

r ",,(r)sin2ae'·+ ... 
(2.5) 

Substituting (2.5) into (2.4), we arrive at a system of 
equations, 

",."- (2r~ + 'I.~~, )",.=0, 

" (2~ 27/._~' 4 ~R' "'I - -+--)"'1=-""--"'" r r2 r2 2r3 

" 2~ 3!/._~,) 3 
"', - (-;- + -1"- 1jl, = z;:;-1jlI, 

whose solution for a bound level (I/J - 0 as r - 00) 
asymptotically has the form 

1jl.(r) =Cr"· exp(-1'8~r), 

1jl/",.=-1/3(~R)"'(RI2r)\ 1jl,/1jl.=-I/. (Rl2r) '. 

(2.6) 

In the region near the nuclei the wave equation can 
conveniently be analyzed in elliptical coordinates 

6= (rl+r,)IR, fj=(rl-r,)IR, (2.7) 

which are usually used in the nonrelativistic two-center 
problem (1!S ~ < 00, -1:::s 17 !S 1; the nuclei correspond 
to the point ~ = 1, 17 = ± 1). Leaving the most singular 
terms in the Klein-Gordon and Dirac equations, we can 
show [10J that the solutions have Singularities of the form 

1jl(r)_(;'_fj')-o/" a=2s+1-[(2s+1)'-~'l"', (2.8) 

where s = 0, 1/2 is the spin of a particle moving iq the 
field of two centers. This singularity I/J ~ (r1r2)-a/2 dis­
appears in the transition to the nonrelativistic case: 
a - o for Z« 137. 

We note further that the solution of the squared Dirac 
equation for the ~ term is of the form 

1jl(r)=( XI(6,fj). ). (2.9) 
x,(;, fj)e" 

The functions Xl and X2 correspond to the projections of 
the orbital angular momentum A = 0, 1 on the axis of the 
quasimolecule (the z axis), and cp is the angle of rotation 
around this axis. Here X2 ~ pas p - 0, where 
p = (1 /2)R [( ~ 2 - 1)(1 - 172)]1/2 is the distance to the 
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z axis (this behavior of X 2 is a particular case of the 
relaxation X ~ plAleiA'P for states with angular-momen­
tum projection A). In the case Zl = Z2 the wave function 
of the ground-state term does not change for the sub­
stitution rl - r2 (~ -~, 77 - -77, C{J - 'P + 7T), and hence 
in Eq. (2.9) 

3. CRITICAL DISTANCE Rcr FOR A SCALAR 
PARTICLE. CHOICE OF THE CLASS OF 
TRIAL FUNCTIONS 

(2.10) 

Solution of the Klein-Gordon equation for an energy 
E = -1 is equivalent to finding the minimum of the func­
tional 

(3.1) 

where Vo = -V - (1/2)V2 is the effective potential and 1/1 
is the trial function. The equation for l/J is obtained by 
variation of J[ l/J 1 within the limits of the selected class 
of trial functions. If no limitations are imposed on l/J, 
then for exact determination of Rcr it is necessary to 
solve the equation in partial derivatives in the ~, 77 plane 
(see Eq. (19) in ref. 10), which is an extremely difficult 
problem. Below we use an approximate method, the idea 
of which is as follows. Instead of ~ and 77 we will intro­
duce new variables 

x=x(S,11), Y=Y(s, 11)' (3.2) 

In the case of separation of the variables, the choice 
of x and y is obvious-the solution is factorized: l/J(x, y) 
= l/Jl(X)1/!2(y). For example, for a potential with spherical 
symmetry we have x = r, y = 8. In the relativistic two­
center problem, where there is no separation of varia­
bles' we will choose x, y so that l/J (r) has a singularity 
only in x (these coordinates can be called asymptotically 
separated). Substituting in Eq. (3.1) 

N 

¢(s,!'])= I,cp,(x)y'-" (3.3) 

where 'Pi are arbitrary functions of x, after integration 
over y we have 

N 

I N [1jl] = I,S dx(P,jcp;'cp/+Q''P''fj+2R"cp:'1)j). (3.4) 
i,i=t 

Minimization of I N over the trial functions 'Pi (x) leads 
to a system of N equations: 

d(dCP ) dcp - P-+Rq; -R--Qcp=O 
dx dx dx 

(3.5) 

(in matrix designations; here It is a matrix transposed 
to R). Here P(x) and Q(x) are symmetric matrices: 
P = P, Q = Q. The solution of the equation in partial 
derivatives is replaced by a boundary value problem for 
the system of N ordinary differential equations. The 
convergence of the method for a correct choice of the 
variable x turns out to be extraordinarily rapid, as a re­
sult of the following: 

1) The functional IN[ l/J 1 is varied over the entire class 
of functions CfJ"i(x)' i.e., the trial function l/J(~, 77) is 
chosen with an infinite number of variation parameters; 

2) The behavior of C{Ji (x) near the singular points (the 
ends of the interval of integration over x) is not imposed 
externally, but is determined by Eq. (3.5) itself. 

Let us turn to the choice of the important variable x. 
With allowance for the nature of the singularities of 
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TABLE II. Values of Rcr (in units ofh/mc) for scalar particle 

I I 
X "_ •. i,1_112 

x...,~, X= (S2_1l2)/2~, . b-2Za Nom1 N=t I N-I N-2 

0.70 0.012 0.0132 0.0141 0.0141 
0.75 0.026 0.0289 0.0296 0.0297 
0.80 0.048 0.0521 0.0534 0.0535 
0.85 0.076 0.0836 0.0856 0.0858 
0.90 0.109 0.1252 0.1281 0.1282 
0.95 0.147 0.1815 0.18.53 0.1853 

l/J (~, 77) determined in the ·previous section, we tried two 
asymptotically separable coordinate systems. System (a) 
is 

(3.6) 

In this system, curves x(~, 77) = const are essentially 
eq uipotentials: 

System (b) is 

x = ., _ ",' = 4r,r, 
S " R'l.' 

(3.7) 

In both cases x varies over the interval (0, 00), at the 
ends of which the system (3.5) has singularities. Near 
the nuclei we have x ~ rlr2, and at infinity x depends 
only on r. As far as y is concerned, y ~ r- 2 cos2 8 as 
r - 00, and therefore inclusion of N terms of the series 
(3.3) corresponds to expansion of l/J(r) in Legendre poly­
nomials P2n(cos 8) up to n = N - 1. The results of the 
calculation are given in Table II. 

Values of Rcr were calculated first with one trial 
function (N = 1), but with various choices of the variable 
x. The larger the calculated value of Rcr for a given t, 
the better the selection of x. Variants a) and b) lead to 
extremely similar results. For comparison we have 
also given the values of Rcr obtained [19J for x = ~. This 
choice of x does not permit determination of the nature 
of the singularity of (2.8) and has Significantly poorer 
accuracy. Hence it is evident that the condition of 
asymptotic separability of the variables x, y is impor­
tant. 

Retaining the best variant x = ~ 2 - 77 2, we investigated 
the convergence of the expansion (3.3). The transition 
from N = 1 to N = 2 corresponds to inclusion of the quad­
rupole correction X2(r)P2 (cos 8). Here the value of Rcr 
increased by no more than 0.2%. This indicates the ex­
traordinarily rapid convergence of this method. 

The values of Rcr calculated here give a lower limit 
for the critical distance between the nuclei. Suppose the 
expansion (3.3) with N terms (a polynomial of degree 
N - 1 in y) gives a value R~j. Then RcrU:) = lim R~)(t) 
as N - 00, where 

(3.8) 

Actually, equation (2.1) for the ~ term is equivalent to 
the problem of appearance of the first bound level in the 
effective potential Vo. If R is fixed, the coupling constant 
(; increases. In view of the variational principle, t(N)(R) 

exact c > tc (R). If we take into account the fact that the 

curve bC = tc (R) increases monotonically, the inequality 
(3.8) follows. On increasing the number of terms N in 
the expansion (3.8), the corresponding values of R(N) 

cr 
rise monotonically, approaching a limit Rcr(t) from 
below. 
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FIG. 2. Critical distance in the two-center problem (Rer in units of 

li/mc = 386 F). The numbers on the curves indicate the order of the ap­
proximation (m, n) in Eq. (4.2). The dashed curve is the asymptotic 
solution obtained in ref. 14. 

4. CRITICAL DISTANCE IN COLLISION OF NUCLEI 

For a particle with spin 1/2 the calculations are sig­
nificantly more complicated. The functional J [ l/i 1 as 
before has the form (3.1), but the effective potential Uo 
must be replaced by Ul /2, which depends on the spin 
variables (see Eq. (2.3)). Here the trial function l/i is a 
two-component spinor having the structure (2.9). Inte­
grating J [ l/i lover the angle of rotation around the quasi­
molecule axis (the z axis) we find 

00 00 (ax.)'+(Ox,)' . 
J[1jll=const·SpdPSdZ{ 2 +U"x.' 

o 0 (4.1) 

+2U12x,x, + u"x,' + x,Ax, - X21\X'} , 

where p and z are cylindrical coordinates, 

(Ox) '= (Ox/ap) '+ (ilx/f)z)', 

[J,,=- v-'/,V'+'/,F', U12=F,Ip, 
1 1 • a i) 

U,,= UtI +pF,+ 2p" . A=F'ap-F'f);' 

1 1 av 1 av 
F=2VVV, F,=ZVap' F.=2VO;-' 

and V is the potential of the two-center problem. In ac­
cordance with the results of Sec. 3, we choose (3.7) as 
the variables x, y. Taking into account the symmetry 
properties (2.10), we set 

m 4 " 
~ () ._. pZ ~ ( ) ._. x. = .t...J. <p. x y , x' = ff .t...J. <pmH X y . (4.2) 
11=1 R=1 

Substituting Xl' X2 into (4.1) and varying J[lJIl over 
the trial functions qJ (x), we arrive at a system of N = m 
+ n equations of the fype (3.5). This approximation will 
be called the (m, n) approximation. We note that all co­
efficients P(x), Q(x), and R(x) of the system (3.5) can be 
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expressed in the form of finite combinations of elemen­
tary functions. Omitting the explicit formulas for these 
coefficients in view of their cwnbersome nature, we give 
here the results of the calculation. 

In Fig. 2 we have shown values of R r calculated in 
the approximations (m, n) = (1, 0), (2, Or, (1, 1), and (2, 1). 
From comparison of the curves of the (1, 0) and (1, 1) 
approximations it is clear that taking into account the 
two components Xl and X2 of the wave function is ex­
tremely important. At the same time the convergence 
of the expansions (4.2) in powers of y is rather rapid; 
this is indicated by the transition from the (1, 1) ap­
proximation to the (2, 1) approximation. We will limit 
ourselves to the (2, 1) approximation. However, it is 
possible by the same method to further improve the 
values of Rcr' by converting to approximations of higher 
order. 2 ) As in Sec. 3, we can show that Rcr in this case 
will increase: 

if m';;" m, n';;" n, (4.3) 

approaching from below the exact solution. Indeed, in 
the transition from the approximation (m, n) to (m/, n/) 
the class of trial functions (4.2) is expanded, in view of 
which the result of the variational calculation of Rcr is 
exaggerated. Therefore the values obtained here give a 
lower limit for the critical distance in the two-center 
problem. For comparison we have also shown in Fig. 2 
the result of calculation of RcrU:) by the method of 
matching asymptotes [14J -see the dashed curve. 

For Z = 92 the critical distance was calculated also 
by MUller, Rafelski, and Greiner. [llJ They utilized an 
expansion of the wave function in a series in a system of 
basis functions 

1jl",(~, 1]) = (~'-1 )"I'e-(H)/"L,,"( (~-1)/a)P,.( 1]), 

which leads to rapidly converging results in the non­
relativistic two-center problem. However, these func­
tions do not have the correct singularity (2.8) which is 
specific for the relativistic Coulomb problem. This may 
explain the fact that, although in ref. 11 100 terms of the 
series in l/inl were retained, the corresponding result 
(see the point M in Fig. 2) is significantly poorer than 
the (2, 1) approximation, since the exact values of 
R (n lie clearly above the (2, 1) curve. Actually the 
ri;ult of ref. 11 is close to our (1, 0) approximation, in 
which only one trial function is used. This demonstrates 
the advantages of the method of calculation of Her used 
by us, in which the trial functions automatically have the 
necessary singularities. 

5. ALLOWANCE FOR FINITE SIZE OF THE NUCLEI 

Up to this time we have discussed the nuclei as point­
like. We will now estimate the decrease in Rcr on taking 
into account the nuclear radius rN' Since Z < 137 and 
rN « Rcr' the correction for the finite size of the 
nucleus can be taken into account by perturbation theory 
(Since in the field of one nucleus Z the electron does not 
experience a falling to the center). 

Inside the nucleus (0 < r < rN) 

V(r)=-·(~/rN)f(r/rN)' (5.1) 

where the cutoff function f(x) = 1 for cutoff model I and 
f(x) = (3 - x 2)/2 for model n. Although only model II is 
realistic and corresponds to a uniform volume density 
of electric charge of the nucleus, the calculation of ~Her 
is conveniently begun with model L 
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Let tc = 2Zca be the critical charge of the two­
center problem with point nuclei. Assuming that the 
curve tc = tc (R) is known, we will show how to find the 
correction [).tc for finite nuclear size for the condition 
rN «R. Since in perturbation theory t c is a linear 
functional of the charge-distribution density, in a tran­
sition from pointlike nuclei to nuclei charged on the 
surface (model I) the critical charge increases by an 
amount 

" 
~s, = S S, ([R' + rN' -2Rrs cos 8]'/.) sin SdS -2s, (R) 

R+" (5.2) 
1 S 2r' [ R ] =-R [rs,(r)-R~,(R)ldr""-' s/(R)+--\;/'(R) . 
rN 3R 2 

R_l"N 

Converting from tc(R) to the inverse function R = Rcr(t), 
we have 

(5.3) 

Let us turn now from cutoff model I to model II. 
Near the nuclei the wave function of the two-c~nter 
problem has a singularity of the type (rlr2)-a/2-see 
Eq. (2.8). Hence 

. t. 1 
~\;,=cJ dx [--;--f(X) ]x'T, 1=1-~-=[1-(Za)2l'" 

, 
(the constant C is determined by normalization of the 
function l/J). Hence it is easy to find the ratio of [).tc and 
[).Rcr for the two cutoff models: 

~R,.'! L'.~,I! 3 

~R,) = L'.~c' = 3+21 
(5.4) 

The values Zf [).Rcr calculated with these formulas 
for rN = 1.2Al 3 [F] are listed in Table I. The term con­
taining R" in Eq. (5.3) makes a contribution amounting 
to ""'2~ of the first term. The values of Rcr given in 
Table I already include the correction for finite nuclear 
size. 

We will make a final remark about the region of ap­
plicability of perturbation theory in rN' For this purpose 
let us consider a 1s level in a spherical nucleus whose 
energy for rN = 0 is Eo = [1- (Za)2]1/2. Inclusion of the 
cutoff (5.1) increases the energy of this level, which is 
equivalent to decreasing the point charge by an amount 
[).Z: 

L'.Z (\;rN)'T { I } 
--Z=-r(1+2) 1-2'YSf1x\x2Tdx. (5.5) 

1 0 

Perturbatio.n theory assumes [). Z « Z, which leads to 
the condition (trN)2 'Y «1. For rN = 8 F and Z < 100, 
we have (t~)2'Y ~ 0.01, which justifies the use of per­
turbation theory. On the other hand, near Z = 137, where 
1 - Za ~ (-In rNf2, the correction [).Z is comparable 
with Z and perturbation theory in rN ceases to be appli­
cable. 
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I)If V = q/r, then Il.V = -471'ql)(r) and [).V!V - rl)(r) == O. 
2)It is particularly desirable to discuss the (2,2) approximation. We note 

that the simplest approximation (1,0) was discussed in ref. 15, and the 
results of a calculation on the basis of the (2,1) approximation have 
been briefly reported in ref. 12. The numerical solution of the system 
of Eqs. (3.5) was carried out by conversion to a matrix Y(x) of 
logarithmic derivatives: 1/>' = YI/>. The idea behind this method was sug­
gested in ref. 20. 
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