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The critical indices, invariant charge, susceptibility, and other quantities in theory of phase transitions are 
calculated using the renormalization-group method. In particular, the transition from perturbation theory 
to the scaling region is traced. 

1. INTRODUCTION 

There has recently arisen a new approach to the 
theory of phase transitions, associated with the expansion 
of the different quantities in the parameter E = 4 - d, 
where d is the dimensionality of space (1 ,2J. It has been 
found that, although the series in E are asymptotic, for 
certain quantities (e.g., for the susceptibility index y) 
the first terms of the series fall off rather rapidly. In 
spite of this however, it would be desirable to construct 
a theory directly for three-dimensional space. The first 
attempt to construct such a theory was made in the 
papers of Migdal and Polyakov (3, 4J. Later di Castro 
and Jona-Lasinio applied the renormalization-group 
method (5-7J to this problem, in the formulation described 
in detail in [8J (a review of some of these papers~ and 
also a number of others, is given by di Castro [9J ). In 
these papers, however, the vertices and indices were not 
calculated. After the E-expansion was proposed, its 
principal results were obtained by a renormalization­
group method similar to the Callan-Simanzyk 
method [lO,llJ in a number of articles (cf., e.g., [12,l3J), 
and, in particular, the Gell-Mann-Low function (referred 
to as the GMLF below) was calculated in lowest order 
in E. 

An attempt of a somewhat different kind is made in 
this paper. A differential equation for the so-called in­
variant charge is derived directly for the three-dimen­
sional case, using the Ward identity for the vertex func­
tion; the equation is the analog of the renormalization­
group equation (apropos of the renormalization-group 
equation, see also the review by Wilson [14J ). The GMLF 
appearing in this equation is calculated in the form of a 
Taylor series to fourth order in the invariant charge 
(a certain difference between our GMLF and the GMLF 
of [5-14J is discussed in detail below). It then turns out 
that there exists a fixed point (FP) corresponding to a 
scale-invariant (scaling) solution; moreover, the posi­
tion of the FP obtained from the GMLF calculated to 
second order is very little different from its position 
obtained from the GMLF calculated to fourth order. 
This surprising phenomenon arose because of the fact 
that the third - and fourth -order terms cancel each other 
almost exactly near the FP; this evidently indicates that 
the calculated position of the FP is fairly close to the 
true position, and that the GMLF itself, approximated in 
this way, differs little from the true GMLF in the inter­
val between its first two zeros. Since for the descrip­
tion of most of the properties of the system it is suffi­
cient to know the GMLF in this interval, this means that 
these properties can be described rather well using our 
approximation. We then calculate explicit expressions 
for the vertices and the susceptibility, valid both in the 
perturbation-theory region and in the scaling region; in 
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addition, the Green function and critical indices are cal­
culated. 

2. RENORMALIZATION OF THE GREEN FUNCTION 
AND VERTEX 

We shall consider the theory of an n-component field 
qJ (II' the Hamiltonian of which is equal to [2J : 

HIT = J d3rf!/,xo'<p' (r) + '/,[ V<p(r) ]'+'I,A,[<p'(r) ]'}. 

<p'= .E<p.'(r). (V<p)'=.E (V<p.)'. . 
We shall determine the Green function 

G.~(r) =1l.~G(r) =<<P. (r) <p~(0». 

(1) 

(2) 

where the averaging is performed with weight exp(-HiT). 
We note that in the construction of the perturbation 
theory a factor % must be associated with each closed 
loop. The zeroth Green function in the momentum repre­
sentation equals 

Go (k) =1/ (k'+xo'). (3) 

As is well-known, when the perturbation theory is 
constructed a series in the parameter Al/Ko is obtained, 
and for Al ~ Ko such an expansion is completely inappli­
cable. 

The way out of this situation is suggested by field 
theory (from a mathematical point of view, the theory of 
phase transitions is equivalent to field theory). It is 
necessary to carry out the renormalization of the inter­
action constant and Ko analogously to the renormalization 
of the charge and mass in field theory [15J. After this 
renormalization the entire dependence on the large 
parameter Al/Ko goes over into the renormalized coup­
ling constant uR' which we shall call the invariant charge, 
and into the renormalized inverse correlation length K. 

By means of Ward identities, for uR and K we obtain dif­
ferential equations whose solution gives the explicit de­
pendence of uR and K on AI' The exact Green function 
equals 

G(k)= 1 
. k2+xo'-~(k)' (4) 

where ~ (k) is the self-energy part. The structure of the 
singularities of the Green function in the complex 
k2-plane is well-known [3, 4J. All the singularities lie at 
real negative values of k2, the nearest singularity to the 
physical region being the pole at the point k 2 = -K 2, the 
position of which is determined by the equation 

k'+Xo'-~(k) =0. (5) 

Next come branch pOints at k 2 = -(2n + 1)2K2, where n 
are integers. As in field theory, it is convenient to con­
struct the theory by using the true, and not the bare pole 
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as the zeroth approximation, i.e., by starting from the 
Green function 

G=z/ (k'+x') , (6) 

where z is the residue at the pole, equal to 

(7) 

We represent the exact Green function in the form 

G=zG = z. (8) 
R k'+X'-~R(k) 

Here ~R is the regularized self-energy part, equal to 

~.=z { ~,(k) - (k'h') ( ~~: ) .' __ .' }. (9) 

That (8) is correct can be verified by direct substitution 
of (9) into (8). 

We shall now renormalize the vertex part r Ci(3P.V' The 
purpose of the renormalization of the vertex part is to 
expand r not in Al but in the renormalized interaction 
constant uR' We put 

ample, from (17) we have 
, d3p U.~ •• =uR/.Jo.-UR 1.~.,I.p., S (2n)3 GR(p) [GR(p+k)-GR(p) l. (19) 

Formulas (17) and (19) give renormalized expressions 
for the graph la. The renormalization of the more com­
plicated graphs proceeds in stages [15 J • For example, in 
the graph lb we must first renormalize the fragment 
corresponding to the right-hand part of the graph, and 
then the remaining part. As a result, we obtain the fol­
lowing expression: 

!!'u.~,"=UR3/.~.P/.'I,/p'I' S d3r:;;' (GR(P,) GR(p,) GR(p,+k) 

x [GR(P,+P,+p) -GR (p,) l-GR' (p,) GR(p,) [GR (p,+p,) -GR(p,) ]} 
(20) 

In exactly the same way we can also obtain expres­
sions for ~R' For example, renormalization of the 
graph lc gives the following expression for ~R: 

l:R(k)6.~=UR'I •• "I .. " { cp(k) - cp(ix) - (k'+x') (:; ) ., __ J, 
d'p, d'p, 

cp(k) = S (2;)6GR(P,)GR(p,)GR(P,+P,+k). (21) 

The expressions (19)-(21) correspond to the well-known 
subtraction procedure of field theory. 

r.~."(o, 0, 0, 0) =,"(R/.,." 

I a~IL\I=6ctIi6"" +6cr.J.L6!iV +6av6jill' (10) 3. EQUATION FOR THE GREEN FUNCTION 

where uR is connected with YR by the following relation: 

(11) 

For the following it is convenient to introduce also the 
quantity Zl: 

(12) 

This notation corresponds to the usual notation in field 
theory[15J• We put 

r cr.1iJ.tv=.\J alilLv+ La.lillv, 

r Rct~V=Zlr af.;.tv, LlctIiJl.v=ZtLa"J1v, 

L R ••• , (p" P2, p" P.) =L,.,,,(p,, P" P3, p.) -L,.~."(O, 0, 0, 0). (13) 

The function r RCi (3p. V(Pb P2, P3, P4) is called the re­
normalized vertex part. From (13) we obtain with the 
aid of simple algebra: 

From (12)-(14) we have the required expression for the 
vertex part: 

We now show how, with each graph for LCi(3P.V' we can 
associate a corresponding expression for LaCi(3P.V' We 
shall consider the simplest graph for LCi(3P. v' illustrated 
in Fig. la. The rectangle in Fig. 1 corresponds to the 
zeroth vertex ro (.I • Just as for the Green function, 

Ci,.,P.V 
for the vertex it is natural to choose not Al but YR as the 
zeroth approximation; we then obtain 

L' "I T S d'p .,,,=-Z"fR .~....... (2,,;)3 GR(P)GR(p+k). (16) 

From (13), (15) and (16) we have 

{ ~ } r.~"='"(R 1.,.,-uR/.,.p/ ... , S (2,,;)3 GR(P)[GR(p+k) -GR(p) 1 , (17) 

where uR is defined in (11), We introduce the so-called 
invariant vertex 

(18) 

It can be expanded in the invariant charge uR' For ex-
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We shall write the Ward identity for the Green func­
tion. Let K Oc be the value of K 0 at which the phase tran­
sition occurs. We denote 

(22) 

Then the Ward identity for the Green function has the 
form [3, 4J: 

oG-'/Ot=T(p), (23) 

where T(P) is a sum of graphs; some of these are illus­
trated (before renormalization) in Fig. 2, The point in 
these graphs corresponds to AIICi(3P.II' and the wavy line 
represents differentiation of the given Green function. 
The function T(P), just like the vertex parts rand U, 
can be renormalized, Le., represented in the form of a 
series in uR' We denote 

T (0) =t". (24) 

Then, in exactly the same way as in the preceding sec­
tion, we expand T(P) in tR and uR' For example, we shall 
renormalize the graphs in Fig. 2, The renormalization 
of the graph 2b gives zero when the subtractions are 
made, and the sum of the graphs 2a and 2c is equal to 

1 2 S d'P1 d3p, , 
T(p)6.,=tR6., +-ztRUR 6.,I ••• ,,l.P~' (2;)6GR (p,)GR(p,) 

x[GR(P,+P2+P) -GR(p,+p,) l. 
(25) 

It is easy to see from (25), and also from the more com­
plicated graphs, that 

T(p) =tnrx(p'/x'). (26) 

The fact that Ci depends on the ratio p2/K2 follows from 
the fact that, as we shall see below, uR ~ K. Solving Eq. 
(23) near p2 = _K 2, we obtain an equation for K2: 

Ox' 
-=ztR(x)rx(-l). 
at 

(27) 

We note that analogous equations were considered in [3, 4J • 

From (23) and (27) we obtain an equation for G: 

oG-1 rx(p'/x') (28) 
Z--=---. 

iJx' rx(-i) 
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FIG. 1 

FIG. 2 

Taking account of (8) and the fact that K2~ depends only 
on p2/K2, we obtain after simple transformations: 

alnz fJ alng a(p'/x'} 
aTn-;;=2=1- alnx' -~g, 

( ) _ x S"d ,{a(x')-1 fJ} c:p x --- x ---+-. 
x+1 x" 2x' (38) 

-I 

We recall that O!(O) = 1, and, therefore, when (37) is 
fulfilled, cp (x) is regular at zero. Finally, we obtain 
from (34), (35) and (38): 

g(x}=[a(-1)-fJ/2] [X+1-XS" dx,{a(x')-1+~}]-t (39) 
X'2 2x' . 

_t 

Obviously, g(-1) = (x + 1ft, as it should, inasmuch as 
the entire residue at the pole is taken into account in the 
expression for z. 

The formula (37) determines the Fisher parameter. 
However, to calculate O!(x) we need to know uR' (33) fol­
lows from (37) and (38). We note that (33) implies that, 
to within 71 for p ~ K, 

T(p)=t., G.(p}=1/(p'+x'). (40) 

x' 
g=x'GR=-G. 

z 
(29) 4. THE EQUATION FOR uR 

In formula (29) 1);2 is simply the parameter associated 
with the separation of the variables, Since on the left we 
have an expression depending on K, and on the right an 
expression depending on p2/K2, (29) represents, in es­
sence, two different equations. From the left-hand part 
of the equation we obtain 

(30) 

i.e" I) is the Fisher parameter. From the right-hand 
part of the equation we have 

1;aln g (x} _g~=~ x=p'/x'. (31) 
alnx a(-1) 2' 

First we shall consider Eq, (31) for x » 1. It is easy to 
show that g(x)O!(x) - 0 when x - 00. Then, 

g (x) = x- I +,!" G - x-· G 1 (32) 
R- p'_" - p'_' . 

This is the only possible solution, since for p »K, 
G(p, K) cannot depend on K. 

We now consider Eq. (31) for small x, Inasmuch as 
(31) is a complicated nonlinear equation, we shall sim­
plify it by making use of the following fact. It is well­
known that the Fisher parameter 1) « 1 (this will also 
be clear from the explicit expressions for 1) in Sec. 7 of 
this paper). Below we shall show that, for x ~ 1, 

la(x}-11-fJ, I g(X) __ 1_, -fJ· 
x+1 

(33) 

Therefore, we can linearize (31). First of all, we note 
that from the condition that g(x) is finite as x - 0 we ob­
tain from (31): 

g(O) = (1-fJ/2)a(-1) ""a(-l} -1']/2. (34) 

We next put 

(35) 

Substituting (35) into (31) and linearizing the equation, 
we obtain 

x(x+1)ql(x)-c:p(x) =a(x)-1+xfJ/2. (36) 

Equation (36) has two singular points, x = 0 and x =-1. 
We shall be interested in the solution that is regular at 
these points. Such a solution exists only under the con­
dition 

fJ=-2a'(O) (37) 
and has the form 
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We proceed now to the derivation of the equation for 
uR' For this we again make use of a Ward identity. We 
shall calculate the quantity oYR/OT. This derivative is 
expressed by a sum of graphs, of which the simplest are 
illustrated (before renormalization) in Fig. 3; all mo­
menta emerging from the graphs are equal to zero. It is 
clear that the whole set of graphs for aYR/OT can be ex­
pressed in terms of the exact vertices rand T, i.e., in 
the form of skeleton diagrams containing the exact Green 
functions and exact vertices. The simplest skeleton dia­
grams are illustrated (before renormalization) in Figs. 
4 and 5, where the shaded triangle represents the vertex 
T and the shaded circles represent the vertex r. 

We now renormalize the vertices appearing in the 
skeleton graphs, i.e., we expand them in uR' We first 
consider the lowest order in uR' For this we replace r 
by YRIO!J3li lJ and T by tRo 0!J3 and combine the expression 
thus obtained with the corresponding expressions from 
the two other channels obtained by the interchange of 
indices J3 ~ Ii and J3 ~ lJ. As a result, we obtain 

a1. 2 S d3p 3 -=t.1. (n+8) --. G (p). aT (2"),, 
(41) 

Taking (8), (11) and (27) into account, we have 

2 az allR , S d'p 
- --£(-1)1l.+£(-1}-.-= 1l.'(n+8) --G.'(p}. 

z rJr dr (2n}3 
(42) 

In (42) we have introduced the convenient new notation 

(43) 

Everywhere in the following we shall neglect correc­
tions of order 71, and therefore the results obtained below 
will contain errors of order I), Taking (40) into account, 
for GR we shall everywhere confine ourselves to its 
pole term, and replace T(p) by tR, Inasmuch as 
a In z /a In r = 1)/2 and I 0!(-1) - 11 ~ 1), we obtain in our 
approximation the following equation for uR: 

all. u.'(n+8) 
or 32nr'I,' 

(44) 

The principal contribution to aUR/ar arises from taking 
skeleton graphs of higher order in r into account, and 
from the renormalization of the vertices r appearing in 
the graphs; we shall neglect everything that is associa­
ted with the renormalization of ~ and T(p). 

Before proceeding to calculate the contribution of 
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FIG. 3 

FIG. 4 FIG. 5 

more complicated graphs, we shall consider Eq. (44) in 
more detail. Putting 

(45) 

we obtain 
iJg 1 n+8" 

-;)1= -T g +-2- g-, t=lnr. (46) 

As will be seen from the following, allowance for the 
next powers in the expansion of aUR/ar in uR leads to the 
result that Eq. (46) takes the form 

iJg/ot= 'J.f (g), (47) 

where >Jt(g) is expanded in a series in g, and we have 
written out the first two terms of the expansion in (46)0 
We note that allowance for terms of order 1) will not 
change the form of Eq. (47), but only leads to a correc­
tion to >}I(g). Equation ~47i is analogous to the renormal­
ization-group equation 14 , and +(g) is the GMLF. It is 
necessary to emphasize the difference between >}I(g) and 
the usual GMLF. The point is that, in field theory, the 
analogous equation is usually considered in the region of 
large momenta (p »K). Inasmuch as >}I = >}I(K/p, g), one 
usually considers >}I(O, g), whereas we are studying 
+(00, g). We note that for the four-dimensional case 
>}I (0, g) has been calculated by a series expansion in g 
up to g4 by Avdeeva and Belavin [16J. 

We return now to Eq. (47)0 The function appearing in 
the right-hand side in (46) vanishes when go = (n + 8r1 

(we shall call the representation of >Jt(g) by the first two 
terms of the series the quadratic approximation (QA)). 
On the other hand, it is well-known [14J that the zeros of 
+(g) at which +' (g) > 0 are fixed points of Eq. (47), and 
the question of the presence or absence of a FP is the 
question of whether or not a scale-invariant solution 
exists. The position of the FP determines the renorm­
alized interaction constant uRo Of course, the presence 
of a zero of >Jt(g) in the QA tells us nothing. Below we 
shall calculate the third- and fourth-order terms. It will 
then turn out that not only is this zero conserved but its 
position is almost unchangedo Clearly, this is evidence 
that a FP does indeed exist, and that our calculated value 
of its position is close to the true one. 

We shall now discuss where the FP has come from. 
It follows from the calculations of Avdeeva and 
Belavin [16J that in the four-dimensional case >Jt(g) has a 
zero only at g = O. We shall examine how this zero ap­
pears when E 1= 0 (€ = 4 - d). From an equation analogous 
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to (44), but with € « 1 (such an equation was considered 
in [17 , 18J), we obtain 

og e n+8 48) 
uR(r)=16n'gr'/2, -;)1= -z-g+-zg' ( 

It can be seen from (48) that for go = d(n + 8) a FP ap­
pears (this FP was discussed in [2J), and the corrections 
to go are proportional to higher powers of E. Our prob­
lem is to elucidate whether this zero is conserved at 
€ = 1, and where it fallso 

We shall calculate the next terms of the expansion of 
+(g)o For this it is necessary, firstly, to replace r by 
'YR in the higher-order irreducible skeleton graphs 
(eog., replacement of r by 'YR in the graph 4c gives a 
third-order contribution), and, secondly, to take into 
account the next terms of the expansion of r in uR' It is 
convenient to combine the renormalization of r and the 
differentiation into single graphs, one of which is illus­
trated in Fig. 5. The unshaded circles correspond to uR, 
and the triangle to tR• Figure 5 is the "deciphered" 
Fig. 4a, in which the left-hand vertex is expanded up to 
uR' Here it must be remembered that in the part of the 
graph which originated from the expansion of r we must 
make subtractionso Taking all this into account, and also 
discarding all corrections of order 1) (as in the deriva­
tion of (44)), we obtain, combining the contributions from 
three channels in third order in uR: 

iJUR n+8 oK , 5n+22 3 a, 
Tr= --2-a;:-UR +~UR a;:(2J-K-), 

d"pd·3q 
J= S (2n)' G'(p)G(q)G(p+q), 

d'p 
K=S(2n),G'(p), (49) 

Hence we have 
1 n+8 2 

'J.f(g)=- 2 g+-2- g2 -T(5n+22)g'. (50) 

It is not difficult to see that in >}I(g), as defined in (50), 
there is no FP. The fact that >}I(g) calculated to order g3 
has no FP tells us nothing. The point is that >Jt(g) is an 
alternating series, and the zeros of such series arise 
because of the mutual cancellation of the even and odd 
terms. For example, if in the expansion of sinx in x we 
confine ourselves to three terms of the series there will 
be no zero at x ~ TT, while four terms of the series give 
a zero at x = 3.09. Therefore, we shall calculate the 
fourth term of the expansion. The contribution of all 
fourth-order graphs (apart from the non-parquet graph, 
whose contribution is ~(5n + 22)/(n + 8)4« 1) equals 

( OUR) - = -Un' {(2n'+21n+58) QJ, (r) +2 (n'+20n+60) QJ 2 (r) 
iJr , 

+'/, (3n'+22n+56) QJ, (r)}, 

d'p d'p, d'p" {OG'(P) 
QJ,(r)= S (2n)' - ~G(p,)[G(p+p,)-G(p,)]G(p,) 

a 
x[G(P+P2)-G(P,) ] +2G'(p) or IG(p,)G(p+p,) ]G(p,) IG(p+p,) -G(P2) l}, 

d'pd'p,d'P2 {OG2 (P) 
QJ, (r) = S --- --G (p,) I G (p+p,) -G (p,) ] G (P2) 

(2n)' fir 

fj 
xl G (p,+p,) -G(p,) ] +G2 (p)--,- I G (p,) G(p+p,) ]G (p,) I G (P,+P2) -G (p,) ] 

Or 

+G'(p)G(p,)G(p+p,)~IG(p2) G(P,+P')]}, or 
d'p d'p, d'p, { aG2 (p) 

ClI,(r) = S 2--G'(P,)G(P2) [G(p+p,+p,)-G(p,+p,)] 
(2n)' ar 

+G'(p)G'(p,) ,J~ [G(p,)G(p+p,+p,)] }. (51) 
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Calculating these integrals, we obtain the following 
expression for 'If: 

'¥(g)=_+g+ n;8 g'_ : (5n+22)g'+Dg', 

D= (2n'+21n+58) p,+2 (n'+20n+60) p.+'j. (3n'+22n+56) p" 
p,=64(3aln-5/48) ""0.33, 

p,= 16 (ill ~ - :) "" 0,56, p, =~ "" 0.67, 

(52) 

For the subsequent analysis it is convenient to make 
a change of variables. We put 

to the side denotes the differentiation aG/ar, the triangle 
denotes tR' and the circle denotes ~. This graph is 
proportional to tRuRo The nonzero third-order graphs 
are illustrated in Figs. 7b and 7c. They are proportional 
to tRuR, (we recall that it is necessary to make a sub­
traction in the internal loop in the graph 7b). Since we 
have calculated aUR/ar up to uR' we must calculate 
atR/ar to tRu3• As a result, we obtain . 

a In talat=~(g), 

n+2 ( ) '+D ' s(g)=-2- g - n+2 g ,g, 

(56) 

D,= (n+2) ['I, (n+8) p,+ (n+8) p.+'I. (n+2) p.). (57) 

g = n:8' (j)(I.) = (n+8) '1' (n~8 ), 

en I. I.' 1 1. 
Dt"=(j)(I.)=-T+T- 2 W+ 2 al., 

From Eq. (57) it is easy to obtain the index y, defined 
(53) by the condition 

2D 4 5n+22 
a(n)= (n+8)3' b(n)=T(n+8)" 

a (1) ""0.36, b (1) ""0.44. 

In the new variables all the coefficients are of order 
unity. The function cp(A) is drawn in Fig. 6. It can be 
seen from (53) that when four terms of the expansion 
are taken into account there is a fixed point at 

1.0""1.06. (54) 

Inasmuch as we had AO = 1 in the QA, we see that the 
fourth-order term almost completely cancels the third­
order term, and, as can be seen without difficulty, this 
occurs over almost the whole interval [0, Ao1. This 
means that the QA is good enough for the GMLF in the 
entire interval between its first two zeros. All this taken 
together makes it possible to hope that formula (52) ap­
proximates the GMLF well. 

5. THE EQUATION FOR tR 

Before proceeding to the analysis of the Gell-Mann­
Low equations, we derive the analogous equation for the 
function tR determining the dependence of r on T = K~ 
- KOc' where KOC is the critical value of Ko. From the 
Ward identity we have, to within terms of order 1/, 

drldr=tR , Ta , (0) =1.0". (55) 

By exactly the same method as for aUR/ar, we can also 
obtain an equation for atR/ar. The simplest graph for 
atR/ar is drawn in Fig. 7a, where the wavy line drawn 

FIG. 6 

frAA 
abe d 

FIG. 7 
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From (55)-(57) it follows that 
1 

1= 1-;(go)' 

(58) 

(59) 

where go is the FP of the GMLF. If we confine ourselves 
to the QA, which corresponds to taking only the first 
term for ~ (g) into account in (57), we obtain 

1=2 (n+8)1 (n+14). (60) 

If in 'If(g) and ~ (g) we take into account all the terms 
written out in (52) and (57), the corrections to ~ (go) and 
to y for n = 1 are respectively equal to: 

(61) 

The small size of these corrections is connected with 
the fact that the corrections from +(g) and ~ (g) cancel 
each other. Evidently, this is precisely why the series 
in E for y converges well. 

We now calculate the specific-heat index a in the QA. 
The specific heat is related to the polarization operator 
ll. In the QA, ll(r) satisfies the equation represented in 
Fig. 7d, i.e., 

an =!!.-ta'(r)K'(r). 
{)r 2 

(62) 

Inasmuch as, in the scaling region, it follows from (56) 
that 

(63) 

we have, in the QA, 

II(r)=r-', a=(4-n)/(n+14). (64) 

6. SOLUTION OF THE EQUATION FOR uR AND tR 

We turn now to the solution of Eqs. (47), (53) and (56). 
We shall consider Eq. (53). The boundary condition on it 
is determined from the condition that uR = Al when 
r = A 2 (A is the cutoff momentum). Then from (45) and 
(53) we have 

al. 
Dt"=(j)(I.), 1.1'~A,=(n+8)A,I16nA=I.,. (65) 

The general solution of (65) has the form 

r S' dy (66) 
In7= (j)(y)' 

" 
Let A and A'lie in the interval [0, Ao1. Inasmuch as cp(A) 
has zeros at A = 0 and A = AO, it is convenient to repre­
sent cp-l(A) in the form (cp' (0) = -%): 

1 2 1 
--=--+ +p(I.), 
cp(l.) I. (j)' (1. 0 ) (1.-1. 0 ) 

(67) 
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where p(A) is a function with no poles. Substituting (67) 
into (66), we obtain, putting r' = A2, A I = A1, 

').. '1-;' (').. -').. ) "",'('.) (1 ) --= --' exp -[f(')..)-/(')..')J , 
').., A ')..,-').., 2 

l 

f(')..) = S p(y)dy, ')..,+').." (68) 

with cp'(Ao) > O. It can be seen from (68) that the equa­
tion has a solution for any relationship between rr and 
A1, provided that A1;' AO' But if A1 = AO, the only solu­
tion of (68) is A := Ao. This can be seen easily by re­
writing (68) in the form 

(69) 

The solution corresponding to A = Ao is singular; in 
particular, for this solution uR does not depend on A or 
A1. The existence of the singular solution and its prop­
erties were used by Wilson [2J to obtain the E-expansion., 

In the QA, AO = 1, cp' (AO) = )12, p(A) = 0, and from (68) 
we have 

[ ii1-')..,]-1 /{ n+8 [1 1]} 
')..= 1+--- ,un=A, 1+--A, '--=-- . (70) 

A ').., 1Bn 'Ir A 

From formulas (68) and (70) it can be seen clearly how 
the large bare interaction is screened for r « A1. We 
note that it is also easy to write a solution with Al ~ AO' 
But in the case Al » Ao, if cp (A) behaves as shown by the 
solid line in Fig. 6 it is known [14J that we have only one 
FP and, correspondingly, only one scale-invariant solu­
tion. But if cp(A) has the form shown by the dashed line, 
the FP A = Ao corresponds to the bare values Al < A2 
only. 

We turn now to Eq. (56). Inasmuch as tR(A) = 1, we 
have 

tR=exp { - J'Ug(r') Jdr'}' 

In the QA, ~ (g) = )l2(n + 2)g and 

_{ (n+8) A, [ 1 1 ] }-(n+z)/(n+8) 
tR - 1+--- -=.-- , 

1Bn 'Ir A 

(71) 

(72) 

tR is an experimentally observable quantity, and there­
fore formulas (71) and (72) can be checked directly. 

We now calculate r(r) = G-1(r). From (55) we have, 
taking into account that r - 0 as r - 0, 

,. d'" A2 

• = S tn (:') = S dr' exp {S dr" s(r") }. 
(lOr' 

(73) 

We substitute (72) into (73). Then, assuming that Al «A, 
we obtain 

Sw dy [ (n+8) A, ] (n+')/(n+8) 
.=2r - 1+~y , 

y' 16n'lr , 
r=T, r:?>A12; r"''ti', r<t:Alz. (74) 

7. CALCULATION OF THE FISHER PARAMETER 

We shall calculate the Fisher parameter using 
formula (36). In the calculation of O! we shall confine 
ourselves to lowest order in uR (graph 4a). Calculating 
this graph, we obtain 

a (L) = 1 + 3(n+2) Un' (~arctg~-~), 
x' 64n'x P 3x 3x 

8 n+2 
t]=-2a'(O)=---. (75) 

27 (n+8)' 

138 Sov. Phys.·JETP, Vol. 41, No.1 

FIG. 8 

From small E we have (uR = 161T2 d(n + 8)) 

a(L) = 1 + 3un'~(n+2) SW dxK,'(x)K,(x) {I, (~x) _ PX}, 
)(2 64n~p (l x 2')( 

8' n+2 
t]=T (n+8)" 

(76) 

where K1, Ko and J 1 are Bessel functions. The expres­
sion (76) coincides with the well-known result of 
Wilson [2J. We shall obtain another well-known result 
for n » 1 and compare it with the corresponding limit 
for (75). For n » 1 we must calculate, in lowest order 
in n-I, the graphs for T (p) given in Fig. 8, where the 
double wavy line represents the function 

A, 2 
r(p)= ""--

l+'/,nA,«ll(p) n«ll(p) , 

S d'q 77) 
<D(p)= (2n)' GR(q)GR(p+q). ( 

As a result, we obtain 

(P') 8n d'p, p, { 
a ~ = 1--;- S (2n)' arctg(p,/2x) [(p+p,)'+x'j' 

__ 1 _ P, 1 1 [1 1]} 
~ (p,'+x')' - x arctg(p,/2x) p,'+4x' (p+p,)'+x' - p,'+x' ' 

t]=8/3n'n. (78) 

This value of 1) coincides with that obtained by Ferrell 
and Scalapino [19J. Inasmuch as 8/31T2 1":< 0.270 and 8/27 
1":< 0.296, it can be seen that the limit of (75) as n _ 00 

coincides with (78) to within 10%. It may be hoped, 
therefore, that formula (75) approximates 1) well for 
all n. 

In conclusion the author expresses his gratitude to 
S. V. Maleev for discussion of the work. 
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