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It is shown that part of the Van Hove singularities in the phonon spectrum are conserved following 
isotopic disordering in certain sub lattices of perfect crystals with several atoms in a unit cell. This occurs 
when the singularity corresponds to a critical oscillation, the amplitude of which vanishes at those sites 
where atoms of an isotopically inhomogeneous element are located. 

The phonon state density go(w2) in an ideal crystal 
has the Singularities ~± go(O) at the frequenCies W =wi 
+ O,O ....... ± 0, most of which as a consequence of the in­
variance of the Hamiltonian under symmetry transfor­
mations of the crystal. h) 

We assume that an isotopic disordering takes place 
in such a crystal, Le., it is "converted" into a solid 
substitution solution, in which the masses of the atoms 
are randomly distributed. Will the phonon state density 
g(W2) in the solid solution have the singularities ~±g(O) 
at W -Wi = 0 ± 0, Le., at the same frequencies as the 
initial perfect crystal ?11 

Phonon excitations of the plane wave type have a 
finite lifetime in the solid solution, even in the harmonic 
approximation (to which we limit ourselves in what fol­
lows). As noted by Krivoglaz,(2) this leads in the general 
case to a smearing out of the Singularities. 

It will be shown below that, in spite of the applicability 
of this physical picture to the spectrum as a whole, some 
of the singularities of go(w2) can persist in certain solid 
solutions, albeit in modified form, since the phonons cor­
responding to these singularities of g(W2) are scattered 
with limiting weakness in such solid solutions. The re­
sults were obtained without use of perturbation theory 
in terms of the potential of the interaction with the 
components of the solid solution and without expansion 
in powers of the concentration of the latter. 

THE HAMILTONIAN OF THE PROBLEM 

The Hamiltonian H of the phonons in the solid solution 
is of the form 

H = .E ;;):;,k1) ++ .E ",.,(1, k; I', k')u.(I, k)u~(l', k'), 
I,A 1,1',h,h' 

(1) 

.E ",., (I, k; l', k') =0, 
1',11.' 

(2) 

where M(l, k), p(l, k) and ua(l, k) are the mass, momen­
tum and a-th component of the displacement of the k-th 
atom in the l-th unit cell from a position of equilibrium 
R(l, k); <Pa{3(l, k; l', k') are the spin constants. Re­
peated Greek indices mean summation from 1 to f (f 
is the dimensionality of the crystal). 

For analysis of the singularities of g(w2), we need a 
number of values which characterize the perfect crystal. 
The Hamiltonian Ho of the phonons in the perfect crystal 
is obtained by replacement of the mass M(l, k) in H by 
the mass MO(k), and the polarization vector W(k, q, j) 
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and frequency W (q, j) of the phonon with momentum q 
and polarization j are determined from the dispersion 
equation [3) 

.E { oo'(q,j)6.,6 .. ·- £'",.,(1, k; I'k') (M'(k)M'(k'»-'" 

/c- " (3) 

x exp (iq(R (l', k') -R(I, k») lW,(k', q,j) =0, 

The quantity g(w2) is expressed in terms of the trace of 
the Green's function averaged (which operation is de­
noted by the symbol <. •• )c) over all configurations of 
the solid solution: 

g(oo')= lIr~N 1m L «q,jIGlq',j'»., 
.., 

<q, j I G-'I q', j'>= «oo+ie) '_00' (q, j) 6qq .6w -<q, jl ~ I q', j'), 8-+ t-O, 
(4) 

where the matrix element of the random potential is 

<q,jl\IJlq',j')= ~ .E W.'(k,q,j)W,(k',q',j')",.,(I,k;I'k') 
I,l',k,'" 

(5) 

x( 11 M'(k) ._1__ 1 )exP(-iqR(I,k)+iq'R(l',k'», 
V M'(k') M(I,k) 1M' (k)M'(k') 

r and N are respectively the number of atoms in the unit 
cell and the number of the latter in the crystal. 

Let Gq be the group of the wave vector q in the Bril­
louin zone of a perfect crystal. For simplicity, we fur­
ther assume that the latter does not have screw axes 
and slip planes. Under the action of the elements of Gq , 
the displacements u(l, k) are transformed according to 
the law 

u.'(I, k)=S,.u,(l, k)exp(iq,s •• R.(O, k», (6) 

where S is the transformation matrix corresponding to Gq. 

We now expand the representation (6), which is de­
noted by r~ in terms of.the irreducible representations 
r(a)Gq: 

rj\U= La:CI)r(CI). (7) 
" 

(a) (a) 
If we have ak = 0, and ak' f ° for any a, k f k', then 
the k-th atol}l ~ the unit cell does take part in the oscil­
lations of r\a, of the perfect crystal, and isotopic dis­
ordering of the masses of the k-th atoms in the solid 
solution does not change the oscillations of rl a). If 

for the same go(w2), there is a.. singularity produced by 
states extremely close to r(a}, then it can also be con­
served in the solid solution, as is shown below. The con-
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ditions a&a) = 0, aft'1) I- 0 are not satisfied for the com­
mon critical point and, as a rule, for points lying on the 
axes and planes of symmetry inside the Brillouin zone 
of the perfect crystal, and the corresponding singularities 
go(w2) are smeared in the solid solution. For Simplicity, 
the calculations are carried out with separate examples. 
In particular, it is assumed that the unit cell of the per­
fect crystal with lattice constant a contains two different 
atoms, and the inversion center is located at the point 
R(O, 1). 

LINEAR CHAIN 

We now consider a perfect crystal in the form of a 
linear chain. Assuminf that GCl. is an inversion group 
at q = 0 and q =IT/a, [4 we obtam 

r,U(q=O)=A u, r,U(q=O) =Au; 

r,U(q=n/a) =Au, r,u(q=n/a) =A,. 
(8) 

For definiteness, we limit ourselves in what follows to 
the case of isotopic disordering in the sublattice k = 1, 
defining MO(I) by the condition MO(I) = 1/(I/M (1, 1) c' 
The singularitiesgo(w2) created by the optical2) phonons 
(q = 0) and phonons of polarization Au at q = IT/a are 
smeared in the solid solution by virtue of (8). For pho­
nons of momentum ql = IT /a + Q, I QI - 0 and polarization 
Ag we have 

W(1, q, A,)~QW(1, Au)(AuIV,Ctl'IA,>(Ctl'(A,)-Ctl'(A.))-', 

Ctl'(q, A,) ""Ctl'(A g ) +~Q'<A,I V,'Ctl'IA,> 
2 

+o~Q,I<AuIV,Ctl'IA,>I' Ctl'(A )+c'Q' 
2 Ctl' (A,) -Ctl' (Au) , , 

Ctl' (A" .) E<Ctl' (n/a, A" .), 

lA" ,,)E< In/a, A g, u>, W(1, A, .) E< W( 1, n/a, Ag . • ). 

(9) 

Here and below, the value of the wave vector is omitted, 
for simplicity of notation, from the expressions for 
quantities which refer directly to the critical point. 

We now choose a very small number Qo, such that 
I nl 1l2 « Qo« IT/a, and introduce the projection opera­
tors P and P on the states Iq, Ag)(ql = IT/a + Q, 
IQI « Qo) and on the orthogonal complements to them, 
respectively: 

P=l-P, P«1>P-P«1>P-Q, «1>=P«1>P+P«1>P+P«1>P+P«1>P. (10) 

Let Gp = Gp(w 2 ) and Gp = Gp(w 2 ) (w = w(lT/a, Ag) + n) 
be the Green's functions corresponding to the Hamiltonian 
Ho + P(H -Ho)P: 

<q, j II Gp _'I q', j')=8",6", (Ctl'-Ctl'( q, j)) <q, j I PI q', j'>, 
<q, j I Gp-' I q', j'>E<6,q,6", (Ctl'-Ctl'(q, j)) <q, jJ PI q', j')-<q, j I p«1>pl q', j'). 

(11) 

Neglecting the potential P<I>P for the present, we expand 
g(w2) in powers of P<I>P + P<I>P: 

g( Ctl') =<g, (P) ),+<g, (P) ),; (12) 

1 ) ~ (.) 
g,(P)=- 2nNlmSpP(Gp+Gp«1>Gji«1>Gp+". "" .t...Jg, (P), 

3=0 

(13) 

The quantity gl (I» is obtained by replacing in gl (P) the 
quantity P by P and P; Gp corresponds to phonons that 
are intensively scattered by the potential P<I>P and there­
fore we shall assume that the corresponding spectral 
density gIO)(p) is a smooth function as Inl --0 and that 
Gp has a "radius of action" p « Q-C/ (Gp(l, k);(l', k') ~O 
for IR(l, k)-R 1', k' I > p). We obtain 
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+0, 

<g:') (P),-Im I (2Ctl(A,)Q-c'Q'+ie)-'Q'dQ-A IQI''', IAI-1. 
-0, 

Inasmuch as Qo« IT/a and ~±go(n) ~ I nl-1/2 , it follows 
that we can neglect the contribution (gf2l(p)C and, simi­
larly, (g!41(P)c, (g16 )(p)c, ••• , i.e., the effect of the 
states Iq, Art on the remaining states. 

We now calculate (gl (P» c' We have 

+Qo 

'<g:') (P»,= - 2:' 1m S (2Ctl (A,)Q-c'Q'+ie)-' dQ, 
-0, (14) 

+0, 

<g,") (P) ),= - ..':..Im} (2Ctl (A g) Q-c'Q'+ie)-'lsl'F, (Gp)Q' dQ, 
2n' 

-0, 

~=<Aul V ,Ctl'IA,) (Ctl' (Ag) -Ctl' (Au)) -I, 

P (G ) '\1 < (M'(1) 1) (M'(1) 1) < ' "IGoI " ."» 
'P=l"l~,q" M(l',l)- M(I",1)- q,) pq,) , 

j',i" 

xCtl'(q',j')Ctl'(A,) W (1 ' )")W (1 q" )0") 
N Z 1 ,q, t" 

As I nl -- 0, Eqs. (14), (15) and the first term of (16) be­
come ~lnl-1/2, while 

+Q, 

<S'(P»,- S (2Ctl(A g)Q-c'Q'+iE)-'Q'(AQ.+BIQI''')dQ, IAI-IBI-l 
-0, 

and can be neglected. Thus, separating the most signi­
ficant terms of (gl(P»C, and assuming that QIP« 1, we 
get 

+Q, 

<g, (P) ),= - 2:,Im l?Ctl(A,)Q-C'Q'-lsl'F, (Gp)Q'+ie) -, dQ. (17) 

The part P<I>P of the random potential <I> (10) not pre­
viously considered gives the contribution g<ll) ~<I> J1. 
(J.L = 2, 4, ••. ) to g(w 2 ): 

+0, 

g' - 1m} J (2Ctl (A,)Q-c'Q'+ie)-'(2Ctl (Ag)Q-c'Q,'+ie} -'Q'Q,' dQ dQ, 

-AQ"IQI-'!+B+CQ,IQI'f'+DIQI'/', 

IAI-IBI-ICI-IDI-l. 

Therefore, as Inl --0, we can neglect g(21 and, Similarly 
g(41, g(6), .••• 

It is well known[5] that in the one-dimensional case 
the small but finite interaction between the particles 
with a square law of dispersion and the impurities leads 
to a complete renormalization of the spectrum of the 
states have a limitingly small group velocity. More ex­
actly, because of the diagrams with overlapping lines 
from different impurities, new excitation branches ap­
pear. In our case (8) and (9), the Simplest diagram of 
such a type leads to a phonon polarization operator n. 

+0, 

II (Q, Q) - S S (2w (Ag) Q-c'Q,'+ie) -, (2Ctl (Ag) Q-c'Q,'+ie)-' 
-0, 

x(2w (A g)Q-c2 (Q-Q,-Q') '+ie) -'Q,'Q,'(Q-Q,-Q,)' dQ, dQ,. 

Isolating the singularity of n(Q, n) by the Landau me­
thod, [6] (the effect of the remaining terms of n(Q, n) 
on ~±g(n) can be neglected), we obtain the operator II 
and the Green's function G1 for n __ C2Q2/( 18W(Ag)): 
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n (Q, Q) -Q' (Q-c'Q'/ (18w (Ag))) -I, 

G,-Q (Q-c'Q'j (18w (Ag») -I. 

It is seen that although there is a new excitation branch 
in the spectrum with frequency W = w(Ag) + c2Q2/18WAg)), 
the residue of the corresponding Green's function is 
~n, and in contrast with (17), the role of these excita­
tions in the singularity of A±g(n) is negligibly small. 
The same is true of the other similar diagrams. 

Long-wave fluctuations of the composition of the 
solid solution are in the general case very important[7] 
for analysis of A±g(n). In the considered problem, they 
do not change the frequency for which there is a singu­
larity of g(w2) and therefore are not important (the pos­
sible renormalization of F1(Gp) can be neglected because 
of the low probability of such fluctuations). Finally, be­
cause of the small effect of p~p on A±g(O), we can re­
place Gp in (15) by the complete Green's function G 
[Eq. (5)] of the phonon in the solid solution, so that we 
finally obtain 

(18) 

If the isotopic disordering exists in both sublattices, 
then the singularity (18) becomes smeared. 

TWO-DIMENSIONAL LATTICE 

As an example, we consider a square lattice, con­
structed of atoms of the type k = 0, and containing atoms 
of the type k = 1 at the centers of the squares, in the 
case of isotopic disordering of the latter. With the 
help of (7), we can show that the singularities of A±g(O), 
which arise because of the critical points ~, A, A, M, 
r in the Brillouin zone of the perfect crystal (drawing a), 
are blurred in the solid solution. At the critical point . 
X(q1= 'If/a, q2 = 0) which corresponds to the group C2V[4] 
of the wave vector, rp = B1 + B2, r¥ = A1 + A2, so that 
g(w2) will not have a singularity for W = w(B1), W =W(B2). 

We now calculate A±g(O) for W = w(Ad + 0, 101 -0. 
For states with momentum q1 = 1T/a + Q1, q2 = Q2, 
IQI -0, we have 

'( A)- '(A )+Q.' <A IV' 'IA >+Q ,1<B.IV.w'IA,>I' 
w q, I W I 2 I. w,. w'(A,)-w'(B.) ' 

(B,I V pw'IA,> 
W.(1,q,A ,) "'1I.,Q,W,(1,q,B,) w'(A,)-w'(B,) . 

(19) 

Inasmuch as the phonons (19) are weakly scattered in the 
solid solution, we obtain the following strongest singu­
larity of A ±g(O) from (4), (5), (19) under the same as­
sumptions and similarly (10)-(18), neglecting quantities 
~Q~, 101, and I OIInI oi , and assuming that, after aver­
aging over the configurations of the solid solution, ex­
pressiOns of the type FdGp) (15), possess group sym­
metry C2V of the wave vector at the critical point X; 

a b 
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a' J 1 's·, , , ., '-1 
= 8,,' l Q 1m" (f ',I cos <p+f ',2 sm q>+!e) dq> 

(20) 

-:!til (0,) He.r (F" cos' q>+F", sin' q>+ie) -I dq> }, 

F",=_~(Al1\C'<""IA,>_~I(l:I,IV'''''~AI>I' , ~B.IV.w'~AI> ," 
2 "J (,I,)-u,-{8,) u,-(A,)-w (B.) 

\"1 < ( M'(1) 1) (M'(1) 1) ( , "IGI " '''» 
x,~" ilf(I',l)- M(l",1)- q,] q,] 

I ,I ,q ,q 
J',j" 

w'(q',j'}w'(A,) W (1 "')W (1 "''') 
X N2. 8 , q ,J B, q , , 

xeXP(iQ'R(I',1)-iQ"R(l",1)-t: R,(I',1)+t : RI (I",1»), 

8=1,2; 
t1±g(Q)=ClnIQI+D9(Q), C;;'O, IDI-1, Q-+±O. 

(21) 

Thus, in the case of isotopic disordering in the sub­
lattice k = 1, the function g(w2) has a symmetric loga­
rithmic singularity and (or) a weaker singularity of the 
discontinuity type for W = W(A1), and also, as can be 
shown, for W = W(A 2 ). These singularities are smeared 
in the presence of isotopic disordering in the sublattice 
k = 2. 

THREE-DIMENSIONAL LATTICE OF THE CsCI TYPE 

For definiteness, we assume that atoms of the sorts 
k = 1 and k = 2 occupy the centers and vertices of cubes, 
respectively. The strongest singularities of A±g(02) can 
correspond to the critical points X, M, R, r in the Bril­
louin zone of the perfect crystal (Fig. b). 

We consider3) the critical point X, the wave vector of 
which the symmetry group D4h:[4] 

f,"=A,'+E', f,"=A,+E. 

We shall show that there will be sharp singularities 
in the cases w = w(A1) and w = w(E') for isotopic disor­
dering in the sublattice k = 1 of g(w2) in contrast to the 
situation for w = w(AO and w = w(E'). Inasmuch as the 
results for w = w(A1) and w = w(E) are similar, we limit 
ourselves to the analysis of g(W2) for W = W(E) + 0, 
o ± O. 

Let lE1> IEJ, IEf>, IE9 be solutions of (3) at the 
critical pOints of the Brillouin zone, which transform 
respectively as the x and y components of the doubly 
degenerate E and E' of the representations of the group 
D4h. Near the critical point X(q1 = Q1, q2 = Q2, 
q3 = 1T/a + Q3, IQ) -0), the dynamic matrix of the per­
fect crystal Do takes in the basis I E1>, I E2> the form 

Q.' I <E,' I V ,w'IE,> I' 
(EIID,IE,>"'w' (E) + 2 <E, I V .'w'IE,>+ Q,' w'(E)-w'(E') 

+Q' I<A,'lv,w'IE,>I' (22) 
, w' (E) -w' (A,') , 

, _ { • I{A"IV,w'IEI>I'}. 
(E,ID,IE,>={E,ID,IE,>-Q,Q, 2<E,IV,V,w lE,> - ",'(E)-w'(A,') , 

W.(1, q, E,)"'II.,e, •• Q/A,'1 V,w'IE,>j(w'(E)-w'(A,'» 
+e3~.Q,<S,'1 V,w'IE,>/(w'(Ej-ro'(E'». (23) 

The quantity <E2IDoIE2> is obtained from <E1IDoIE1> by 
replacement of Q1 by Q2 and Q2 by Qlo 

The phonons (23) are weakly scattered in the solid 
solution. By a method similar to that used above for the 
derivation of (18) and (21), we obtain 
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3 3 +Qo 2 

i\"'g(Q) = - 8:' 1m HI d'Q.E <E.I [(oo+ie)'-D,-F,j-'IE.>, 
-Q, 

3a3 n 2n Qo 2 

i\""g(Q) = - 8n,Im S sintldl} S dcp S Q'dQ.E (2oo(E)Q+ie-f.(l},cp)Q')-', 

0' (24) 

where 

E I I I <A,'IV,oo'IE,> I' "/ <E,'IV,oo'IE,> I' < ,F, E,>= .h Q '+ .h Q' 
oo'(E)-oo'(A,') '1'''' oo'(E)-oo'(E') '1'33', 

<E,IF,IE >= / <A,'IV,oo'IE,> /' , Q '+ / <E,'IV,w2 IE,> I' 
, oo'(E)-oo'(A,') t", oo'(E)-w'(E') I 1jl"Qa', 

I I / <A,'IV,oo'IE,> I' 
<E, F, E,>=<E,IF,IE,>=- oo'(E)-oo'(A,') 1jlI1Q,Q" 

", _ ~ < (M'(1) 1) (MO(1) 1)<' "IGI " .,,» 
'"~-""4,, M(l',1)- M(I",1)- q,J 'I,J c 

, :,q ,'? ' 
',' 

(25) w'( , ") '(E) 
x q,J 00 W (1 "')W(1 " ''') .. 1\j2 a ,q,l ~ ,q ,} 

xexp (iq'(R(I',1)-R(l", 1»-i : (R,(r,1)-R,(l",I») 

and fa(J and cp)Q2 are the eigenvalues of the matrix 
Do + F3• Calculating (d/dO)a±g(O) from (24), and leaving 
only the most divergent terms as 0 -+ ± 0, we obtain 

(26) 

For isotopic disordering in the sublattice k = 2, the 
singularities g(w2) for w = W(A1 ) and W = w(E) become 
smeared. 

We have considered above the so-called ordinary[3] 
critical points, in which aw(q, j)/aqa = 0 for a = 1,2, 
and 3 for phonons of any polarization j. Are the singu­
larities in g(w2) that are produced in go(w2) by the singu­
larities of the critical points preserved, i.e., those pro­
duced by the points where certain components of 
aW(q, j)/8qa I- O? Such critical points develop most 
frequently as a consequence of the intersection of the 
branches of the phonon spectrum of the perfect crystal. 
We consider, for example, the critical point Z (Fig. b), 
which corresponds to group C2V of the wave vector, 
and let, for definiteness, the branch of the phonon spec­
trum with symmetry A2 intersect in the critical point Z 
as a consequence of the random degeneracy with B2: 

r,u=A,+B,+B" r,"=A,+A,+B" 
<A,I V,oo'IA,>=<A,1 V,w'IA,>=<B,J V,w'IB,>=<B,1 V,Ol'IB,>=O, 

<A,lv,oo'IA,>*O, (B,IV,w'IB,>*O. (27) 

Inasmuch as the nondiagonal matrix element 
(B2IVtw2IA~ I- O~ it follows that near the critical point 
Z the states IA21 and IB~ are strongly mixed. In a per­
fect crystal, this leads to a±go(O) ~ 101, i.e., to a dis­
continuity of the derivative of go(w2). For isotopic dis­
ordering in the sublattice k = 1, the states IB2>' in con­
trast with IA2>' are strongly scattered. Therefore, the 
singularity of go(w2) in the solid solution, formed by the 
critical point Z, becomes smeared. If the singular crit­
ical point is formed by the intersection of the phonon 
branches, each of which is not scattered (at the point of 
intersection) in the solid solution, then 1he corresponding 
singularity of g(w2) will also exist in the solid solution. 

CONCLUSION 

It was shown above that in the phonon state density 
g(W2) of substitutional solid solutions formed by isotopic 
disordering of the masses in certain sublattices, the 
preserved singularities of the phonon state density 
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g(w 2) of perfect crystals are those due to phonons that 
are weakly scattered in the solid solution. The interac­
tion potential of the phonons with the components of the 
solid solution is not assumed to be small in this case. 
However, this weak scattering is sufficient for a signi­
ficant change in the singularity of g(w2) in comparison 
with a±go(O). Thus, in the two-dimensional case (f = 2), 
the situation is possible in which a±go(O) is discon­
uous, while in the solid solution a±g(O) ~ lnlOI (21). 
Such an enhancement of the singularity of the phonon 
state density in the solid solution, in compoarison with 
the perfect crystal, is due to the increase (as a conse­
quence of the finiteness of the lifetime and change in 
the dispersion law of the corresponding phonons in the 
solid solution) of the phase folume of the states that 
are important in a±g(O). In the one-dimensional (three­
dimensional) case of a solid solution, the singularity of 
g(w2) (18), (26) is bilateral (C+ I- 0, C- f 0) while in the 
perfect crystal, either C+ = 0 or C- = O. Naturally, in 
certain solid solutions, a situation can arise in which, 
for f = 1 and 3, either C· = 0 or C- = 0, while for f = 2, 
g(w2) has a singularity of the discontinuous type. Such 
will be the case, in particular, when the singularity of 
g(w2) is located at the edge of a gap or some other boun­
dary in the solid state spectrum. 

For example, let us consider a solid solution in the 
form of a linear chain (8) with interaction between near­
est neighbors. Let atoms of the type k = 1 have a mass 
ml or mo with probabilities t and 1-t. We have 

cp,,(I, 1; 1',2) =-h(6l,l'+6" 1'-1), (28) 
!p" (i, 1; 1', 1) =cp" (i, 2; 1', 2) =2h6" I', 

M'(1) = (tlm,+ (1-t)lmo)-'. (29) 

The functions g(w2) will have a singularity (18) for 
w = w(Au) = J2h/MO(2). The transfer matrix[a] Tl at 
the frequency w is equal to either T (0) or T~o): 

T _ (I.. -1) ( u. (1-1,1) ) (U' (I, 1) ) 
u, (1,1) =T I _, u, (1+1,1) , (.,- 1 ° ' 

(30) 
1..= «2h-oo'm.) (2h-w'M' (2» -2h') h-', a=O, 1. 

The transfer matrix Tl of the entire chain is the product 
of the matrices T(l)T(o)(l = 0, 1, ••• ). 

Let E± (l), (x± (l), Y ± (l», 6± (l) ye the eigenvalues, 
eigenvectors, and phases of T(l)T(o), and 

exp (i6", (I) ) = 
x'" (I) -iy", (I) 
x",(I)+iy",(I) . 

(31) 

According to Hori (a], g(w2) = 0 if IE. (l)1 > 1 E- (l)1 for all 
1 and the intervals of the phases 6+(l) and 6-(l) do not 
overlap. The quantities y2 and y-2 are eigenvalues of 
T(0)(y2 + y-2 = ;to). Near the frequency W(Au) of interest 
to us, we have 

MO(2) , 
w""oo(A.)+ 8(MO(2)-mo) 00 (A.) It , 

(32) 

where I J.LI « 1. 

Transforming to the representation in which the mat­
rix T(o) is diagonal, we find that only for ImJ.L 
= O(ml -mo)/(M°(2) -mo) < 1, IE+(l)II>IIE-(l) and the 
intervals of the phases 6+(l) and 6-(l) do not overlap for 
alll = 0, 1, •.•• Therefore, if MO(2) > mo and MO(2» ml 
(M°(2) < mo and MO(2) < md, then the Singularity of g(w2) 
of the type (18) coincides with the boundaries of the gap 
in the phonon state density of the solid solution and is 
unilateral. 
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The calculations given iwove were carried out in 
the harmonic approximation. If we take into account 
the anharmonism and the interaction of the phonons with 
the other elementary excitations, then the singularities 
(18), (21), and (26) will be smeared out over the energy 
width ro or r' in perfect crystals[2] or solid solutions, 
respectively. Generally speaking, r' ~ rb but the spe­
cific values of r' and ro depend strongly on the para­
meters of the solid solution. Thus, for example, a 
situation is possible in which ro = 0 at any order in the 
constant of the anharmonism (by virtue of the laws of 
conservation of energy and quasimomentum), while 
r' I- O. Finally, as a consequence of the inexactness of 
the adiabatic approximation, the force constants in the 
isotropic disordering of the solid solution and the per­
fect crystal are different, which makes an additional, 
but very small, contribution to r'. 

In practice, Eqs. (18), (21), and (26) are applicable 
principally to two cases: 

1) the crystal consists chiefly of light atoms, the 
isotopic scattering of the phonons in the solid solution 
is large, [2] so that r' is relatively small; 

2) the substitution solid solution is not isotopically 
disordered, but its components are such that the dif­
ference in the force constants in the solid solution and 
in the ideal crystal is small while the mass of the 
atoms is large. 

Results similar to (18), (21) and (26), can be ob­
tained also for the electron state density in a substi­
tutional solid solution with a delta-shaped interaction 
potential, the intensity of which if.>l in the l-th node is 
a random function. Those singularities of the electron 
state denSity in the perfect crystal are preserved in 
the form (18), (21), and (26) in the solid solution which 
are determined by the wave functions which have very 
small amplitude at the lattice sites. It must be empha­
sized that Bychkov[9] and Ovchinnikovbo ] recently suc­
ceeded (by assuming a Lorentzian distribution of if.>l[ll]) 
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in solving exactly the problem of the electron state den­
sity in such a system. 

The author expresses his deep gratitude to Yu. A. 
Bychkov and M. A. Krivoglaz for interesting discussions 
of the research and a number of useful suggestions. 

I)The term "perfect crysta]" will be used precisely in thiS sense in the rest 
of the paper. 

2)Analysis of g(W2) as w -+ + 0 is outside the limits of this research. 
3)Similar results are obtained for the critical points M, R. The singularity 

of go( w 2 ) corresponding to the critical point r is smeared in the solid 
solution. 
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