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The operator diagram technique for the analysis of processes in a homogeneous (constant with respect to 
space and time) external electromagnetic field, developed by the authors earlier,Pl is extended to the case 
of charged-particle loops. The contribution of a loop with n-photon lines is represented as an n-fold 
integral of an expression that contains no operators. Explicit representations of the contributions to the 
photon polarization operator of scalar and spinor particles are obtained and analyzed. It is shown that 
particle-pair production by a field can be described simply within the framework of the given approach. 

1. INTRODUCTION 

In an earlier paper [lJ (henceforth cited as I) we for­
mulated an operator diagram technique for the analysis 
of processes in a homogeneous external electromag­
netic field (F /J.II = const), and obtained the mass oper­
ators of scalar and spinor particles, i.e., we consid­
ered diagrams in which the external lines are charged 
particles. In this paper we study another class of dia­
grams, the external lines of which are photons. In Sec. 
2 we present a general representation of an electron 
loop with n photon ends, and in Sec. 3 we obtain an ex­
plicit expression for the contribution of the scalar and 
spinor particles to the polarization operator of the pho­
ton and discuss this expression. In Sec. 4 we describe 
particle pair production by a field (photonless electron 
loops) within the framework of the presented approach. 

2. ELECTRON LOOPS WITH n PHOTONS 

In I we presented an operator form for writing down 
the amplitude of photon scattering by an external field 
(electron loop with two photon lines), expressed in terms 
of the polarization tensor ll/J.II (k l, k2 ) (formulas (1.15)­
(1.17) of I). We can write down analogously an operator 
expression for the tensor II /J.l' .. J.Ln(k l1 ••• , kn), in 
terms of which are expressed the amplitudes for the 
transformation of one number of photons into another 
number (see the figure): T = i(21T) 4 e /J.l ... eJ.Lnll/J.l'" J.Ln' 
These amplitudes describe such processes as the split­
ting of a photon into two photons or the coalescence of 
two photons into one, the scattering of light by light, 
etc. The form assumed by the contribution of the dia­
gram shown in the figure is the same as for free parti­
cles (it is necessary to add to the contribution of this 
diagram also the contribution of the diagrams with all 
the permutations of the photon lines); for spin-1/2 par­
ticles we have 

IT,,_, (k" ... , k.)= _ie_" 8P(0 I IT."......~ .,,-~ _1 -1~ 10), 
" (2,,)' P-IJ-l-m+ie . 

j=1 

(2.1) 

where 

Within the framework of the developed approach, the 
main problem is to calculate the mean value over the 
states x = 0: (0 I •.• 10), which contains in it an aggre­
gate of non-commuting operators P/J.' It is convenient 
to parametrize the electron propagator: 
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_ _ 1 =-i(P-I:_,+m) jasj expUsJ (P-I,_,)'+'/,ecrF-m')}, 
P-[j_,-m+ie 

o (2.2) 

where aF = a/J.IIF II J.L" It will be useful in what follows to 
shift all the exponential factor to the right. We use here 
the relations 

(2.3) 

The first two of these relations were derived in I (see 
(2.9) and (3.4) in that reference), while the third is the 
definition of k/J.(S); it appears if we consider an expres­
sion of the type 

(2.4) 

where k/J. is a c-number. Commutation of a typical pair 
of operators yields, with allowance for (2.3), 
exp {i (P - 1;_1)2 Sj}(P - I;) = [f.> - ~-l - k;y" (Sj)J exp {i (1) - 1j-l}2 s;l 

= [P - 1;-1 - kt (- Sj) Yl"J exp [;Sj(P - 1;-1}'J. (2.5) 

Substituting the representation (2.2) in (2.1) and repeat­
ing in succession the operation (2.5) with allowance for 
(2.3), we obtain 

ie" (IT-' ~ ) II,,,,, ___ ,,, (k" k" . .. , k,,) = (2,,) , (-i)" S ds" 
h=1 (I (2.6) 

X8P{ (ot IT U)-h,_,+mh'j(t,l810)exp [it,,(ecrFl2-m')]}, 
;=1 

where 
" m '" 

t, = L Sm, hm = L,k,"l,(U= L, k,"(-t,)l,· 
1=1 

(2.7) 

e = IT exp[is,(P-',_,)']. 
,-, 

In (2.6), the mean values of the operators which we must 
calculate are aggregates of expressions 
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(2.8) 

together with the quantity 

N(n'=(OleIO). (2.9) 

We consider the operator l ) of the coordinates: 
• 

X(s)=8xe-', 8-' = II exp[ -isj(P-Ij_.)'j. (2.10) 

To find (2.10) it is necessary to calculate the quantity 

X(Sm) =exp[ism (P-lm_I)'jX exp[ -ism(P-lm_.)'j. (2.11) 

Differentiating (2.11) with respect to sm, we obtain, 
taking (2.3) into account, 

dX(s .. ) [P() () 1 -" 'P(P ) --=-2 Sm -lm-. Sm =-2e m -lm-•. 
dSm 

(2.12) 

The solution of this equation with the boundary condition 
X(O) = X is 

(2.13 ) 

where 

(2.14) 

Using in succession expressions of the type (2.13), we 
can calculate Xes) in (2.10): 

n n m-I 

X(s)= .EU(s,,)P(tm-.)- ..E.E U(Sm)k,(tm_.-t,)+X. (2.15) 
m=l 

Transforming this expression, we obtain 

XeS) =UP-K+X, (2.16) 
where 

.-1 

U==U(tn), K==K(s) = ..E U(tn-t,)k,. (2.17) 

We consider now the commutator 

(01 [X,,, [X"" •.. , [x .... , 8j ... llIO>=O, (2.18) 

since XJLk 10) == O. According to the definition (2.10) we 
have the commutator 

[X •. 8j=(X .. -X.(sll8=[-UP+Kj,e. (2.19) 

Since 

[X" P.j=-ig,., (2.20) 

all the commutators in (2.18) can be calculated directly. 
At m = 1 we have 

(01 (-UP+K)810>=0, (2.21 ) 

and at m = 2 

(01 LIT (-P+Q)".-(-i)' LIT (U-')'~'j]810>=O, (2.25) 

where we have for the vector Q = U-1K. It follows there­
fore that the mean values (01 ... e 10) which contain in 
them the operators PJL can be expressed in terms of the 
mean values of the operator e. In particular, for l = 1 
we have 

N::' = (01 p"eIO>=Q,,(O 181 0> =Q"N,nl, 

N,~~~= (0IP,,P,,810> = [Q"Q,,-i (U-I) ,;"j N(n,. 
(2.26) 

We present the convolution of the two operators P;\l and 
P;\2: 

,--, T 

P,,P,,=-i (U-') ','" (2.27) 

We can now formulate a statement that is analogous in a 
certain sense to the Wick theorem. 

The mean value N~:JL2' • • JLm (2.8) is a sum of terms 
in which the operators p;\ are replaced by Q;\ with all 
the possible convolutions (2.27): 

(2.28) 

For m = 1 and m = 2 this theorem is obvious (see (2.26)). 
For arbitrary m, the theorem can be proved without dif­
ficulty by starting from (2.25) and uSing mathematical 
induction. 

The result (2.28) reduces to calculation of expres­
sions (2.8) to the problem of finding N<ll) = (Ole 10), to 
which we now proceed. We introduce the quantity 
N(l1)(a), in which all Sj - aSj and N ffi ) == N(l1)(1), and 
differentiate this quantity with respect to a: . 

dN(n' (a}/da=i(OI ..E sm(Pm-Im- l) '8 (a) 10), (2.29) 
m=l 

where 

8(a}= II exp{iasj(P-lj_I}'}, 
j=l 

and the operator 

Pm-Im-,=P(atm-,)-k,(a(tm-,-t,))-k,(a(tm_,-t,))- ... -km_. 

(2.30) 
has appeared when the exponential factors were shifted 
to the right in accordance with the relations (2.3)-(2.5). 
Taking the same relations into account, we have 

m-l "'-I 

(P",-lm_,}'=P'-2P .L,k,(-at,)+ ..Ek,' 

m-' (2.31 ) 

+2 ..E kpk, (atp-at,) ""P'-2Plm+M .. ,. 
.>, 

(01 [(-uP+K)",~-UP+K).,+iU,,,,,1810>=0. (2.22) Substituting this expression into (2.29) we obtain 
Continuing these operations, we easily verify that for 
odd m we get the equation 

21-i 

(01 II (-UP+K},,810>~0, (2.23) 

and for even m 

(01 LIT (--UP+K)" - (_i}l .E IT U •.• j ] 810)=0, (2.24) 
11.=1 i<i 

where the summation is carried out over all the commu­
tations i < j. The last two equations can be transformed 

dN(n' (a) /da=i(O 1 (P'tn-2PI+M) 8 (a) 10). (2.32) 

Here 
71 71-1 

1= 1:8ml .. = l:kl(-at,} (tn-t,) , M= ..EsmMm. (2.33) 

The terms with p2 and P which enter in the right-hand 
side, can be reduced with the aid of (2.26) to expres­
sions that do not contain an operator in front of e(a): 

dN(n) (a) /dcx=iB( a) N(') (a), (2.34) 

into where 

(01 [Ii (-P+Q},,] 810)=0, 
1<=1 

B(a} =tnQ' (a) -2Q(a}I+M-itn Sp[U-' (atn) j. (2.35) 

Solving the differential equation (2.34), we have 
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NCn) (a)=C' exp [ if B(a)da]. (2.36) 

The integral of the last term (2.35) can be taken in ex­
plicit form and we then obtain 

NC'" (a) =C{det[ -'/,U(at,,) )}-'" exp [i J B(a)da ], 
o 

(2.37) 

where 

B(a) =t"Q'(a) -2Q(a)I+M. (2.38) 

The constant C can be obtained for the limiting case 
F JlII - 0 and 0' - O. As 0' - 0, formula (2.37) yields 

NC'" (a) =C/a't,,'. (2.39) 

On the other hand, as FJlII - 0 we can go over in (2.9) 
(where Sj - Q1Sj) to the momentum representation and 
use the completeness theorem 

<xiR(p) ix>= S d"p <xiR(p) ip><pix>= S d'pR(p), (2.40) 

where R is an arbitrary operator. Then formula (2.9) 
reduces as QI - 0 to an integral of the type of (2.31) of 
I. As a result we have 

C=-i,.'. (2.41) 

Substituting this expression in (2.37) and putting 0' = 1, 
we obtain the sought quantity N(Il) = N(Il) (1). The factor 
in front of the exponential in (2.37) is universal and does 
not depend on the number of the external photon lines. 
Its explicit form can be determined with the aid of the 
procedure described in I (see the Appendix there). It 
must be borne in mind that det [- U (tn)] has an infinite 
number of zeros, so that it is necessary to see to it that 
the branches of the pre-exponential factor are correctly 
chosen. The final result takes the form 

(2.42) 

where E, H = [(3'2 + ~ 2)1/2 ± 3']1/2; 3',and ~ are field in­
variants: 

e'EH 
C1J(t)= ---

sin(leIHt)sh(ieIEt) . 
(2.43) 

Knowing the explicit form of N(Il) and substituting it in 
(2.28), we obtain the aggregate of the expression 
N~?)II II, the use of which yields the matrix element 

""1""2" ·,...m 
(2.6), which is an n-fold integral (with respect to Sl' S2' 

... ,sn) that contains no operators. From the point of 
view of the y-matrix structure, it takes the form (with 
(2.3) taken into account) 

(2.44) 

When calculating the traces of expressions of this type, 
it is convenient to use the formula (see the Appendix) 

l'e;,aF'''=i1'[e,F. sin (eF's) 1)'+ reF. cos (eF"sh )., 

F:~ =e.""F'" /2, 
(2.45) 

which reduces the problem to a determination of the 
traces of an ordinary aggregate of y matrices. 

The solution of the considered problem in scalar 
electrodynamics is perfectly analogous, since the prob­
lem reduces there to a consideration of expressions 
(2.8) and (2.9). 

The obtained formulas enable us to obtain the ex­
plicit form of expressions for any given n. The case n 
= 2 (polarization operator) will be considered in detail 
in the next section. We therefore consider here, by way 
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of illustration, the quantity N(3) [Eq. (2.42)] for n = 3 
(splitting of a photon in an external field). In this case 
we have 

Q(a) =U-' (at,) rU(at,-at,) k,+U(at,-at,) k,), 

1= (t,-t,) e"F.t·k,+ (t,-t,) e"P"'k" (2.46) 
M=2 (t,-t,)k,e-"F'C,,-t,) k,~ (t,,-t.) k.'+ (t,-t,) k,'. 

The matrix expressions contained here can be expanded 
with the aid of the technique described in the Appendix 
of I, as a result of which we obtain the explicit form of 
B(Q1) [Eq. (2.38)]. The integral with respect to 0', which 
is of interest to us, can then be evaluated directly2) 

, 1 I B (a) da = 2eE sh (eEt,) {(k,C'k,) [eh (eEt,) -ch (eE (I,-2t,» ) 

+ (k,C'k,) [ch (eEt,)-ch (eE(t,-2t,) »)+ (k,C'k,) [ch(eEt,) 

+cb (eE(2t,-21,-t,» -eh (eE(t,-2t,» -eh (eE(tJ-2t,) 1 

+ (k,Ck,) [sit (eEt,) +sh (eE (2t,-2t,-t,» +sb (eE (t,-2t,» 

-sh(eE(t,-2t,» ]} 
+ terms in which E-iH, C ...... -iB. 

The expression obtained for the phase in (2.42) 
agrees with the expressions obtained in particular 
cases by Adler [2] for E = 0 and k~ = k~ = k~ = 0 and by 
Papanyan and Ritus [3] for F = ~ = O. 

3. POLARIZATION OPERATOR 

If n = 2, then the quantity n Jl1Jl2 is a polarization op-
erator. In this case 

Q ( ~) __ U (at,-at,) 1,. ( ) 
~ " 1= (t,-t,)e"'""k, M= (t,-t,)k' 3.1 

U(at,) , 

where k == k1. Substituting these expressions in (2.38) 
and (2.42) we obtain 

(3.2) 

where <I>(s) is given by formula (2.43), 
1 kB'k kC'k 

11: =2' [di~' +---;e~' ]-sm" 
_ cos(~Hs)-cos(eHvs) ch(eEs)-eh(eEvs) 

~,- sin (e/ls) , ~,= sh(eEs) . 

(3.3) 

We have changed over here to the variables 
2t,-t, s,-s, 

v=--=--. 
t2 Sl+SZ 

(3.4) 

Knowing N(2), we obtain from (2.26) the values of Nll) 
and N~~Jl2' where QJl == QJl(l)). These expressions Jan 
be used to describe both electron loops and scalar­
particle loops. 

Let us calculate the contributions of the scalar par­
biels to the polarization operator of the photon. It is 
necessary here to consider two diagrams (see Fig. 2 
of I). The contribution of the first will be represented 
in the form 

• 2 "'" ao 

n~:~,=_(le ),S ds,S ds,<Oi (2P •• -k •. ) 
2,. 0 0 (3.5) 

X(2 (e-"Fo,p) ,,,-k.,)e'o.P' exp[is, (P-k) ')IO)exp[ -i(s,+s,) m'l, 

where a parametrization of the type (2.2) was carried out 
and relations (2.3) was used. To find the explicit form of 
n Jl1Jl it is necessary to use the expressions given above 
for N~2) N(2) and N(2) The calculation then reduces , Jl' Jl1Jl2' 
to a number of algebraic operations. The result is 

n,. =-=:... 'dv f dss(}J(s; {(Pk).(Pk).-(Ak) .. (Ak). +~ iJp .. }et -, 

R'TT _I ~ S av 
(3.6) 
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where we have changed over to the variables s and v 
[Eq. (3.4)], lJ! is given by formula (3.3), and we have in­
troduced the tensors 

P.,=C.,'~,-B.,'~" J-,,=C,~,-B.,~,;, 
(3.7) 

sh(eEvs) • sin (eHvs) 
~,= sh(eEs) ' ~,= sin(eHs) . 

Integrating the last term with respect to v by parts, we 
obtain 

1 ~ 

n~:' =~S dv J dss!lJ(s) {(pk).(pk),-p.,(kpk)-(Ak).(M),Je" 
~1t 

-1 0 (3.8) 
ia J~ . +-g., ds!lJ(s)e-'''o'. 
2n 0 

The contribution of the second diagram n ~J [(1.17) of I] 
is the mean value of the propagator. We can calculate it 
by using formula (3.2) with v = 1 (or as k - 0): 

(3.9) 

The sum of (3.8) and (3.9) 

(3.10) 

gives the total contribution of the scalar particles to the 
polarization operator of the photon. In this sum, the 
terms containing ig/,LlJ cancel each other, after which we 
are left with a gauge-invariant expression (the first 
term of (3.8)). The polarization operator n M~ should be 
renormalized. To this end, we represent it in the form 

n~~'= [1I~:' -n,'.;" (F=O) 1 +n~:' (F=O). (3.11 ) 

The first term vanishes at a field F = 0, while the second 
term (which does not depend on the field) should be re­
normalized in standard fashion. As a result we have a 
final expression for the renormalized polarization op­
erator: 

1 ~ 

- (')R a J J II,,, =- dv dss!lJ(s) [(pk),(pk), 
8n _, " (3.12) 

-p,,, (kpk) - (J-k),(Ak),1e"+ (g" k'-k,k,) Q'o" 

where 
ex; i 00 ds k2. 

Q'o, = 8n J dv ~,o,{ S 7exp{ -is[ m' - 4(1-v') ]} 
-, 0 

(3.13) 
k' 

+In[ 1- 4m,,(1-v')]}, 1;"'=v'. 

The obtained expression (3.12) enables us to analyze 
a large number of problems. The imaginary part of the 
polarization operator determines the probability of the 
production of a pair of scalar particles by a photon hav­
ing a definite polarization: 

w,O,= ~ e'e,'Im n(') (k) 
ko IlV , 

(3.14) 

where ko is the photon frequency. 

Substituting nM~R (3.12) in the Dyson eqlIation 
(k2 - n)D = 1, we obtain the propagator of the photon 
in the external field. The eigenvalues KiO) correspond­
ing to the eigenvectors b~i;1l of the tensor (3.12) play 
here the role of the square of the photon mass in the 
field; 

(3.15 ) 

Solving this equationS), we obtain four mutually orthogo­
nal vectors b~i~ll: 

b~:~.= (C"k) • (kiN) - (B'k) • (kC'k) , 
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~ 
b(~~~= (Bk). + .--(kB'k) ~J1') (Ck)., 

A'" 
(3.16) 

For the eigenvalues Kr) we have 

x~') =(~J'''+~I:') )k', %,(')=x,<')-A,(')-A~·) 12A'"', 
(3.17) 

In formulas (3.16) and (3.17) we have introduced the no­
tation 

A)" = (kB'k) sl1') , A,(') = (kC<k) Sl!O) , 

A,"'=4.(kCk) (kB'k) (Q,('»', 

(3.18) 

where we used the quantities tk introduced in (3.3), (3.7), 
and (3.13). 

The obtained expressions enable us to represent the 
polarization operator in diagonal form: 

(3.19) 

which is convenient for applications. Using the repre­
sentation (3.19), we can write the photon Green's func­
tion in the field in the form 

(3.20) 

so that the properties of the functions Kr) determine the 
character of the propagation of the electromagnetic 
waves 4 ) (with definite polarization) in the external field. 

The analytic properties of the functions KfO) are de­
termined by the specifics of the interaction of the photon 
with the charged particles in the field, and differ signif­
icantly from the properties of the same functions in vac­
uum. In particular, they represent the spectrum of the 
states of a scalar particle in a field. Let us illustrate 
the last circumstance using as an example the function 
K~O) in a purely magnetic field (E = 0) 

1 ~ . 

x;O)=Q,o'k'+~m' Jdv J~{-rv Sl~ vx 
2n; ~1 1I Slnx sin x 

(3.21) 

+q [( sin vx ) '+ ( cos x:-cos vx ) ']} e""; 
Sln:c Slnx 

here 
1 [ ( cos x-cos vx ) 2 ] 

l/On=-;:;- 2q ---;~ -x(1-r(l-v» , (3.22) 

H kC'k k,'-k,' kB'k kJ.' 
I-'=H,' r=-4m'=~' q= 4m' = 4m' x=leIHs, 

(the field H is directed along the 3 axis, and k 1 = k~ + k~). 

We shall show that the function KiO) has Singularities 
at the points 

( te") (I) +te'" (t') )' 1 
r= 2 ='2[1+(1+1'+1)1-' 

+{ [1 + (1+1' +1) 1-'1'- (/-1') '1-"l"'J. 
(3.23) 

where (O)(l) = ,; 1 + (2l + 1)1l ; l, l' = 0, 1, .. , corre­
sponding to the quantum character of the transverse mo-
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tion of the scalar particles in the field. When consider­
ing this question, we can leave out of K~O) the terms that 
do not depend on the field, and bear in mind the fact that 
the singularities are produced by the region of large 
values of the variable x. We confine ourselves to calcu­
lation of the term 

2czn m' f,dV ISi~xX qexp{i [u(cosx-cosvx)- : (l-rCi-v'» ]}, 

(3.24) 

where. u = 2q/ /l sin x. Calculation of the remaining terms 
(as well as, incidentally, of other functions K~O») is analo­
gous. We use the expansion (see [5], p. 987) 

(3.25) 

where In(u) is a Bessel function, and take the integral 
with respect to v, retaining the highest-order terms in 
the expansion in l/x: 

S de expf ix (nv - ~ I")} "'C"" V nJ' exp (iXn'!.:.) (3.26) 
_t \. ,:.X rx' 4r 

this formula is valid if I n/l/2r I < 1. Substituting it in 
(3.24), we get 

a , '. (nf.l. )';' n ~~ (-i)"(-1)",,+1) - m v e- 1:1i"q _ , 

2rr r..... fin 
1=10 "=-"< (3.27) 

's'!' dx { [ n'f.I. 1-r ]} X .--.-exp iu cos x+i(ln+x) ---- l,,(u), 
_:l/.!Slll X 4r J..t 

where we took into account the fact that Xo » 1 (Zo » 1), 
subdivided the integral into a sum of integrals, and 
made the change of variable x - x + lrr. At the point 

n'" 1-r .. 
---=m (mlsanmteger) (3.28) 

4,. fJ. 

the sum over I in (3.27) diverges if n + m is an odd num­
ber. Equation (3.28) is satisfied at points where 

r=rm,,='/,{I+mJ'+[ (I+m~,)2_ (nJ')'] "~'}. (3.29) 

in the vicinity of these pOints r = rmn + 15 we can sum 
over I in (3.27) and retain the higher-order terms: 

'(1 (-1) ",,+1) exp {Un [n'f.I. _ (1-r) ]} 
~ y~ ~ f.I. 
I=I~ 

Substituting this expansion in (3.27), we obtain 

"'::'leIHe-'··'-·)!'q ~ (-i)"{I)'[ (HmJ')'- (nf.l.)'])-'J.· 
?n ~ 

(3.30) 

(3.31 ) 

Proceeding analogously, we obtain an expression for the 
entire quantity K ~O). In the case n = 0 and m = 1 we have 

",") = -1 exp --- (3.32) iczkJ.'lelH [ko'-k" ]-". ( kJ.') 
4m'(1+f.I.) 4m'(1+~') 21elH . 

It is easy to see that the condition (3.29) coincides with 
the condition (3.23) if we put m = I + l' + 1, n = 1- I'), 
because m and n have opposite parity. 

We have thus shown that at the points (3.23) k~ = k~ 
+ m 2 (0"(0) (l) + 0"(0) (l,))2 the function K~O) has a root sin­
gularity. The reason why this singularity is not a pole 
but a branch point is that motion along the field is not 
quantized. The appearance of the root singularity can 
be understood from an analysis of the imaginary part 
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for K~O), which in accordance with (3.14) is connected 
with the probability of the production of a pair of par­
ticles by a photon of even polarization. As is well known 
(see [8]), for spinor particles this probability has a root 
Singularity at the pOints (3.23), the origin of which is 
due to the properties of the phase volume in the given 
order of perturbation theory (infiniteSimally narrow 
levelsS »). 

The contribution of the spinor particles to the polari­
zation operator of the photon can be obtained from the 
general formulas 6 ) of Sec. 2, in which it is necessary to 
substitute the explicit form of the quantities (3.1)-(3.4). 
The analysiS is perfectly analogous to that presented 
above for scalar particles (the new algebraic detail, 
namely the calculation of the traces of the y matrices, 
is carried out without difficulty with the aid of formu­
las (2.3) and (2.45); see the appendix). The result can 
be finally represented in the form (3.19), where 

Here 

(3.33) 
xt':J.) =xt'~) -At'" -At") 12A<'fl)t 

('h) 
X. =0. 

At'·) =4 (Q"I,.» '(kB'k) (kC'k) , 

A,"I')=Q,"") (kB'k) , A,"Io)=Q!'0 (kC'k). (3.34) 

.\1",)=:..;'10)+,\;'10)+[ (A:'1o) +,\;'0 )'+A1'") p. 

The function n(l/2) is given by formula (3.13), where it 
is necessary to make the substitution t(O) - t o /2) = 

2 (1 - v2); the functions n~l/2) are given by formula (3.18), 
in which the following quantities must be substituted: 

w~'1o) =2l cos (eHvs)ch (eEvs) -ctg(eHs) cth (eEs) sin (eHvs) sh (eEvs) ], 

,'10) () cos(eHs)-cos(eHvs) ,'J.) 
W'o =-4 eh eEs w, 

- sin' (eHs) 

,'I,) ) ch(eHs)-ch(eEvs) ,'I.) 

'"' =4cos(e[{s sh'(eEs) -'U,. 
",:,;,)=:! [ (cos(eHs)cos(~Hvs)-l) (ch (eEs)ch (eEvs)-1) 

sin (eHs) sh (eEs) 

+sh(eEvs) sin (eHvs) ]. 

(3.35) 

This result coincides with [7], but the notation is differ­
ent here. 

The functions K (1/2) (in a pure magnetic field E = 0) 
also have root singularities due to the properties of the 
phase volume at the pOint (3.29). The study of these sin­
gularities is perfectly analogous to that carried out 
above. The only difference lies in the fact that n + m is 
even. In the calculation this difference arises because 
when the integral with respect to x is replaced by a sum 
of integrals (cf. (3.27)) we obtain (_l)ln in place of the 
factor (-1)I(n+1). The reason is that the condition (cf. 
(3.23)) 

r=([ffI'h)(l)~[ff"M(l'»)' (3.36) 

contains 0"(/2) (n = 11 + 21/l • We present by way of ex­
ample the function K~1/2) (near rmn): 

X:'h) =-c:..leIHe-'··(-O)!' '(1 (-i)"{o'l (1+mJ') '-(nf.l.) ']l-'I. 
rt ~ 

(3.37) 
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In the particular case n = m = 0 (rmn = 1) we have (for 
Ii > 0) 

('I,) 2ialelHm (k,/ ) 
x, = - (ko'-k,'-4m') '. exp -~H (3.38) 

which agrees, with allowance for (3.14), with the results 
of Klepikov [6] • 

We note in conclusion that the transition to the par­
ticular case of a crossed field E - 0, H - 0 (the quasi­
classical approximation) was demonstrated in detail in I 
with the mass operator of a scalar particle as an exam­
ple. The transition is analogous for the polarization op­
erator, and the results coincide with the known ones. 
(see, e.g., [9]). 

4. VACUUM LOOPS 

So far we have considered electron loops with n '* 0, 
connected with processes in which there are real pho­
tons in the initial and final states. There is, however, a 
class of diagrams with n = 0, which determine the am­
plitude of the transition of the vacuum into a vacuum, 
i.e., connected with the very definition of the vacuum. 
In the presence of an external field, these diagrams 
describe processes that are in principle observable, 
for example pair production by an external electric 
field. It is therefore advantageous to discuss this group 
of questions within the framework of the developed ap­
proach7). 

We consider, for the sake of argument, vacuum elec­
tron loops (loops of scalar particles are calculated in 
perfect analogy). Let V n ) be the amplitude describing 
a closed loop of free particles interacting with an ex­
ternal field n times. The explicit form of the amplitude 
in the coordinate representation was already discussed 
by Feynman [10]: 

[,<n) =~SS ... Sd'x,d'x, ... d'xn Sp[G(x"x,) 
n (2n)' 

(4.1 ) 
XAF (x,)G(x" x,)A F (x,). .. G (x n -" Xn)AF (xn) G (x" x.)AP (x,) l. 

It is convenient to use the following representation of G: 

G(Xi'Xj)=<Xil_p~mIXj), p"=iD,, 

(cf. (1.12) of I). Using the self-adjoint character of the 
operator P/l and the completeness of the system of 
states 1 xi), we have L (n in a form convenient for 
analysis: 

L(n) .=~ S d'x Sp (x I (, 1 . eAF) nIx). (4.2) 
n(2n)' p-m+le 

The contribution of the electron loop with any number of 
interactions with an external field L = L) L(O) contains 

n 
the sum 

, -
~ -~ (~) "=-In( 1-~) =-hi(~-~(p-m»). (4.3) 
'":'" n p-m+le p-m+le p-m 

It is convenient to represent the logarithm of the last op­
erator expression in the form of a Frullani integral: 

( P-m ) S~ ds . ~ ~ In -_- =- - {exp[is(P-m+ie) l-exp[is(p-m+ie) ]J. (4.4) 
p-m 0 s 

The last term of the expression in the right-hand side 
corresponds to subtraction at the point F = O. We shall 
not write it out for the time being, and take it into ac­
count in the final expression. Thus, the problem has 
been reduced to a determination of the quantity 
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L= S d'xP, (4.5) 

where 

i S ds ~ p=-( )' Sp -(Olexp[is(P-m+ie)] 10). 2;( c:-
o 

(4.6) 

We have used here the translational invariance in a ho­
mogeneous field (cf. (1.15), I). If we take into account 
the contribution of two, three, etc. electron loops, then 
the total amplitude of the vacuum-vacuum transition is 
eiL.[lO] . 

The fact that the trace of an odd number of y matrices 
vanishes makes it possible to carry out the transforma-

. tion 

[ p-m] 1 [i"-m' ] Sp In -_- - - Sp In -_.-- , 
p-m 2 p"-m' 

(4.7) 

which yields a representation that is more convenient 
for the calculation 

00 

I • ds . 
2=-"-Spj -(Ole;(P'--')"O) (4.8) 

2 (2n)' 0 s ' . 

The mean value in (4.8) was calculated above (see (2.42)), 
where it is necessary to put ki = 0 and Pn = s; then B(a) 
= 0, i.e., 

Sp(O 1 eiP', 1 0)=(01 elF" 1 O)Sp e',"P,I'=-4n'i<l> (s) cos (eHs)ch (eEs) 

=-4n'ie'EHctg (ells) cth (eEs). (4.9) 

When substituting (4.9) in (4.8) it is necessary to sub­
tract the first two terms of the expansion of the expres­
sion (4.9) as E, H - 0; 

(4.10) 

The first of them corresponds to the subtraction term as 
F - 0 in (4.4). The second appears in the renormaliza­
tion of the charge (and in the associated change of the 
scale of the fields)[S]. As a result we have 

(4.11 ) 

.1 s'e'Ell ctg(eIIs)cth(eEs)-l- s:e2 (E'-II') ]. 

A similar analysis for particles with zero spin yields 

I ds. [e'S'EH s'e' ] 2,0,= - ---- S - e-",m'-i.) ------ 1 -\- -(b"-H') . 
Ith' 0 s·, sin(eHs)sh(eEs) 6 

(4.12) 
The functions 2'(0) and 2'(1/2) are the effective Lagrang­
ians (corrections to the Lagrangian of the electromag­
netic field as a result of the polarization of the vacuum). 
The result (4.11) was obtained by Heisenberg and 
Euler [11] with the aid of a different approach and by 
Schwinger [S], who also calculated (4.12) starting with a 
different initial formulation. In accordance with the 
meaning of the function 2', the probability of pair pro­
duction in a unit 4-volume is 2 1m 2'. The last quantity 
can be easily calculated by rotating the contour of inte­
gration in (4.11) in (4.12) through -1T/2 and evaluating 
the integral with the aid of residue theory: 

.V"")~2 1m p"", = -- - cth __ e-nnm'I,B e'EH ~ 1 ( nnH ) 
4n' n E 

(4.13) 

and 

(4.14) 

The authors are grateful to V. S. Fadin for useful dis­
cussions. 
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APPENDIX 

Let us derive formula (2.45). To this end we rewrite 
its left-hand side in the form 

(A.1 ) 

where 

We have used here relation (2.3). Differentiating mV(s) 
with respect to s, we obtain the equation 

dm'(s)lds=ie1'(F'),'m'(s) (A.2) 

with the obvious initial condition mV(O) = yV. The solu­
tion of (A.2) takes the form 

m'(s) = (el,,,,,,..,y)'. (A.3) 

It can be rewritten also as 

m'(s) =i1'[sin (ers) 1]'+ [cos (ers) 1]'. (A.4) 

Substituting (A.4) in (A.1), we obtain (2.45). 

We calculate also one of the traces which appear in 
the analysis of the polarization operator of spinor parti­
cles: 

n'"= ! Sp(1'1"e"OF.;,) = ~ Sph'(e'F'),"m'(s)]. (A.5) 

Substituting here the expression (A.4) for m.>t(s), we get 

1 
n'"= 4SP{Y' (e,F'):[i1' (sin (eF"s) 1) , 

+ (cos (ers) 1)' l} = (e,F')8cos (ers) ),'. 
(A.6) 

I)We use matrix notation. 
2)Here and below we use the tensors Band C introduced in I (see (A.3) 

and (A.S». 
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3)It is convenient to use an expansion of bfgk in tenns of four mutually 
orthogonal vectors: (C2k)I!' (Ck)I!' (B2k)I!' (Bk)I!' 

4)For the case of particles with spin Y2, this question was discussed by 
Shabad [4J. 

5)When the finite level widths are taken into account, the divergence of 
these points should vanish. 

6)This problem was considered by Batalin and Shabad [7J, who used the 
explicit fonn obtained by Schwinger [8] for the Green's function of an 
electron in a field. 

7)A different treatment is contained in [8J. 
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