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A detailed analysis of the properties of gravitational synchrotron radiation (GSR) is given for a particle 
moving along an unstable circular geodesic trajectory in a Kerr field. Formulas are derived for the spectral­
angular, spectral, and angular distributions of the intensity of GSR for various polarization states. The 
effect of rotation of the polarization plane of a gravitational wave propagating through a Kerr field is 
discussed. The differences in the properties of GSR for sources moving along geodesic and nongeodesic 
trajectories are discussed. 

The problem of emission of gravitational waves in 
the general theory of relativity (GRT) has been dis­
cussed in sufficient detail in a number of original ar­
ticles and monographs. However, in spite of the fact 
that the majority of theorists are confident that gravi­
tational waves exist, and some of them have investi­
gated in detail a number of possible sources of gravita­
tional radiation[l-4], there is so far no experimental 
verification of the theory. The difficulties of the experi­
ment are related to the smallness of the gravitational 
coupling constant that enters in the intensity of gravita­
tional radiation, and so far there is no satisfactory mo­
del of a source of gravitational waves for which the 
intensity would be large enough to be detected. The 
last remark applies in particular to possible laboratory 
sources, therefore the problem of detection of gravita­
tional waves at present is closely related to an inves­
tigation of possible astrophysical processes, in which, 
as is presently accepted, one can expect a noticeable 
yield of gravitational radiation. The interest in cosmic 
sources has increased in recent years in connection 
with the experiments of Weber[5], and although the ques­
tion of what is in fact being recorded by Weber's an­
tennas remains unclear at the present moment, it seems 
useful to elucidate the properties of gravitational radi­
ation from one of the possible cosmic sources. 

According to the results of GRT (cf. e.g., [6]), nature 
admits the existence of so-called "black holes." Par­
ticles entering the region of strong gravitational fields 
surrounding these holes with relativistic energies and 
definite angular momentum can be captured into an un­
stable circular orbit. While moving on this orbit these 
particles must emit radiation of the synchrotron type [7]. 

Strictly spealdng, the radiation emitted by such particles 
does not correspond exactly to synchrotron radiation in 
flat space (cf., e.g., [8]). It is obvious that the stresses 
of the proper gravitational field of the particle also con­
tribute to the gravitational radiation in the case in ques- _ 
tion. Such a model, considered by Misner et alYl for a 
scalar source and later by Breuer et alY] for electro­
magnetic and tensor sources in a Schwarzschild metriC, 
exhibits two essential characteristics: 

1) the radiation is concentrated in the equatorial plane 
with an opening angle 119 ~ m- 1/2 (m» 1), 

2) the radiation is emitted on high harmonics of the 
fundamental frequency wp: w = mwp. 

It is however quite likely that the black holes have a 
proper angular momentum and the field produced around 
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them is described by the Kerr metric[91. A particle ro­
tating around a Kerr black hole may approach the event 
horizon (the surface of one-way valve) much closer and 
consequently, if it moves along stable orbits (nonsyn­
chrotron model), it can emit energy much more effi­
ciently than in a Schwarzschild metricll • In addition, the 
rotation energy of the black hole can, under certain cir­
cumstances, be transmitted to the multipole waves [11]. 

However, in the same manner as in the Schwarzschild 
field, the gravitational synchrotron radiation from par­
ticles in a Kerr field can be emitted only for motion 
along unstable orbits. 

In the sequel we shall abbreviate the long term "gra­
vitational synchrotron radiation" by GSR. By GSR we 
mean the radiation emitted by particles moving along 
geodesic trajectories. We shall consider the GSR from 
a particle revolving in the equatorial plane of a Kerr 
field. The metric is chosen in terms of the coordinates 
t, r, 9, cp (CL[9]) in units G = c = 1 (G is the gravita­
tional constant, c the velOCity oflight). The parameters 
of the particle and of the central body are the following: 

r.=rO (1+.1.) , .1.«1 

(rp is the orbit radius), E is the total energy in units 
of the particle mass, Ep = dcp/dt is the coordinate angu­
lar velocity of the partIcle on a Circle of radius rp ' Eo 
is the velocity on a null-geodesic, ro is the radius of 
the null-geodesic, M is the mass of the central body, 
J = aM is its angular momentum and a is a parameter. 
We use the notations: 

Tp To eo ell a 
Xp='M' xO=M' (iJo=M' (iJ'=M' a=M' 

i.e., all quantities are measured in terms of the mass of 
the central body. We consider so-called direct circular 
particle orbits, on which the angular momenta of the 
particle- and of the central body have the same sign. 
The final formulas are valid also for the other case, if 
one substitutes the appropriate values of the parame­
ters xo, woo 

The calculations are carried out by means of the 
Newman-Penrose formalism[12] (cf. alsO[13]). In order 
to describe the gravitational field in this formalism the 
ten components of the Weyl tensor are replaced by five 
complex functions, two of which yield the "radiation 
parts" of the wave field 

where Ca{:tyo is the Weyl tensor lJ.l, nJ.l, mJ.l, m*J.l is 
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an isotropic tetrad[l3]; JL, a, (3, Y, (j = 0,1,2,3. These 
components express the energy density at spatial infin­
ity. For waves of the type 1/1 ~ e-iwt 

( d'E) = lim ~ hI',!', 
dt dQ in ,_~ 64nCJr (1) 

d'E r' 
(-) =!im-!1jl.!'. 

dt dO aul T~OO 4nCJ)~ 
(2) 

Equation (1) yields the energy flux of the waves conver­
ging to the event horizon ~or' and (2) yields the diver­
ging waves. 

Inhomogeneous wave equations for 1/10 and 1/14 have 
been written out explicitly in the paper of Teukolsky[13]. 
A complete separation of variables is possible only for 
the component 1/10, so that there remains the problem of 
reconstructing the field 1/14 in terms of the solution 
1/10. The complete equation for 1/10 has the form 

(3) 

where ~l = r2 + a2cos20 and D and T are defined in[l3]. 
The solution (3) will be sought in the form 

~ 

1jl,= ~ ~ (OOpI2n)'hexp(-imOOpt+imq»R,m(r).Sm'(8). (4) 
l;;;;tm. m=-oo 

After substituting (4) into (3) we obtain the following 
equations for the determination of the functions RZm 
and ssfn: 

R" (x)+(s+1) 2(x-1) R'(x) 
ti 

+~{ Uo(x)+ ! (U,(x)+iU,(x» }R(x)=(lJ(xo), 

1 d { m' -:-e-do (sin 8 .Sm') + A +m'a'ooo' cos' 8+s - -.-,- - 2aOOom cos 8 
sm " Sill 8 

2smcos8 2 '8} S '-0 
- sin' 8 - s ctg ,m - • 

(5 ) 

(6) 

Equations (5) and (6) can be used for the description of 
the scalar, electromagnetic, and gravitational radiation 
at s = 0, 1,2, respectively. It is clear that Eqs. (8) and 
(9) below, which determine the function ~(xo), must be 
modified for the analysis of scalar and electromagnetic 
radiation. 

In the above equations we have set wp = wo, which is 
valid for ultrarelativistic particles moving on circular 
orbits. Here 

Uo (x) =oo,'x(x+2xo) (x-x+) (x-x_), 

U, (x) =- [2 (I-I m I) +1] (l-'I,a'ooo') ti(x), 

U, (x) =2sooo (x-xo) [x'- (3-xo) x+'1 ,Xo (3-xo) ]; 

OOo=2Ix;" (3+xo). ti(x)=x'-2x+a'. 

and x+ and x- are the turning points for the radiation, 
related to the particle energy by: 

x±=xo( 1±1\). 1\= (Xo-1)12 (3xo) 'hE. 

(7) 

The right-hand side of (5), for the case of motion of 
the particle along circular geodesic relativistic orbits, 
can be transformed after cumbersome calculations to 
the form 

(lJ(xo)=-16:'t E 1 .. {al\(x-xo)+bl\'(x-x,)+c,lI" (x-x,)}: 
M (3+ xo) (xo-l)' (8) 
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a=,S m'" (nI2) -i(x.+l) x. -''',Sm'' (nI2) 
-2 ,Sm'(nI2). 

b=-ix:' (x.-l) ,Sm" (n!2)-'I,(x,'-1) ,Sm' (nI2), 

c,='I.x.(x.-l)' ,sm'(nI2). 

From the asymptotic behavior of (5) it follows that 
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the solution corresponding to the real part of ~(xo) des­
cribes the polarization of the gravitational wave in the 
"direction" (eO' ee -ecp' ecp)2- 1I2 (the a-component) 
and to the imaginary part corresponds (ee' ee+ecp.ee)2-l/ 2 

(the IT-component). Here eqJ and ee are the unit vectors of 
a spherical coordinate system. The solutio:J. of Eq. (5) 
can be written in the form 

R(x) =i1-(.+ll/,p(X); (10) 

p± (x) ~ro.-'h exp (-imrooX)x~' exp ['FsC(x,)], x=>1, (11) 

p+(x)=D_._,(-iz) p-(x)=D.(z) (x-x,). (12) 

Here 
z=eift/' • 2 (2moo,3'I,) 'I, (x-x,) I (x.-l), 

v=i{mlm,+[2 (l-I m I) +1] It} -'I" 
It= (1-0,5a'roo') 12x.oo.Y3, (13) 
m,= (x,-l) '1'3/6oo,x,'I\', 

C(3)-0,02 (0:=0), C(1)""1'3/2 (a-+l), 

where p+ corresponds to the divergent wave, and D is a 
parabolic cylinder function[l4]. The representation of 
p+, p- in the form (12) is valid for Xo -1 ~ A. The wave 
1/10 has for x ~ 1 the following asymptotic behavior 

( 
Ae-im... . Beim ... ) 

,¢o_e-iUlwQtil,_(S+I)/2(p++p-) _e-im01/1 ---+--- . 
x x' 

(14) 

For our choice of sign of the exponent in the temporal 
factor the energy flux at infinity is given by the square 
of the absolute value of the wave 1/14' For x ~ 1, 1/14 has 
the form 

(15) 

The relation between the coefficients Al and B in 1/14 and 
1/10 is established by comparing the solutions p- and p+ 
near Xo. Indeed, the relation between Al and B can be 
obtained considering the fields 1/10 and 1/14 in the near zone 
and determining the "potentials of the radiation reac­
tion forces" on the source in both cases. It is clear that 
owing to the identity of the source the "potentials of the 
radiation reaction forces" must be equal in absolute 
value for 1/10 and 1/14, but shifted in phase by IT. 

The final formula for the calculation of the energy 
flux carried away by the wave 1/14 to infinity is 

Co exp[-4C(x,)] { n ( m )} 
W 128n'm'ooo' (m.x.ll'm) 'I, exp -2 m. +[2(1-lml)+1]1t • 

(16) 

where C2 is determined by the source and is obtained by 
matching the solutions at the particle. It turns out that 
the angularlpart of the wave 1/14 must be described by the 
function 2Sm (IT - e) if the angular part of I/Jo is propor­
tional.to 2Sm (e). In order not to violate the general 
scheme we shall solve below the equation for 1/10 (and 
ssfu (e)) and only at the end do we go over to 1/14, We 
also note that the solution of the problem can be ob­
tained immediately by determining the function f4 re­
lated to 1/14 by means of the relation 

(17) 

for which the solution can be found directly. The final 
results obtained by one or the other of these methods 
coincide completely, of course. 

The angular distribution of the radiation is determined 
by the functions ssfn which are the eigenfunctions of the 
sum of the operators 
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d' d m'+2sm cos O+s' 
Ho = dO' + ctg 0 dO - sin' 0 (18) 

H, =m'a'w p ' cos' fJ-2samwp cos 0 (19) 

with the eigenvalues sAfn(O!w). The eigenfunctions of the 
operator Ho are described by the so-called spherical 
harmonics sP~ [15]2) with the eigenvalues 

,Am'(O) = (I-s) (l+s+1). 

We consider the operator Hl as a perturbation. The 
validity of this assumption follows from the fact that the 
radial parts of the wave equations contain exponential 
factors exp{ - [2 (l -I m 1) + 1] JL} which restrict the set of 
eigenfunctions of the operator Ho practically to two 
spill and spill +1 , and since the effective half-widths of 
these functions are included in a narrow interval of 
angles () near the values 

one may consider, with a high degree of accuracy, that 

JI,=m 2a,2w02 cos~ 8-~m'-:((lll'S cos 8~ 
:=::;:ma':!.wo 2 -2m 1:~~O)\lS 

is a perturbation of order l/m to the operator Ho. 

The corrections to the eigenvalues are determined 
in the usual manner by means of perturbation theory. 
The complete eigenvalues of the operator Hare: 

,A,,, '''=m'+m (1-',',""(00'). 

,.1,:;'+' =m'+3m (1-'/,""(00')' 

(20) 

( 21) 

In the high-harmonic approximation m» 1 the functions 
2pb, which describe well the angular part of the radia­
tion (not taking into consideration the rotation of the 
plane of polarization), can be represented in the form 

(22) 

,p,::+' = (-l)mm-",c"l'2 (1-co8 0)' sinm -' H[ (m + I) cos 8+s 1. (23) 

It is now easy to find quantities which characterize 
the properties of the GSR from a particle. Thus, the 
spectral-angular intensity distributions of GSR corres­
ponding to two linearly independent states of polariza­
tion ((1, 7T) are of the form 

Xo 1 m o 

w,.,=Ca·· 16n'I'(3+xo)' (xo--l) (3wo'xo') 'I. m (24) 
Xexp(-4C(x,) -'/,n (m/mo+ [2 (l-Iml) +11 "')}; 

c,=~[ 1+U3xowo(",+~)r I r(~+~~'+i~)I' I,P,,,"'I', 
16WoY:J mo 4 2 m o 2 (25) 

C,=2xo Ir('I,+imI2mo+i3",12) l'I,p,;ml+l i'6',lml+l' (26) 

Here r is the gamma function. 

The parameter mo plays the role of critical harmonic. 
For m » mo the intensity of radiation decays exponen­
tially. In (24}-(26) only the contributions from the lead­
ing terms have been taken into account and corrections 
proportional to m-1/2 have been neglected. This means 
that we neglect the contribution corresponding to radi­
ation emitted under large angles and for small orders 
m of the harmonics. Equations (24)0(26) depend essen­
tially only on one parameter xo, since the quantities O! 
and Wo are determined by Xo: 

For Xo = 3 these formulas describe the GSR in a Schwarzs-
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FIG. I 

. ! 
m/mo 

FIG. 2 

FIG. I. The intensity of GSR as a function of the order of the har­
monic for given angle e = 11/2 in relative units. 

FIG. 2. The angular distribution of GSR: curve I represents the 0-

component, curve 2 represents the 11-component. 

child field. The GSR from a particle moving along a cir­
cular geodesic in a Schwarzschild field was discussed 
by Breuer et al. [2] The ratio C(1/C 7T in the final results 
of[2] differs from the one obtained here (Eqs. (25), (26) 
with O! = 0, Xo = 3) by a numerical coefficient. Unfortu­
nately, it is difficult to compare the results, since 
the formula used for calculating the power of the GSR 
is not given in [2]. The possible reason for the discrep­
ancy seems to us to be that Breuer et al. [2], in calcula­
ting the energy flux of the GSR, having apparent~y added 
the absolute values squared of the functions Rfe and 
Rim), whereas according to[19] the components~f the 
ten~Ol(l o~ the gravitational wave are related to Ri~ 
and Rl~ by 

Figure 1 shows a graph of the spectral distribution 
of the GSR for fixed values of the angle () = 7T/2. The 
intensity of the radiation for m» 1 is essentially con,.. 
centrated in the equatorial plane and varies ~ittte within 
thelh~lf-width of the angle. The functions 12P~ 12 and 
12P~ +1[2 have the form (cf. Fig. 2) 

mIll sin2{m-2)8 (27) 
I,p~ml 1''''''2 ", (1 +6 cos' O+cos' 0), 

n' 
'I • • 2(m-J)6 

1'p~ml+ll''''''4 m Bl~,. (1+cos'O)'(cos'O+4/m'). (28) 
n 

The spectral distribution Qf the GSR is giv~n by the same 
equations (24)-(26) for 12P~112 = 1 and 12plm l + 11 F = 1. 
The particle emits essentially waves for wWich the total. 
angular momentum l = m. The intensity of the radiation 
falls off as m increases; 

W~mo/m for m<mo, 

W~exp (-m/mo) l,fQr'm"»mo. 
(29) 

The gravitational radiation is strongly polarized. The 
contributions W (1 and W7T to the global intensity 

W=W,+W. 

depend weakly on the parameter O! and equal 

The change of the ratio W (1/W in the two extreme cases 
(O! = 0), (O! -1) is 1% and cannot be guaranteed, since 
it is within the limits of the apprOximation under con­
sideration. The graph of the spectral distribution W(m) 
is obtained from Fig. 1 by dividing by m1l2. The spec­
tral distribution of the GSR for any admissible values of 
the parameters O! and Xo is well approximated by the 
equation 
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W(m)-(mo/m) exp (-m/mo). (30) 

A separation by polarizations corresponds to a separa­
tion with respect to the parities of the emitted modes. 
Thus the fundamental contribution to Wa comes from 
even modes, proportional to (_1)1, and to W 1T from odd 
modes, proportional to (_1)l+1. The contribution of 
odd modes to Wa and of even modes to W 1T for high mul­
tipoles does not exceed several percent. 

More interesting are the results of investigation of 
the polarization properties of the radiation. The depen­
dence of the degree of polarization of the GSR 

P=(W.(8) -W"(8) )/W(8) 

on the angle 8 for fixed values of the harmonic m van­
ishes (P = 0) near the angles 

8 t =n/2± 1,2m-'i,. 

which are within the half-width of the beam, so that an 
observer which receives the gravitational waves under 
an angle 81 will record radiation which is totally cir­
cularly polarized. In general, for 8 j: 1T/2 the GSR is 
elliptically polarized, except the points 81 and 1T/2. 
The global power of the radiation is W ~ E2 for all 
values Xo f 1. 

Let us discuss the question of a possible rotation of 
the polarization plane of the gravitational wave as it 
propagates from the source to observer (r _00) in a 
Kerr field. The rotation of the polarization plane of an 
electromagnetic wave in a Lense-Thirring field, analo­
gous to the Faraday rotation in a magnetic field, was 
discussed by Skrotskir(16] and by Vladimirov and Iskha­
kOV[171. The angle of rotation of the polarization plane 
must be linear in the parameter a. Some estimates can 
be obtained by considering the functions sS~ and ss~+l 
which describe the angular part of the gravitational 
wave. If the gravitational field of the central body were 
spherically symmetric the functions 2Plli and 2pm+1 
would give a complete description of the angular part 
of the wave. These functions correspond to the operator 
Ho, which does not contain terms proportional to a. 
Taking into account the rotation of the central body 
leads to the result that angular parts of the waves are 
described by other functions, namely 2S~ and 2S~ +1, 
which are eigenfunctions of the full operator H. It is 
also clear that after we have expanded the wave into 
two linearly inde~endent polarization states proportional 
to 2P~ and 2pm+ the corrections to these functions will 
produce mixing of the polarization components, i.e., a 
rotation of the polarization plane. The angular part of 
the a-component of the polarization is now equal to 

(-1)"' . { sawo } ,S",'" =~. -. -m'" ( I-cos 8)' ein"-' 8 1 +--[ (m+1)cos e+sl . (31) 
;(" nz 

The correction for the function ssm+1 differs from the 
above only in Sign. Thus, when a gravitational wave 
propagates in a Kerr field under angles 8 j: 1T /2 its po­
larization plane rotates by an angle: 

~=2awo cos 8+4awolm. 

We recall that the corrections have been calculated 
in the approximation cos 8 ~ m -112. It is convenient to 
represent the rotation angle of the polarization plane 
in the form of a sum of two terms: 

~=2(awocos 8+2a/p). 

Here p is the impact parameter of the beam in the equa-
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torial plane. The rotation effect related to the second 
term is due to the curvature of the curve along which 
the beam propagates and corresponds to the approxi­
mation of geometric optics. The contribution of the 
first term is analogous to the effect of Faraday rotation 
of the polarization plane of an electromagnetic wave in 
a magnetic field in flat space. It is produced by the 
interaction of the angular momenta of the black hole 
and of the wave. The effect of rotation of the polariza­
tion plane of a gravitational wave in a Kerr field can 
produce a partial polarization of an initially unpolariz ed 
plane gravitational wave when it is "reflected" on the 
black hole. Indeed, due to this effect right- and left­
polarized waves will be reflected from the black hole 
with different amplitudes, which can lead to a partial 
polarization of the initial gravitational wave. 

We also note that the rotation angle of the polariza­
tion plane of the gravitational wave is twice as large 
(due to the factor s = 2) as the corresponding angle for 
the electromagnetic field. 

We have considered the GSR from a particle moving 
with relativistic velocity along a geodesic. What changes 
in the properties of the GSR can one expect if the source 
is a particle moving with a high velocity, but not near 
a null geodesic, i.e., when the motion is nongeodesic? 
In the latter case the characteristics of the radiation 
will be quite similar to the characteristics of synchro­
tron radiation in flat space. Indeed, the radiation spec­
trum, its polarization, etc. are essentially determined 
by the behavior of the potential barrier for radiation 
and by the amplitude of the source. The source itself is 
always situated in the so-called near zone inside the 
potential barrier, and therefore the height and width of 
this barrier are essential and depend on the relations 
between xp and Xo. For simplicity we consider the 
Schwarzschild field (a = 0). In this case we obtain in 
the approximation m» 1 for geodesic motion near Xo 

U,(x) =-'/,m'{1.-t/,(x-xo)'}, !I.-tiE'. (32) 

For nongeodesic motion in the whole region of variation 
of x 

U () '{ w.' 1} " x =m- (1-2Ix) , x(x-2) . (33) 

In the first case the barrier is parabolic near the source, 
in the second case it is a centrifugal barrier. One can 
use wave equations with source taking into account (32), 
(33) to evaluate all the basic characteristics of the radi­
ation. Thus, frequency cut-off factors which determine 
the pass-band are given by the coefficients of barrier 
penetration of "waves" to one of the turning points 
(X2 > Xl) and are equal to 

(34) 

D.-exp(-2mI3mo}, mo-(1-~')-i. (35) 

In (35) we have taken into account the fact that xpwp 
= {3 ({3 = v /c where v is the particle velocity). Similarly 
one can obtain the other characteristics, if the explicit 
form of the source is known. 

If the particle moves along a circumference which 
is not geodesic the radiation emitted by it is similar 
in its properties to the usual graVitational radiation 
emitted by a mass in flat space. The spectrum, angular 
distribution and polarization of such radiation have been 
described previouslyYS] 

In conclUSion, let us list some estimates. The time 
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during which a particle completes a complete turn 
around the circumference is, by the clock of a remote 
observer: 

T=2nl wo=n (3+xo) xo'''rg/c-r,l c, rg=2GMI c'. 

The radiated power is 

W= _ dE _ Gwo' (~)'(f.lc'}'=af.lc' (~)', 
dt c' f.IC' !-IC' (36) 

a=Gwo'f.I/c'=If-r:, 

where T is the time during which the energy of the par­
ticle decreases by a factor of e. Expression all masses 
in terms of the solar mass Me we obtain for T: 

T=lIa-lO-'n'/k sec, 
n=M/Mo, k=f.I/Mo • 

If M = 1Q8Me, Jl ~ 10~, then for E/Jlc2 ~ 102 

W-iO" erg/sec. 

It is curious that from (36) one can obtain the esti­
mate of the maximal power of gravitational radiation 
given by Zel'dovich and Novikov[10]. Indeed, for two 
"collapsars" we have 

(E) W Gwo' (')' I Gf.I AI - f.I - - 1, - --c' f.l c " r, - '--:;' . 
f.lC' c· 

Then the power (36) depends only on c and G: 

w ___ o _g, ---10" erg/sec. Gw'(c'rt)' c' 
c' 20 4G 

I)The energy of particles on critical stable orbits is E = 0.94 p.c2 in a 
Schwarzschild field and E = 0.5 p.c2 in a Kerr field in the extremal 
(a --)0 1) case. If the particle enters the field with parabolic velocity, 
the amount of radiated energy is respectively WSch = 0.06p.c2 , 

WK = 0.42 p.c2 [10). 

2)The properties of the functions splm are described by Vilenkin [IS). 
We shall not dwell here on their detailed discussion. 
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