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The dependence of the damping decrement "Ik of a monochromatic wave on its amplitude A is calculated 
for the three-wave processes of fusion, wk + wk'= wk+ k" and disintegration,wk=wk' = wk_ k'. For A ~ 0 the expressions 
for 'Yk(A) go over to the usual expressions that follow from the kinetic equation. For k;60 the distribution 
function of waves in the vicinity of the resonance surface deviates from thermodynamic equilibrium; as a 
result, in fusion processes 'Yk decreases with increase of A (at large A, 'Yk 0: 1/ A), and in disintegration 
processes it increases. The characteristic amplitude Ao at which the damping has decreased by a factor 2 is 
estimated for sound in dielectrics and for spin waves in antiferromagnets; nonlinear ferromagnetic 
resonance is treated with allowance for the calculated amplitude dependence of the damping of uniform 
precession of the magnetization. 

In calculating the decrement for the attenuation of 
waves that results from their interaction with each other, 
it is traditional to use the kinetic equation for waves 
(see, for example, [1-3J ). In various physical situations, 
for example for sound in crystals [1-2J and for spin waves 
in magnetically ordered dielectrics [3J, three-wave re­
laxation mechanisms are found to be the most important. 

We notice that the laws of conservation of energy and 
momentum for these processes, 

ffik+Oh,,=Wk+k l , (1) 

(2) 

allow participation in the relaxation of a wave with fre­
quency WIt only by waves with wave vectors k' and k + k' 
lying in a thin layer close to the "resonance" surface 
(1) or (2), Therefore even at a comparatively small 
amplitude A of the original monochromatic wave, the 
energy being dissipated by it may cause the distribution 
function Ilk' of waves in this layer to deviate appreciably 
from its thermodynamic equilibrium value. As a result, 
nk' acquires a sharp maximum (or minimum). To des­
cribe such narrow wave packets by means of the kinetic 
equation, which is based on the hypotheSiS of almost 
random phases, is obviously not permissible. It is there­
fore necessary to develop a different method, which will 
explicitly take into account the possibility of strong phase 
correlation in each pair of waves, with wave vectors k' 
and k" = k - k' (or k" = k + k/), that participate in the re­
laxation processes. 

We have done this in Sec. 1 in the simplest and most 
graphic form. Namely, we have started from the class­
ical dynamic equations of motion for the amplitudes of 
waves near the resonance surface, and we have described 
their interaction with all the remaining waves by a 
phenomenological method - Langevin's method of random 
forces, 

As a result, simple formulas have been obtained that 
determine the dependence of the damping decrement Yk 
of a monochromatic wave on its amplitude. For fusion 
processes (1), 

_ ~ IV(kk'lk")I'(n"o-n:")6(Ulk+Ul,'-Ul,") 
1k-1t "'-.i [HIV(kk'lk")AI'/1k1k"l'" . 

k"_k'=k 

For disintegration processes (2), 

I V(k'k"lk) 1'(nk,o+n:")6 (Ul,+Ul,"-Ulk) 

[1-1 V(k'k"lk)AI'i1k1k" 1'" 

Here V(klk2Ik3) are the matrix elements of the three-
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(3) 

(4) 

wave interaction Hamiltonian (8), and ok are the thermo­
dynamic equilibrium values of the occupation numbers 
nk' 

These formulas differ from those that follow from the 
kinetic equation (or, equivalently, from quantum-mech­
anical time-dependent perturbation theory) only by the 
presence of the radical in the denominator, In the case 
of fusion processes, the attenuation Yk decreases with 
increase of Aj for large A, Yk 0: 1/ A. For disintegra­
tion processes, on the contrary, aYk/aA > O. This dif­
ference is easy to understand: in each fusion event (1), 
a quantum of the wave wk' disappears, and a quantum of 
wk" is created. Therefore with increase of A, nk' de­
creases, whereas nk" increases. As a result the differ­
ence nk' - nk'" and with it the attenuation caused by 
fusion of waves, decreases. On the other hand, the 
attenuation in diSintegration processes is proportional 
to the sum l1t' + 11c'" each term of which, as is easily 
understood, increases with increase of A. The value of 
wave amplitude 

(5) 

for which the radical in (4) vanishes, corresponds to the 
threshold of diSintegration instability of a monochrom­
atic wave. For A > AI, the amplitudes of the waves 
k' and k" = k - k' increase exponentially in time, and 
formula (4), which was obtained in an approximation 
linear with respect to these amplitudes, is not valid. 

It must be mentioned that formulas (3) and (4) des­
cribe asymptotic values of Yk' In fact, at the instant of 
turning on the monochromatic wave at t = 0, the waves 
in the medium are unable to deviate from thermodynamic 
equilibrium, and the attenuation will be determined by 
the usual formulas (without the radical). And only after 
a time t larger than l/Yk' and l/Yk" do the waves near 
the resonance surface relax to a new stationary state, in 
which Yk is determined by formulas (3) and (4). 

We add also that the decrement of four-wave attenua­
tion of a monochromatic wave is independent of its 
amplitude and is determined by the usual formulas (see, 
for example, [2, 3J ). In fact, waves from a finite volume 
of k-space participate in these processes, and therefore 
their amplitudes do not easily deviate from equilibrium. 

In Sec. 2, examples are considered of physical situa­
tions in which the attenuation of a monochromatic wave 
is determined by fusion processes-sound in dielectrics 
at low temperatures, and uniform precession (UP) of the 
magnetization in antiferromagnets with anisotropy of 

Copyright © 1975 American Institute of Physics 150 



the "easy plane" type. A characteristic amplitude Ao of 
the wave is estimated, at which its damping has de­
creased by a factor 2. 

In the last section, ferromagnetic resonance is studied 
at high levels of microwave power, under conditions that 
permit processes of disintegration (2) of UP into stand­
ing spin waves. It is shown that in pure ferromagnets, 
the increase of the attenuation of UP with increase of its 
amplitude changes the behavior of UP at resonance and 
can exert an appreciable influence on the operation of 
ferrite power limiters. 

1. DAMPING DECREMENT OF A MONOCHROMATIC 
WAVE IN THREE-WAVE PROCESSES 

We consider for definiteness the fusion process (1), 
and we write the dynamic equations of motion for the 
canonical wave amplitudes ak' and ak" near the resonance 
surface (1): 

(-~+ lOOk+1k' ) a.+iV(k.k' Ik")exp(iookt)A'ak"=f.' (t), 

(~ + i{Ok"+1k" )a.,,+iV'(k.k'lk")A. exp (iw.t) a,'=f." (t). 

Here A is the amplitude of the monochromatic wave, 

a.(t) =At. (k-k,) exp( -i{O,t) , 

V(kk' Ik") are the matrix elements of the interaction 
Hamiltonian 

(6) 

(7) 

(8) 

and fk(t) is the Langevin random force, with correlator 

(9) 

in which nk is the thermodynamic equilibrium value of 

~ '" <~~). 
In the writing of Eq. (6), important use has been made 

of the fact that the system of waves ak' and ak" of inter­
est to us is concentrated in a thin layer, and that the en­
ergy contained in it is much smaller than the total energy 
of the remaining waves. Therefore the remaining waves 
(it is natural to call them a thermostat) can be consid­
ered to be in thermodynamic equilibrium, and their 
phases almost random, This permitted us in equations 
(6) effectively to describe the interaction of a separate 
system ak' and ak" with a thermostat: the terms Yk'ak' 
and Yk"ak" describe "friction of the waves against the 
thermostat", that is loss of energy to the thermostaL 
The random forces fk'(t) and fk"(t) simulate disorderly 
shocks from the thermostat, which lead on the average 
to an increase of the energy of the waves ak' and ak". As 
a result, for A '" 0 the correlators nk' and nk" relax, as 
they should, not to zero but to the thermodynamic equili­
brium values nk' and nk'" 

In order to calculate the damping decrement Yk of a 
monochromatic wave in the process (2), we substitute 
(7) in the expression (8) for Jt"int; and on using the fact 
that the energy flow P into the medium is equal on the 
one hand to a<-*'int)/at and on the other to 2wkYklAl2, we 
get 

1'=: Im~ V(kk'lk+k')(e-;·"a.'a~+k') 
.' 

= 1 1m ~ f d,.'doo"V(kk'lk+k')exp[-i(oo.+oo'-oo")t](a.,.,a:+."o")' 

.' (10) 
On expanding ~,(t) and ak,,(t) in (6) as Fourier in-
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tegrals, it is easy to express ak' w' and ak"w" in terms 
of the Fourier components of the random forces fk ' w' 
and fk" w" and to substitute the result in (10). On taking 
into account that 

<f.of:'.')= (t) .ot. (k-k') 6 (00-'0) 

and using the expression (9) for the correlator of the 
random forces, we get ", 

1. = -~~ J dOl' ~ 1.'1." (n."-n:,,) 1 V (kk'lk") I' 

.' 
where k" == k + k", w" == wk + w'. Hence after integration 
over w' we find 

1'= ~ IV(kk'lk") I'(n."-n:,,) (1.+1.") 

.' (11) 
IV(kk'lk")AI' -, 

X[(OOk+OOk'-~)k")'+(1k'+1.")2(1+ )] . 
1·'1." 

For A '" 0 this result differs from the kinetic equation 
by a finite resonance width, determined by the sum of 
the attenuations of waves Yk' + Yk"' Formula (11) for 
A '" 0 was obtained earlier by means of selective sum­
mation of diagrams for the Green temperature func-
tions[4,5J. :' 

It is obvious that when the fusion processes are 
allowed by the conservation laws (1), formula (11) can be 
further simplified to the form (3). 

In the study of the attenuation of a monochromatic 
wave in disintegration processes (3), we started from 
equations of motion analogous to (6): 

(d) . • dt + look+1.' ak+iV(k'k"lk.)Ae-,o.'a,"=f.' (t), (12) 

(d) • " dt - ioo."+1." a ... -iV· (k'k"lk.)A ·e,o.'a.'=!." (t) 

and hence obtained in similar fashion the result (4). 

2. BLEACHING OF THE MEDIUM 

In the preceding section we described the effect of 
"bleaching of the medium": decrease of the attenuation 
of a monochromatic wave with increase of its amplitude 
in the case when fusion processes predominate. Here we 
shall estimate for concrete situations the amplitude Ao 
at which bleaching becomes noticeable: 

IV(kklk+k)A,I""1'~'1k+k (13) 

(k corresponds to the waves that make the largest con­
tribution to the attenuation (3)). Before doing this, we 
recall that formula (3) was obtained by a classical path 
and that therefore in it nk is the Rayleigh-Jeans distri­
bution: nk '" T/wk' It is obvious that our simple proced­
ure is easily generalized to the quantum-mechanical 
case by supposing that in the initial equations (6) ak are 
Bose operators. We shall then again arrive at a formula, 
in which nk'will be the Planck distribution: 

n.'=It[exp (ltoo./T) -1]-'. 

We shall now estimate Ao in the problem of sound 
attenuation in crystals at T «T!)o We shall suppose that 
the sound frequency ~ is larger than Yk; in this situa­
tion, the largest contribution to the attenuation is made 
by phonons with energy tiwk' i':j 3T [5 J, and therefore for 
estimation of Yk it is possible to use the result of 
Slonimskil, who calculated Yk for tiwk »T [6J: 

( no)'- )8 noo ( T )3 T 
v.=Ctl;i T;. ms:=102

"", Tv ms" 
(14) 
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(m is the mass of an elementary cell, s is the velocity of 
sound, and TO is the Debye temperature). 

For the matrix element V we shall use the result of 
fandau and Rumer [1J (see also [2,5J ), writing it for 
k II k~ II k": 

V(kk'lk")= 6 (P+Q+R) (illkillk'rok")'" (15) 
V'" (2p )"'s' 

Here V and p are the volume and density of the crystal, 
and P, Q, R are the coefficients of anharmonicity, with 
the dimensions of energy density, which can be estimated 
thus [2J: 

P""Q""R."" (1-3)ps'. 

As a result we get from (13)-(15) 

ill •• 1 A. 1 '/vps''''' (T/T D)' (T/ms') '. (16) 

The left member is the ratio of the energy density in the 
monochromatic wave to pS2, in order of magnitude equal 
to (U/S)2, where u is the velocity amplitude of the medium 
in the wave. This estimate was obtained for transverse 
sound. Obviously it will be correct also for longitudinal 
sound, if the linear attenuation of the sound in conse­
quence of finite width of the resonance is caused by the 
three-phonon fusion processes (2) [5J. The critical 
amplitude Ao, as is seen from (16), depends strongly on 
temperature and is reached, for example, in the pulse 
experiments of de Klerk on attenuation of sound in quartz 
at frequency 1 MHz at helium temperatures [7J • 

Another interesting example is the attenuation of 
uniform precession (UP) of the magnetization in anti­
ferromagnets with anisotropy of the "easy plane" type 
(MnC03, CsMnF3, etc.). The spin-wave spectrum has 
two branches: 

Q.=[Q.'+(sk)']"'. ",.~[")"'+(sk)']'\ 
(17) 

As was shown by Ozhogin [8J, in pure and well polished 
crystals the principal contribution of the lower branch to 
the attenuation of UP may be due to the three-magnon 
fusion process 

(18) 

in which spin waves with frequency nk = w~/2 no partici­
pate. Thus the characteristic amplitude Ao of UP, at 
which its attenuation decreases by a factor .fl, is deter­
mined by the formula 

(19) 

in which r k and Yk are the attenuations of the spin waves 
in the lower and upper branch with frequency n k "" wk 
= w~/2n()o The matrix element V(Oklk) has the formes] 

V(Okl k) "" (2gro .. /MQ.) ·'·gR •• 

where g is the gyromagnetic ratio I) , M is the sublattice 
magnetization, Wex = gHex' Hex is the exchange field, 
and Ho is the external magnetic field. 

UP oscillations can be excited by an external micro­
wave magnetic field h(t) = h cos wt, polarized for exam­
ple along the hard axis. At resonance 

k (gM,Q,) ./. 
A=- -- • r. 200,. 

where r 0 is the damping decrement of the UP. The 
characteristic amplitude Ao is reached when h = ho, 
where 

h/R.=r. l'l.r./ (gR.)'. 
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(20) 

This amplitude of the microwave field can be easily 
attained experimentally. By measuring the dependence 
of the attenuation of the UP on its amplitude, ro(IAI2) 
(by the absorption of energy in the specimen, not by the 
width of the resonance!), it is possible to determine the 
attenuation of spin waves Ylt, r k at frequencies not ac­
cessible by direct observatlOn. 

3. NONLINEAR FERROMAGNETIC RESONANCE 

We shall consider a uniformly magnetized ferromag­
net placed in a powerful microwave magnetic field h(t) 
= h cos wt with polarization h 1 Mo, and we shall assume 
fulfillment of the condition for resonance with UP, 
w = Wo; the specimen shape and the value of the constant 
external field are to be so chosen that disintegration 
processes2) 

(21) 

are allowed. 

Beginning with the pioneering work of Suhl [9J and up 
to the present, it has been customary to suppose (see, 
for example, [10,11]) that in this situation the amplitude 
of the UP increases with the field h according to the 
linear law ycA = hu until attainment of the critical value 

A,=min[ I V(Olk, -k) 111.], 

and then becomes completely "frozen" at the threshold 
value: A = Al for h 2: hi = YoAl/u. In actuality, even for 
h < hi an increase of the damping of the UP begins, in 
accordance with (4), and this leads to a slowing of the 
increase of A. 

We shall study the dependence of A on h. Let the UP 
damping consist of two parts: Yo = YI + Y2, where Yl is 
due to disintegration processes (21) and depends on A in 
accordance with (4), and where Y2 is the contribution of 
other processes, including scattering on defects and 
roughness of the specimen surface, and is independent 

A/A; 
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Dependence of the amplitude of uniform precession of the magneti­
zation (in units of the threshold amplitude AI) on the pumping ampli­
tude h (in units of the threshold amplitude hI)' Curves a relate to the 
case of spherical symmetry of the problem, curves b to the case of axial 
symmetry, and curves c to symmetry lower than axial. The broken line I 
in these figures corresponds to Suhl's theory (6 = I); curves 2, 3, 4, and 5 
correspond to 6 = 0,99, 0,9, 0.5, and 0.0. In cases band c, curve 2 on this 
scale does not differ from the broken line I. In figure c the arrows mark 
the supercritical points h2 corresponding to excitation of monochromatic 
pairs. 

V. S. L'vov 152 



of A. Then for A < Al we have 

[y.(A)+"'(21A~hu. (22) 

If it happens that the values of the medium-wave damp­
ing Yk and of the matrix element Y(k, -kIO) are inde­
pendent of the angular coordinates on the resonance sur­
face (21), over which it is necessary to integrate in (4), 
then it is obvious that 

y. (A) ~y./(1-IA!A.1 ') 't.. (23) 

In the figure, case a, are shown the A(h) dependences 
obtained from (22) and (23) for various values of the 
parameter 0 = Y2/(Yl + Y2). It is evident that for YI 
:5 10-2 Y2, curve 2 for A(h) is close to the broken line 1 
given by Suhl's theory, and that it already differs radic­
ally from it for YI ::2: 0.1 Y2 (curves 3, 4, 5). For Y2 = 0 
(curve 5), 

A~A.h/(h'+h.')" 

For h »hl, one can obtain from (22) and (23) 

A.-A=A. -Y-' _.!::.. 
y.+y, h 

There will be an entirely different asymptotic be­
havior in the case of axial symmetry, when Yk and 

(24) 

(25) 

Y(k, -kIO) on the resonance surface depend only on the 
polar angle 3) • It is then evident that for A - Al the in­
tegral in (4) diverges logarithmically, and instead of the 
power-law asymptotic behavior (25) there will be an ex­
ponentialone. The specific YI(A) dependence is deter­
mined by the details of the behavior of y(8) and Y(8); it 
can be simulated qualitatively by the function 

A. A.+A 
"'(. (A) ~y. -lll'--' 

2A A.-·A 
(26) 

The A(h) dependence that follows from (22) and (26), for 
various 0' s, is shown in the figure, case b. For h »hl. 
we have instead of (25) 

( 2h. "'(.+"'(2) 
A.-A~2A.exp ----- . 

h "(I 

For Y2 = 0 (curve 5), 

A~A. th(h/h.). 

(27) 

(28) 

We consider finally the case in which the symmetry 
of the problem is lower than axial. Then for A - Al the 
radical in (4) vanishes at a single (or at several sym­
metric) pair(s) of points of the resonance surface 
±kb ±k2' .'. Therefore for A = Al the integral (4) con­
verges and the damping YI(Ad remains finite. Conse­
quently, the critical UP amplitude Al is attained at a 
finite value h = h2 = hI YO(Alh/yo(8). For h > h2, pairs of 
waves are parametrically excited at the points ±kb ±k2, 
... , and their converse effect on the UP freezes its amp­
litude at the threshold level AI. The distribution function 
of the spin waves in the neighborhood of these points has 
the form 

a 
n.-n.' = a(k-kj)II'+~(k-k,).L' + bl\(k-k,). (29) 

The first term describes thermal waves "heated" by the 
uniform precession, because of which the UP damping 
has increased from yo(O) to YO(AI); the second describes 
the parametric waves, whose total amplitude b is pro­
portional to h - h2• From a formal point of view, (29) is 
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the general solution of the inhomogeneous linear system 
of equations (12) written in the w-representation. The 
first term is a particular solution of the inhomogeneous 
system (12); the second is the general solution of the 
homogeneous system, which is concentrated at the points 
±kl, ±k2' •.. at which the determinant of the system 
vanishes for A = A14) • 

Characteristic A(h) dependences in the case just con­
sidered are shown in the figure by curves c. By com­
paring the cases a-c in the figure, one can see that the 
difference between our results and the simple theory of 
Suhl decreases, first on going to lower symmetry, and 
second when the contribution YI(A) of the diSintegration 
process to the total UP damping Yo = YI(A) + Y2 becomes 
insignificant. 

In clOSing, we note that ferrite power limiters are so 
constructed that the UP is "revved up" by the microwave 
input signal h, while the amplitude of the output signal is 
proportional to the amplitude A of the UP [11]. Therefore 
the A(h) dependence studied here is essentially the dy­
namic characteristic hout = f(hin) of these devices. 

It is a pleasure to express my sincere thanks to 
Y. Zakharov and S. Starobinets for their interest in the 
research and for useful discussions. 

!)Equal approximately to 2.8 MHz/kOe. 
2)Sometimes this situation is called "coincidence of uniform and secondary 

resonances. " 
3)This corresponds, for example, to the case of a cubic ferromagnet with 
Mil [11 I] or M II [100]. 

4)The structure of the distribution function of the parametric spin waves 
at T * 0 and the dependence on the symmetry of the problem have 
been studied in detail in [12]. 
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