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The thermoelectric·coefficient tensor a'j is computed for the intermediate state of pure metallic type· I 
superconductors with excitation mean free paths I ~a, where a is a characteristic layer dimension. The 
diagonal component of aij that is responsible for the electric current that flows along the layers and across 
the magnetic field is 1.5 times larger than the same coefficient for a dirty metal. The component for the 
direction transverse to the layers is determined by the angular dependence of the probability, w, of 
excitation passage across an n-s interface, and may be either positive or negative, depending on the 
properties of the metal and the orientation of the n- s interface. It is shown that in the presence of a heat 
flux the intermediate state tends, at low temperatures, to assume a structure in which the heat flows along 
the layers, in accord with the available observations. It is also shown that besides the excitations that undergo 
Andreev reflection at the interfaces, there is a small group of excitations that, sliding along the boundaries 
at an angle ~(T/JL)112 (where JL is the chemical potential), undergo specular reflection. 

Type-I superconductors can exist in an intermediate 
state that, under certain conditions, admits of a macro
scopic description. In[l-4], it was shown (experimentally 
and theoretically) that the thermal phenomena could 
exert a significant influence on the dynamics of the in
termediate state. In[4] a complete system of macroscopic 
equations describing the dynamics of the intermediate 
state with allowance for the thermal effects are derived. 
The kinetic coefficients are computed for dirty metals 
in the case when the excitation mean free path I in the 
normal and super conducting regions is less than the 
thickness an,s of these layers, i.e., when l « an s' In 
the present paper we consider the other limiting' case 
of pure metals under conditions when l» an s' The 
resistivity and thermal-conductivity tensors 'of pure 
metals in the intermediate state at low temperatures 
were computed in[5, 6], The question of the computa-
tion of the thermoelectric coefficients under these con
ditions was, however, left open. 

The calculations are carried out for low tempera
tures T « 6., where 6. is the gap in the excitation spec
trum of the superconductor. In this case practically all 
the excitations in the normal phase are reflected from 
the interface with the super conducting phase. For 
T ~ 6. ~ T c, it is necessary to know the probability, w, 
of excitation passage across an n-s interface. This prob
lem cannot be solved in the general case, since for this 
purpose it is necessary to find the explicit form of the 
coordinate dependence 6.(z), which cannot be done even 
in the vicinity of the critical temperature T c' 

At finite T f 0, the Fermi distribution is blurred, 
which is the cause of the appearance of thermoelectricity. 
In order of magnitude, the thermoelectric coefficients 
0' ~ T//J., where /J. is the chemical potential. Allowance 
for the smearing of the Fermi surface leads also to 
some new anomalies in the reflection of the excitations 
from the n-s interfaces. As is well known[61, the exci
tations in the vicinity of the Fermi surface are reflec
ted from an interface via the Andreev mechanism. As is 
shown below, there also exist at finite T excitations 
that undergo specular reflection as they move almost 
parallel to the interfaces. 

Notice that the computations are carried out for an 
isotropic model. The corresponding generalization to 
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the case of an arbitrary energy spectrum E(p) is ob
tained for the diagonal thermoelectric-tensor compo
nent O'zz (the z axis is perpendicular to the layers), 
which is responsible for the electric current jz under 
the action of the temperature gradient aT/az. This co
efficient is determined by the angular dependence of the 
transit probability wand, as is demonstrated, may have 
a sign different from that of the thermoelectric coef
ficient of the normal metal, depending on the properties 
of the metal and the orientation of the interfaces between 
the n and s phases. 

1. EXCITATION REFLECTION AT THE PHASE 
INTERFACES 

Andreev[6] has explained the nature of the reflection 
of the excitations from the n-s phase interfaces. He has 
shown that upon reflection an electron above the Fermi 
surface goes over into a hole under the Fermi surface 
(and vice versa). This scattering practically does not 
change the excitation quasimomentum p, but changes 
the sign of the distance-in terms of energy-from the 
Fermi surface Eo, i.e., of the quantity Hp) = E(p) -Eo. 
Thus, the Andreev reflection law can be written in the 
form 

a/=-~, n'=n, (1) 

where n = au ap/l a~/apl and the prime indicates the 
reflected quantity. The relations (1) are suitable for the 
computation of the electrical and thermal conductivities, 
but in determining the thermoelectric coefficients (which 
are of the order of T//J.), we must take into account the 
blurring of the Fermi surface at T /0 0, i.e., clarify the 
law of reflection of excitations of energy E = I ~ I ~ T. 

We choose the coordinate system shown in Fig. 1. 
Let us first consider a stationary interface. The con
ditions for reflection reduce, obviously, to 

where Pt is the quasimomentum component tangential 

(2) 

to the interface, a component which, in view of the homo
geneity of the problem with respect to the x and y direc
tions, is conservedl ). Each excitation is unambiguously 
characterized by the quantities ~ and n = pip, both of 
which are changed in the first approximation in T I /J. by 
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the reflection. We can, however, characterize each ex
citation by the quantities ~ and no = po/Po, where no is 
the unit vector along the direction of the vector po drawn 
from the origin to a point on the Fermi surface such that 
POt = Pt· In this case the second condition in (2) is auto
matically satisfied. The unit vector no is then the same 
for both the incident and reflected excitations, and there
fore the reflection amounts only to a change of the sign 
of ;. For example, the reflection of an incident electron 
at the upper boundary of an n-Iayer (z = an/2) amounts to 
a transition from the point A to the point B in Fig. 2. 

Thus, instead of (1) we have 

~/=-£, no'=noo (3) 

It is not difficult to derive the relation between n and no 
Let us write p in the form p = po + IIlipz, where II is the 
unit vector along the pz axis. Then ~(P) ~ lipza~/apz 
~ voOOzlipz, where Vo is the velocity at the Fermi sur
face. Taking also into account the fact that p ~ Po +Uvo, 
we obtain 

For the individual components we have 

Il,~n,,+£ (l-no;)/2I1no .. 

n,~p,/p""-y1-n,,'( 1-£/211). 

Knowing nt, we easily find 

n., y~ n, ( cos CP) , 
smcp 

(4) 

where rp is the azimuthal angle with respect to the axis 
pz (which, of course, does not change in the reflection). 

Let us now consider an n-s phase interface moving 
with velocity V along the z axis. To compute the corres
ponding thermoelectric coefficient (see below), we need 
to know only the change in the energy € that occurs as 
a result of the reflection. In the moving reference sys
tem the energy does not change during the reflection, 
i.e., f~ = fo (the index zero here indicates that the cor
responding quantity is measured in the moving coor
dinate system). Applying the Galilean transformation 

e'-p,'V~e-p,V, 

we find 2 ) 

ile~e' -8= V(p,'-p,) ""-Vpy£/l1ny .. (5) 

Let us now consider the possibility of specular ref
lection of excitations from an interface. It is clear that 
if an electron with Pt > Po but with a small energy 
f < D. is incident on an interface, then it must be spec
ularly reflected, since for all the holes Pt < po and the 
tangential component of the quasimomentum is preserved. 
Since only the excitations in the vicinity of the Fermi sur
face are important, in the isotropic case the electrons 
that undergo specular reflection are situated near the 
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poles of the Fermi sphere at Pz ~ O. For such electrons 
Vz ~ 0, Le., they move almost parallel to the phase in
terfaces. In Fig. 2 the transition from the point C to the 
point D corresponds to a specular reflection of an elec
tron at the interface z = an/2. Let us find the boundary 
in momentum space that separates the Andreev- and 
specular-reflection regions. Substituting the exact de
pendence ~ (p), i.e., 

!;(p)= p'-po' =P,'-P,,' 
2m 2m 

in the isotropic case, into the first condition in (3), we 
find 

Hence we obtain the boundary value nOzb as a function 
of ;: 

(6) 

An incident electron with a given ~ is reflected via the 
Andreev mechanism when nOz > nOzb and specularly if 
noz < nOzb (for the incidence of holes in the present 
case there are no restrictions, since; < 0 in their case)3). 
In the general case of an arbitrary spectrum f(p) there 
can exist several extremal pOints at which Vz = O. There 
exist near each such point of the Fermi surface excita
tions that undergo specular reflection. Notice, however, 
that the corresponding range of glide angles is small, 
i.e., ~(T//.L)1/2 ~ 10-2, and therefore allowance for such 
excitations in the kinetic coefficients leads only to small 
corrections ~ T2/ /.L 2. 

2. THE THERMOELECTRIC COEFFICIENTS OF THE 
LAMINAR STRUCTURE 

In this case l» an,s and the electric-current and 
thermal-flux densities jn and qn are determined with 
the aid of the excitation distribution function nn (r, p) in 
the normal phase, which satisfies the following kinetic 
equation: 

v~+ee an" =_ n,,-n. 
or op T' 

(7) 

where e is the electric field in the n-Iayer (which field 
can be assumed to be independent of the coordinates[S), 
e = eoSgn; is the charge of the excitation (eo is the elec
tron charge), T is the relaxation time that, at low tem
peratures, is due to scattering by impurities, lattice 
defects, etc., and the bar indicates averaging over the 
constant-energy surface. The magnetic field in the 
kinetic equation can be neglected, since usually l« RL, 
where RL is the Larmor radius in the critical magnetic 
field Hc. In Eq. (7) we have also dropped the small, non
linear (in the perturbations e and V) term ann/at 
~ - V Onn/az '>J O. As before[s, 4), from the boundary con
dition for the electric field follow the relations 

e.~O, V =-ce,/H" (8) 

where the x axis has been chosen along the direction of 
the magnetic field in the n-Iayer (see Fig. 1). 

Let us assume that the temperature T is constant 
and seek the solution to Eq. (7) in the form 

on, 
nn=n, + -a;;-X" 

where no = [exp (f/T) + 1r1 and X is the new unknown 
function. Substitution of (9) into (7) yields 
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Ox/o~+u(x-Xo) =0. (10) 

Here we have introduced the following notation: 
2z a. ksgns a. 

~=- U=--=-- k=-4:.1 
an ' 2'tv z nz' 2l t 

(11) 

We have also dropped the term containing X, a term 
which, for l » an, yields a small contribution to the 
kinetic coefficients. The solution to Eq. (10) is of the 
form 

x=xo+c'·C(n,;) . (12) 

The arbitrary function C(n, ~) is determined from the 
boundary conditions, which, for T « ~, reduce to the 
equality of the incident- and reflected-excitation fluxes 
in the reference system moving together with the inter
faces. This leads to the equations 

on, (' an. ( ') n,(8)+-x(~=±1; n,;)=n,.B )+-x ~=±1; n ,-s . oe oe (13) 

Substituting (12) into these equations, we obtain 

C(n,;) [:~U] -C(n',-s) [ee~'~'] =[M+y.o(n')-x.(n)l( ~]. (14) 

Expressing the reflected quantities (characterized by 
the prime) in terms of the incident quantities with the 
aid of (3)-(5), and using (11), we find from (14) the 
sought quantity C(n, ~). The nonequilibrium part X of 
the distribution function can be completely determined 
at the same time from (12) in the form 

In the last equality we have retained only the leading 
terms in the expansion of the function X in powers of 
k« 1. 

beforehand the terms ~VJ.L in .(15) (also cf., for exam
pIe, [7)). 

For the thermal-flux density component perpendicular 
to the layer boundaries we find 

( ; ){ ; [, £(1-n,')]} X 1+-; Vp'Z;+e,le, n, - __ 2J.t-

Po'X" S~d~ an, t' [V I + 2e.le, Sid (3 ' '1)] _ xnp,'T'V _ Qll = --- ~-"O Po ~t -- 11: n z - ---, --Xn . 
n'h' 0 ae J.t " :ili'v. 

Here we have used the temperature dependence of the 
critical magnetic field Hc (T) that follows from the BCS 
theory at low temperatures, and we have introduced the 
heat Q of formation of the n-phase: 

TH, dH, po'T' 
Q=T(Sn-S')=-TndT""3h3 v •. (18) 

Taking (8) into account, we have 

(19) 

The formula (19) describes the transport of the excess 
entropy of the n-phase with velocity V (see[4, 2)). Notice 
that as is to be expected under conditions of total re
flection of the excitations from the boundaries, the dia
gonal thermoelectric coefficient yzz '" O. 

Let us now take into account the rare (for T« ~) 
event of the passage, with probability w, of an excita
tion across an n-s interface in the same way as was 
done by Andreev[a) in the computation of the transverse 
thermal conductivity Kiz. It is easier to find the electric 
current jn z due to aT/8z. In the geometry under con
sideration' (Fig. 1), let us set e '" 0 and V '" 0, and let us 
assume that the temperature in the n- and s± -layers 

The macroscopic thermal flux q is the volume average differ by OT, which is connected with the observable 
of the thermal fluxes in the n- and s-layers. In the s-phase quantity aT/az by the relation 
Q.s '" 0, since all the excitations are reflected from the 
boundaries back into the normal phase. Since X does not 
depend on {; in pure metals (see (15)), the macroscopic 
thermal flux is Simply 

2x. S 3 an, 
q=x.q. = (2nh)' d p ev~x, (16) 

where xn '" ani (an + as) is the concentration of the nor
mal phase. It can be seen from (15) that qx '" 0, since 
the integral (16) vanishes upon integration over the 
angle CPo For the same reason, only the second term 
in (15) makes a contribution to qy. We have 

=_2x.e,le·s d, ev anon (l+l) 
q. (2nh)' p, oe' 2J.t 

? IE '" , +~ Ti' dn ( ; ) 
=- _eo--"-Ssin'<pd<PS (l-n,')dn, Sd~-"-;U-' l+"? 

(211h)' 0 _, _~ to,' ae -J.t 

e.lpo'T' 
= ---E,=1"E,. 

6h'J.t 

Here we have introduced the macroscopic electric field 
E '" xne (see[4)). Notice that Yyy is exactly 1.5 times 
larger than the corresponding thermoelectric coefficient 
Yn of the normal metal: 

e,lp,'T' 3 
'"(··=~=21n. (17) 

This can be easily verified by computing qy, neglecting 
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6T = an+a. !!.. = (~)!!!.... 
2 az x. i1\; (20) , 

Let us seek the solution to Eq. (7) in a n-Iayer in the 
form 

With the aid of (12) we find 

8no -tu 
n.=n. (T) + {iT e Cn (n" ;) . (21) 

Assume that Cn(nz , 0 is of the form 

Cn i+Cn2 cnt-en2 (22) C.=6(v,) Cn,+B (-v,)c., = --2- + --2 -sgn v,. 

We write the boundary conditions for the distributio:1 
functions nn and ns± in the n- and s±-layers with al
lowance for the passage of the quasiparticles across 
the n-s interfaces. We have in terms of the variables 
noz and ~, instead of (13), the expressions 

"=I:n. (T) + an. exp[ -u(n.," ;) IC., (n." ~) =W (n,," ;) n.+ + [1-w (n ... -~) I 
~ aT 

x {n.(T)+ :; exp[u(n,," -~) ICn,(n",-~)}, 

\;=-1: n. (T) + :;. exp[u (n.," £) IC .. (n." ;) =W (n.," s) n._ (23) 
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{ a~ } +[1-w(n,,, -s) l' n,(T)+ayexp[ -u(n, .. -~) len, (n", -~) , 

where for T «: ~ the transit probability w is [6] 

1/ e-a 
w=j(n,) Y-a-' (24) 

Taking the smallness of w into account, we retain in 
(23) only the equilibrium parts of the distribution func
tions ns±: 

an. 
wna ""wn,(T)±w7iT6T. 

Making the substitution ~ -- ~ in the first equality 
in (23), and expanding in powers of k, we can rewrite 
the boundary conditions as follows: 

[1-u (11 o,,;) len> (no,,;) -[1 +"(11,,, -~) len,(n,,, -;) 

=~!!'w-w6T+ n,!!.w 
2 an,/aT' 

[1+U(lIo" 6) le., (n,,,~) -[ 1-U(II,,, -s) len, (n,,, -6) 

=-~!!'w-w6T+ n,!!.w 
2 allo/aT' 

where we have introduced the notation: 

w='/,[w(no,,~) +w(no" -s) l, 
From (25) we find 

6T wbT wbT dU llodW 

(25) 

(26) 

_ f,e.lp,'a'!q-'/'r AIT aT _ 9f, (a) 'I, -AIT aT _ JjJ_' 

, .. - - 4n"'xnf.1/i' az - 4n"'xn T e ~na;-- ~"a:-' 

where f3n. is the correspondiJ!g thermoelectric coef
ficient of the normal metal [7] 

(31) 

e,lp.'T 
~n= - 9/i'f.1 . (32) 

As can be seen from (30) and (31), the sign of {3zz 
may not coincide with that of (In, It all depends on the 
sign of fl' which is determined by the behavior of the 
function f(nz). It is therefore of interest to find the 
coefficient (3zz in the case of an arbitrary spectrum 
E (P). From (27) we have, as above 

6T 
enl""en , "" -"4U!!.w. 

Instead of (28), we find for ~w the expression 

aw=26n aw =~~~ 
an as/ap, an ap, 

where now 

1/ 8-!!.(n) 
w=f(n) y---. 

!!.(n) 

The distribution function assumes the form 

(T + an, ( 61') 28 aw an 
nn=n. ) aT -4'k la6!apl anap, . 

en,(n,,,£)=-~ --!!.w--?-+-,,---+ ')0 /"1" 
Hi ... q U wllno U 

61' 1061' w6T!!." lIo!!.W (27) Let us find the electric current density 
en"(n,,, :;)= - ~ ~w + ----+ -_--

~ " til ~ -4 /I '2 rJII.)/uT 

Here, in analogy to (26), 

~1I=1l(1I"" ;)--l1(1I0" -6), 
"='/2[" (n"" 6)+"(11". -6) l. 

With the aid of (24) and (4) we find from (26) that 

aw, at 1/ e-a ~(1-n,') 
!!.W=-i) [n,(n,,,;)-n,(n,,,-s)l=-:;-y, . 

It: un: Ll Ilflz 
(28) 

Retaining in (27) only the leading terms ~ l, and us ing 
(21), (11), and (28), we obtain 

an, ( 61') 1/ e-!!. ,dj 
nn=n,(T)+7iT - 4kf.1 e y-!!.-(i-n,) dn,' (29) 

Let us now compute the transverse-to the interfaces
component of the electric-current density in the normal 
phase: 

- 2 S " e,p,'bT S' " dj S~ Un, V e-.~ , 
J"'=(2ntz)" dpev,nn=--2n2tz"k" dl/,I/,(1-II'-)a;; 8-;;y- -!!.-ae. 

r (' z .\ 

Here we have taken into account the obvious evenness 
of the function f(nz )' Let us evaluate, under the assump
tion that this function has no singularities, the first in
tegral by parts and denote it by fl-a number of the order 
of unity: 

It dn,n, (l-n.').!!L = j dn, (3n,'-1)f(n,) =/,. (30) 
dn, . , 

The energy integral is easy,,,/ to evaluate when T «: ~, 
since in this case no <>:j e-E T: 

I- a~ -V 11-.1 a I- -V Il-a e- --dll=~ en, ~-de 
aT!!. aT !!. 

A A 

Using (20) and (11), we finally find 
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- 61' I' an. Il aw an e.6T S dS 
J .. ,=- k(2 .)2 dpev'a-T -a-a-=---'--/i' -n,l(n) 

nil v n PI 1t all Ilz>O lJ 

S• an, ow an e.6T S dS an. 
X -ede--=--- -n,l-

Aln! aT an ap, n'h'aRn,>. v ap, 

Performing the simple integration over the energy, and 
differentiating with respect to T with allowance for the 
fact that T « ~, we arrive at the integral over the Fermi 
surface: 

i=-~ S .:!:!...In, (~) '/'rMT an. (l'.!l-j~). 
,,,, 2n'I'a"Il' .. ,>' V T ap, an. an. 

In view of the strong dependence of the integrand on the 
gap ~, the integration can be performed near those points 
of the Fermi surface where the gap is minimum[s]. The 
expansion of ~(n(G, cp» in the vicinity of ~min' where 
G and cp are the spherical coordinates of the points of 
the surface, is of the form 

1 { a'a 
'" (e, CP)=!!.mln +"'2 a (cos e) , (cos e - cos emfn) , 

a~ ra. 
+ 2 (cos e - cos emin) (cp-CPmfn) +-(CP-CPmin)-}. 

"<pacose - ilcp' 

In that case 
. e.6T [n,la'" -"iT af an] 
, .. =- 2n"'an/i'T'. vK(e, cp) e Tn" an, min 

{ 1 a'a 
X S d(cos e - cos em',) I d(lp-cpml,,)exp -2T"[ a (cos e)' (cos e-cos eml,,)' 

+2 a'l:;. (COSe-COSemin)(Ip-q;mln)+~(q;-<Pmin)']}' 
aq; a cos e, aq;' 

where K(G, cp) is the Gaussian curvature of the surface 
and the coefficient in front of the double integral is 
evaluated at the minimum point of the gap. The double 

Yu_ K. Dzhikaev 147 



integral entering into this expression is equal to 
27TT/jfK"f[81, where 

i)'A i)'A i)'A' 
IA"I= - (_._) 

f) (cos 8) 2 f)cp' ocp a cos e . 

Thus, 

Allowing for (20), we finally have in the anisotropic case 

e T'" [ n lA/' at iJn] ~ _ 0 '_ll./T 

,,-- 2n'I'x h'fIA"1 ~e an ap . 
'" 1. m~n 

3. DISCUSSION AND COMPARISON WITH THE 
AVAILABLE DATA 

(33) 

Let us write out the components of the density of 
the thermal flux arising in the general case under the 
action of E and VT. Using the formulas (17), (19). and 
(31) and the expression found for Kik by Andreev[6, 8], 
we obtain 

(34) 

where Kn is the thermal conductivity of the normal 
metal, d = an + a,s is the structure period of the inter
mediate state, 1:lx) is the Riemann zeta function, and 

• 
t, == S dn, f (n,) n, 

, 
is a number of the order of unity. We have also used 
the Onsager relations, according to which 

l .. (H)=-Tp,,(-H). (35) 

The equalities (34) are equivalent to the single vector 
relation 

Q=--xn VT-(x.J.-Xll)k(kVT)+i,,{E-k(kE)- H~' (HE)} 

T ~ k(Elk x Hl) +luk(kE). 
H, 

(36) 

Here k is the unit vector normal to the layer boundaries. 
To write down a similar expression for the macroscopic 
electric current density j, it is necessary to know its 
relation with the "microscopic" current jn in the region 
occupied by the normal phase. It is not difficult to verify 
that the relation between the current components hand 
jnl perpendicular to the magnetic field H takes, as in[41, 
the form 

j~ =jn.l. + T~2 [H, X VT-V'tnl=jn.J. - T;:' [kxH](kVT). (37) 

since for 1» an s the gradients of the "microscopic" 
and macroscopic temperatures VT n and VT are connec
ted by the relations 

iiT iJT aT 
iJx,y = iJx,y' a-:;-=O. 

Using (34), (35), and the expression given in [5] for 
olk, we find from (37) that 

148 SOy. Phys.-JETP, Vol. 41, No.1 

. an, 313. { H} h =-E +- VT-k(kVT)--, (HVT) 
x" 2 H, 

(38) 9/ (A) 'I. eQ 
+-4 ,: - -T e-4ITpnk(kVT)- __ , [kxH](kVT), 

n··~Cn THeW 

where an is the electrical conductivity of the normal 
metal. It is also easy to find the formulas exp ressing 
E and q in terms of the total current j and the tempera
ture gradient VT: 

(39) 

These formulas completely determine the resistivity, 
thermoelectricity, and thermal-conductivity tensors, 
Pij, l¥ij, and Kij respectively, under 'the conditions 
under consideration. 

Let us first find Kij. With the aid of (36) and (38) we 
obtain 

(40) 

The ratio of the second term in ,'<i to the first is, in 
order of magnitude, equal to 

e'Q' ~ (_!:..) 'I. eMT I e'Q' 
x.J.anTH,' A d a.xnTHe' 

~ (.!...) 'l'eMT..!.... ( e,eH, )' _ (!...) '1, eMTxGL ''6,'/ld, 
A d a"T, A 

where KGL is the parameter of the Ginzburg-Landau 
theory and ~o is the coherence length. As T -0, this rela
tion grows without limit; therefore, Kl = xnc2Q2 / <7n TH~. 
However, at not too low temperatures, at which experi
ments are usually performed, this relation is small, 
since 1 » ~o and d» ~o. Let us estimate the order of 
the off-diagonal component Kyz of the thermal-conduc
tivity tensor. We compare it with the same component 
for a real metal, a component which was computed in[81, 
and which is of the same order of magnitude as K 1: 

x" (T)" "T I a.eQ (T) 'I, "T eeHcT (T) 'I, 'IT s,,1' 
X~ - -~ eo, ~l x"lI. - A e' -;'; • .1',[1 - ~ e XGL~. 

This relation is also small at not too low temperatures 
(t« J.L). 

Taking the foregoing into account, we finally find the 
sought tensors: 

f".=':::({)'- ~;lfj), x,=x,,{)'j+(x,--x,,)k,k,. 
(J", _ (41) 

3xna n 1 [ 1 xneQ [ 1 91,a. ( A ) -I, a,,=--[kxH, kxH j+-- kxH ,kj +-- - e-·"Tk,k. 
~JI.' (J"Tlf! ",," T 

As to the macroscopic-electrodynamics equations (in
cluding the heat equations, equations which determine 
the shape of the layers and their traveling speed) them
selves, they clearly coincide completely with the equa
tions derived in[4], since no assumptions about the mea'l 
free path of the excitations were made in their derivation. 

Let us make a few observations about the found 
thermoelectric coefficients of the intermediate state. 
The off-diagonal component of the tensor (lij (the 
second term in the last formula in (41» is due to the 
heat release Q at the boundaries of the n- and s-regio:1s. 
This quantity naturally does not depend on 1 and coin
cides therefore with the same component for a dirty 
metal[41. The diagonal component of l¥ij that is respon-
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sible for the electric current along the layers (and 
across the magnetic field) is greater by a factor of 
1.5xn (in the isotropic case) than the thermoelectric co
efficient of the normal bulk metal. This occurs because 
of the influence of the n-s phase interfaces at which 
the excitations undergo Andreev reflection4). The diag
onal transverse component ClZZ, which is ~ {3zz defined 
by (31) and (33), is an exponentially small quantity 
~exp (-A/T) at low temperatures. It is determined by 
the angle derivatives of the probability, w, of passage 
of an excitation across an interface. Unlike w itself, 
which is positive (or zero), these derivatives can be 
positive or negative. In the isotropic case, (30), the 
sign of (3zz does not depend on the arrangement of the 
interfaces; it is determined only by the behavior of the 
function f(nz). Any possible decrease of w that occurs 
with increasing angle of incidence of the excitations at 
an inter.face as a result of the increase of the "effec
tive" thiclmess of the transition layer should change 
into growth, since for a large thickness (large angles 
of incidence) the above-the-barrier reflectio:1 becomes 
quasiclassical (cf. [a)), and in this case w is exponentially 
close to unity[lO). It can be seen, therefore, that, depen
ding on the properties of the metal, O'zz may be either 
negative, which correspo:1ds to the predominance of the 
electronic mecha.Jlism, or positive (the hole mechanism)S) 
In an anisotropic metal {3zz, (33), also depends on the 
orientation of the n-s interface. It may be inferred 
therefore that, by smoothly turning the layers of the 
intermediate state, we can observe the reversal of the 
sign of this thermoelectric coefficient. 

In spite of the absolute smallness of the thermoelec
tric coefficients, their existence leads to entirely obser
vable phenomena. This is because the various comp 0-

nents of the tensor O'ij strongly differ from each other. 
The ratio of the second term in (41) to the first is, in 
order of magnitude, equal to 

cQ ~o fl 
ona"TH, ~ XGL Tr 

This quantity sigl1ificalltly exceeds unity in not too pure 
metals. The ratio of the first term to the third is of the 
order of (Tj.~)3/2 exp (A/T), and is also large at low 
temperatures. A consequence of this anisotropy (as 
well as of the anisotropy of the thermal-conductivity 
tensor) is the recently oIJserved[ll) alignment of the 
strllcture of the intermediate state arising in a plate 
of p'Jre Pb located in an external transverse magnetic 
field in the presence in the plate of a thermal flux q 
(the plate itself was electrically insulated). The angle 
'Pq between the directio:1 q and the normal k to the 
layers increased mO:1oto:1ically from zero to 1T/2 as 
the temperature decreas ed from T c to "'" T c/3. The 
structure as a whole was stationary, but the resulting 
irregularity of the n-s interfaces moved with some 
velocity V along the layers. As T decreased, this velo
city first decreased, attaining a minimum at T "" Tc12, 
and then began to increase. In [9), formulas for tan<pq 
and V in the case of a dirty metal are derived that quali
tatively explain the observed alignment for all tempera
tures. Such an alignment should also occur in pure me
tals. With the aid of (36) and (38) in the geometry of 
Fig. 1 (the plane of the plate coincides with the y-z 
plane), we find (see[9)) 
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q. 14~(3)x.2CQ ( T ) " 
tg rp'l = - = - e4/T , 

q, 9fll j,ona.SH, Ll 

ca..l jlq 
V = - -- cos '1'.--. 

xnxnd j,H, 

It can be seen that even in an extremely pure metal, 
where cQ/<JnO'nTHc« 1, at low T« A, the quantity 
tg'Pq ---- 00, i.e., the structure tends to assume a form 
in which the heat flows along the layers (i.e., in which 
k l.q). As to the velocity, it should tend to zero as T ---- O. 
Notice that the velocity did not change its sign in the 
temperature range considered in [11). By the same token, 
the thermoelectric coefficient O'zz, which determines 
this velocity, did not change its sign. In this instance 
this is natural, since the sample was not a single crystal, 
in which such a change of the sign of the velocity could 
have been observed. 

In conclUSion, the author expresses his thanks to 
A. F. Andreev, I. P. Krylov, M. I. Kaganov, and I. L. 
Landau for valuable consultations and a useful discussion 
of the work. 

°Since the aim of our investigation is to obtain macroscopic equations, 
and since a macroscopic description is possible only when the radius R 
of curvature of the layers significantly exceeds the structure period d 
(i.e., only when R ~ d), the curvature of the layers can be neglected in 
the present case. 

2)Since we are interested only in the terms linear in V, we evaluate Il Pz 
at the stationary interface. 

3)The bounding surface separating the Andreev- and specular-reflection 
regions is an ellipsoid inscribed near the Fermi surface and touching it 
at the poles: p~/2 + p; = p~. 

4)ln dirty metals (in which I <l1; an s) such growth naturally does not 
occur. At low T in a dirty metal a = xnan [9]. 

5)The monotonic decrease of f with increasing angle of incidence cor
responds to azz < O. 
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