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The problem of calculating the interaction energy between a vortex lattice and the interface between two 
superconductors is solved. The vortex lattice is assumed to be parallel to the plane of the interface. The 
superconductors differ with respect to the penetration depth of the magnetic field and their coherence 
length. The interaction between the vortices and the interface makes possible the flow of a transport 
current perpendicular to the vortices along the interface. The current flows in a strip of width - Al + A2 near 
the boundary (A is the penetration depth). Estimates show that the critical current is a monotonically 
decreasing function of the magnetic field. The critical current density may reach - lOs AI cm 2 when the difference 
in A amounts to only 1%. 

1. INTRODUCTION AND STATEMENT OF THE 
PROBLEM 

The flow of a nondissipative volume transport current 
through a type II superconductor in the mixed state is 
possible only if the superconducting vortices are pinned 
by some sort of inhomogeneities. These inhomogeneities 
can be macroscopic inclusions of another superconduct­
ing phase. The inhomogeneous COOling of an ingot, for 
example, can lead to the appearance of such inclusions. 
After transformation of this material into a wire, these 
superconducting inclusions are stretched into long 
superconducting filaments or plates located inside the 
basic superconducting matrix. The Simplest case of 
such an inhomogeneity of which we shall speak will be 
simply a plane boundary between two superconducting 
half-spaces, when the vortices are located parallel to 
the boundary. 1) 

The problem now arises: how the pinning of the vor­
tices takes place and what will be the critical current in 
such a material? We first discuss the phYSics of the 
problem. There are two completely different approaches 
here. Let the boundary between the two superconductors 
coincide with the plane x = 0, and let the external mag­
netic field Ho be parallel to the z axis, 

Dew- Hughes and Witcomb [IJ explained the pinning of 
the vortices on the boundary between two superconduc­
tors as follows: Let the penetration depth of the mag­
netic field in the right half-space (x > 0) be equal to AI, 
and let the coherence length be ~ 1. For the left half­
space (x < 0), we have, correspondingly, A2 and b. 
Then, for a given external field Ho, the equilibrium in­
duction will be Bl for x > 0 and B2 for x < O. This means 
that a superconducting current flows along the boundary 
between the two superconductors in the direction of the 
yaxis: 

1M = _c_(B,_B2). 

411: 

This current flows in a layer - Al + A2 near the boundary. 
The interaction of vortices located in this layer with the 
current 1M leads to pinning of the entire vortex struc­
ture' and an estimate of the force of this pinning, carried 
out in the spirit of the work of Campbell and Evetts [2 J, 
(where pinning of the vortex system on the boundary of a 
superconductor with a vacuum, due to interaction of the 
vortices with their own images and with the Meissner 
current, is considered) gives the following final expres­
sion for the critical current density for a material with 
a system of dislocation cells: 
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(1) 

Here AK is the difference between the constants K of 
the Ginzburg- Landau theory of two contacting supercon­
ductors (it is assumed that AK/K « 1), Sv is the area of 
the interface per cm3 of material, (3 = 1.16. For a certain 
field H*, the curves of the reciprocal of the magnetic 
moment intersect, i.e., AM(H*) = O. This means that, in 
accord with (1), jc(H*) = O. Therefore, the authors of [IJ 
confirm that the critical current will be a nonmonotonic 
function of the field Ho in the considered case, In the 
case in which the superconducting properties of the right 
and left superconducting half-spaces are close together, 
H* <:::; Hc2/2. 

A completely different mechanism of interaction of 
the vortex with the boundary of two superconducting half­
spaces was considered in [3J. Even if there is no ex­
ternal field and, consequently, no other vortices, a single 
vortex placed near the boundary between two supercon­
ductors can turn out to be entrapped by this boundary. 
This can easily be understood. The lines of the super­
conducting current are refracted on gOing from one 
superconductor to the other. Actually, the tangential 
component of the vector potential A should be continuous 
at the boundary. In the opposite case, as can easily be 
seen, there would be an infinite magnetic field at the 
boundary. This means that (by virtue of the Ginzburg­
Landau equations in the London approximation) the tan­
gential components of the vector A 2j should be continu­
ous. On the other hand, it follows from the law of charge 
conservation that the normal components of the vector j 
should be continuous at the boundary. Thus we arrive at 
the following boundary conditions: 

(2) 

This also means that the lines of the superconducting 
current refract at the boundary. That is, the shape of 
the current lines for a vortex located close to the bound­
ary differs from circular, as is shown schematically in 
Fig. 1. And this indicates the appearance of a force act­
ing on the normal center-the force of interaction of the 
vortex with the boundary. Actually, in the case shown in 
Fig. 1, the superfluid velocity to the left of the normal 
center is greater than to the right. This means that the 
pressure difference, which appears because of 
Bernoulli's law, acts on the center in the negative direc­
tion of the x axis, i.e., the vortex is drawn to the bound­
ary,3) Further, it is necessary to recognize that in the 
transition from one material to another, a change takes 
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FIG. I. Shape of a vortex located near 
f the interface of two superconductors. The 

-H-+--r-- center of the vortex is in the medium with 
the smaller penetration depth (see note 3». 

place, the self-energy of the vortex changes, i.e., in the 
energy of the vortex at a great distance from the bound­
ary. 

Such is the state of affairs with regard to the interac­
tion of a single vortex with the interface between two 
superconductors. It is now natural to take the next step 
and consider the complete picture of interaction of the 
entire vortex lattice with the interface, with account 
taken of interaction of the vortices with one another and 
with this boundary. 

Thus, let the boundary between two superconductors 
be the plane x = O. The right half-space (x > 0) is filled 
with a superconductor with penetration depth Al and 
coherence length ~ 1. For the left half-space (x < 0) we 
have, correspondingly, '\2 and ~ 2. The difference be­
tween the superconducting characteristics of the two 
superconducting half-spaces is assumed to be small in 
what follows. The external magnetic field Ho is directed 
parallel to the z axis, Hc1 « Ho «Hc 2. In both halves, 
an intermediate state is established, and the inductions 
Bl and B2 are in equilibrium with the external field Ho. 
Calculation of the equilibrium vortex structure near the 
superconductor-vacuum interface [4J has shown that the 
parameter of the vortex lattice is not changed even in 
the immediate vicinity of the boundary of the supercon­
ductor. It is natural to extend this result to our problem 
and to assume that the periods al and a2 do not depend on 
the coordinate x. 

Qualitatively, the picture of pinning of the vortex lat­
tice on the interface can be represented as follows. 
According to[3 J, for a single vortex, there exists a po­
tential well which extends along the entire interace. One 
naturally expects that if there exists a vortex lattice, 
then an entire vortex row falls in this well. This row 
(owing to the interaction of vortices of this series with 
all the remaining vortices) now presents an obstacle to 
the motion of the entire vortex lattice in the direction of 
the x axis, This means that a superconducting transport 
current can flow along the interface in the direction of 
the y axis (see [5J). To determine its critical value, it is 
necessary to find the maximum force gradient that acts 
on the entire vortex system if it is displaced as a whole 
by a small distance along the x axis, We speak of the 
displacement of the lattice as a whole since we neglect 
its deformation under the action of the transport current. 
Actually, in the geometry considered, this deformation is 
determined by the elastic modulus of the vortex lattice 
Cll , which isequal to[6J 

B' 8H,(B) 
clI=----+c... (3) 

4rc 8B 

Inasmuch as the shear mOdulus C66 « Cll , we neglect it 
in this formula, The relative deformation of the lattice 
6a/a at the critical current Ic along the interface is de­
termined by the formula 
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Ila = CII-' (I,B/c) , 
a 
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here ~ ~ jcA, where jc is the critical current density. 
Using (3) and taking oHo(B)/oB R> 1, we have 

Ila 1 4lt 
--;;=-;-li j ).· 

If we take the reasonable estimates jc ~ 105 A/cm2 and 
A ~ 10-5 cm at B ~ 103 G, then we get 6a/a ~ 10-3. We 
shall not take such a deformation into account. 

The calculation will be carried out for a square lat­
tice, since it is easier than that of the triangular lattice, 
and the difference in the results of the calculations is 
quite unimportant for the final result, where we are deal­
ing with orders of magnitude. 

We now proceed to formulation of the problem. A 
vortex lattice is considered, which fills the right and 
left half-spaees with periods al and a2, respectively. 
The problem consists in the calculation of the dependence 
of the free energy of the system F on the displacement t::. 
of the entire vortex system as a whole. 4) In other words, 
the free energy of the system will be calculated when 
the vortices are located at pOints with coordinates 
(nal + t::., mal) for n = 0, 1, 2, ••. , m = 0, ±1, ±2, •.• and 
(na2 + t::., ma2) for n = -1, -2, ••. , m = 0, ±1, ±2, ..•. 
Moreover, we calculate the value of the restoring force 
-oF/ot::. and the critical current density jc' 

2. CALCULATION OF THE FREE ENERGY 

According to [3 J , the free energy F of our system, per 
unit length along the z axis, can be written in the form 

<D'L. F=- H(rL ), 

Src 
L 

where <1>0 is the magnetic flux quantum (<1>0 = 1Tllc/e), rL 
is the radius vector of the center of the L-th vortex, 
H(rL) is the field created by all the vortices of the sys­
tem at the center of the L-th vortex, summation being 
carried out over all the vortices of the system. 

For the calculation of F, we first find the field created 
by a Single vortex located at the point (xo, Yo). This field 
is easily found by solving the Ginzburg-Landau equation 
in the London approximation, with use of the boundary 
conditions (2) (see [3J). We give the final results: 

~ dk 
H(x,y;x"y,)= J'2-;-e'''''-Y''H.,(X, x,), a=1,2, (4) 

where the follOWing notation is used: 
<D, ( A,'U,-A,'U, ) H ( ) ~ --- e-"""-""' + e-""x+x" 

lit x, XO 2U\A\:: A,2U,+Az2UZ ' 

<Do 
Hz> (x, x,) = ). 2 +A ' e"'X-U,X, x,>O, 

-I lit 2 u~ 

x,>o, x>o; 

(5) 
x<o; 

u.=l'k'+A.-', a=1, 2. (6) 

We now write out the expression for the energy of the 
vortex system, referred to a single vortex row located 
on the x axis and to a unit height along the z axis: 

F=~ ~ H(xo'.yo';xo,O). (7) 
8rc 4. 

Xn,Xo ,Yo 

Here Xo and x~ run through all the values of the abscissa 
of the vortex lattice sites, independently, y~ runs through 
all the values of the ordinates of these sites. Substituting 
(4) in (7), we carry out calculations similar to those 
which were performed in [4, 5J. Without changing notation, 
we shall now refer the energy F to a horizontal band of 
unit width along the y axis and unit height along the z 
axis. We assume that both the contacting superconduc­
tors differ little from one another in their superconduct­
ing parameters: 

G. S. Mkrtchyan and V. V _ Shmidt 91 



II",-A" ~A" A,; la,-a,1 ~a" a,; 1£,-£,16~', 6'. 

We introduce the notation: 6A = A1 - A2, 6a = a1 - a2, 
6~ = ~ 1 - ~ 2 and carry out the following operations: 

1) We expand all the formulas in the small param­
eters 6A/A and 6a/a. 

2) Taking into account the smallness of A/a, we omit 
terms ~ AliA, Alia, and liMA. 

3) We omit terms which transform into themselves 
(i.e., remain unchanged) under the substitution 1 ~ 2 
(which corresponds to a change in the sign of A). Here 
we simply change the point assumed to be zero energy. 

4) We establish such a starting point for measuring 
the energy F(A) that F(+O) = -F(-O). 

As a result, we get 

Ill.' . [6A (2ILlIl'~ 6a F(Ll)=--slgn(t.) --. In --+2-
16n naA" 6 a' 

6a a ( 6 )] +--ln~---
2na'A' 2ns 2naA's . 

(8) 

Using the formula for the induction B in the London ap­
proximation: [7, 8J 

Ill. a 
H.""'B+--ln -, 

4nA' 2n£ 

we can easily find the connection between lia and 6A: 

~=-~~In(~), 
a 4nA A' 2ns 

(9) 

where the parameter p is determined by the characteris­
tics of the contacting materials: 

1 6£ 
P=21(M"' (10) 

It is useful to write down one more expression for p, 
which follows from (10): 

(11) 

We can now carry out some Simplifications in Eq. (8). 
We first note that the third term of this formula is small 
in comparison with the second. Actually, their ratio is 
equal to (a2/41T A 2)ln(a/21TO. If we also assume that a ~ A 
and K ~ 100, then this ratio will be of the order of 1/4. 
Therefore, we shall neglect the third component in Eq. 
(8) in what follows. We join the last component in this 
formula with the first and, using (9) and (10), we obtain 

F(Ll)=---'-sign(Ll)ln e(P+1)/ •• 
Ill. H.o 6A (2l'2n ILlI 0) 
8na 1(' A 1'as 

(12) 

We now analyze the result. We can rewrite Eq. (12) 
in a more convenient form if we introduce the field H1, 
which is the characteristic field for the pair of super­
conductors considered: 

Then Eq. (12) takes the form 

<D. H" {jA [( ILlI)' H.] F(J.)=--.. ---sign(II.)Jn - -. 
32na 1(' A 6 H, 

(13) 

We first consider the case Ho «H1. Then F(A) takes the 
form shown in Fig. 2a. Actually, all our calculations are 
correct if the vortex row that is closest to the boundary 
is still sufficiently far from it, i.e., at A »~. If A - 0, 
a logarithmic divergence appears which we shall, as 
always, cut off at distances of the order of ~. We empha­
size that F(A) is the change in the energy of the entire 
vortex lattice when it is shifted as a whole (rigid shift) 
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FIG. 2. Free energy of the vortex lattice F(A) as a function of its 
one-dimensional displacement by an amout b.: a) Ho ~ HI' b) Ho ~ HI' 

by a distance A along the x axis. The energy F(A) is 
referred to a unit surface of the interface between the 
two superconductors. It is clear that in this case the 
vortex lattice will be in a stable state at the point 2 (see 
Fig. 2a) and will experience finite and different restor­
ing forces (f+ and L) when the lattice is shifted to the 
right or left of the equilibrium position. 

If Ho »H1, the energy F(A) takes the form shown in 
Fig. 2b. This means that there exists a restoring force 
L for the displacement of the lattice to the left, but no 
restoring force L. This, of course, does not mean that 
there will be instability in the vortex lattice as a whole. 
The edge of the sample is simply not taken into account 
in the given analysiS. 

3. CRITICAL CURRENT 

Our next task will be the estimate of the critical cur­
rent, which is determined by the pinning of the vortex 
lattices on the potential barrier, given by Eq. (13). Real 
superconducting materials, to which we want to apply 
our discussions, are not of course two contacting half­
spaces. Actually it is as though there were alternating 
bands of different superconductors. We shall therefore 
consider such a model further: inside the infinite second 
superconductor there is a plane parallel plate of the first 
superconductor, and A1 > A2. The thickness of the plate 
is arbitrary, but greater than the penetration depth. An 
external magnetic field Ho is imposed parallel to the 
surface of this plate. The vortex filaments fill the entire 
space both in the plate and in the second superconductor. 

In the case in which Ho « H1, the restoring force f, 
which arises upon the displacement of the vortex lattice, 
will now be symmetric and equal to If+1 + ILl, where 

Thus, 

()F I <D.H" (jA 
i+=-s-'F(s), /-=-- =--2-' 

() J. .\~-, Snax. A6 

!=~ H" ~~ (1+..!..lln (~) I) . 
Sna x.' At, 4 H, 

We determine the critical current, as always, by equat­
ing the Lorentz force with the restoring force: 

1 
-J,B=j. 
c 

Using the connection between Hc2 and ~ (21T~ 2Hc2 = '1>0), 
we get 

eH,;' {jA ( 1 I H. I) / -J,""'--=-- 1+- In- l'H •. 
41'2nx' A 4 H, 

(14) 

The current determined by this formula is given per 
unit height of the plate (along the z axis) if the current 
flows along the y axis. If the plate is ideally homogene-
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ous and the only inhomogeneity is this boundary between 
the two superconductors, then the current flows along 
this boundary in a layer of thickness of the order of A. 
Here we use the result of [5], where it was shown that in 
a similar situation, the current flows along the wall of 
the pinned vortices. 

If Ho > H1, then, obviously, the restoring force is 
f = L According to Fig. 2b, 

t- = max j IF(~.s)!sl 
He" 6" 

41'2n)('~ 

Actually, if Ho is not much larger than H1, then the slope 
of the dashed line in Fig. 2b is less than the derivative 
of F(A) at the point 2 and, in the critical regime, the 
lattice is shifted to the left to the point 2 and will be 
maintained there by the restoring force L If the points 
2 and 1 are sufficiently far apart, then the slope of the 
dashed line determines the sufficiently large restoring 
force. 

Thus, in the case Ho > H1, we have 

I cH,;' 6" 1 

41'2n )(' ~ iN,' 
/.=max l 

_ cH,;' ~-~In!.!.!.... 
161'2n)(' A iIi, HI 

4. DISCUSSION OF THE RESULT 

(15) 

Thus, the dependence of the critical current of the 
plate on the external field is determined by Eqs. (14) 
and (15), We first consider the physical picture that has 
been developed (see [4,5]). 

A sufficiently thin superconducting plate of the first 
superconductor is placed in the second superconductor, 
and A1 > A2. The external magnetic field Ho creates a 
mixed state in both the superconductors and the vortices 
are parallel to the surfaces of the plate. In the previous 
section, it was shown that if the entire system of vortices 
is displaced as a whole transverse to the plate, then the 
force gradient begins to act on the vortices. This means 
that one can create such a state in which a finite trans­
port current proceeds along the plate perpendicular to 
the vortices. Actually, let the surfaces of the plate coin­
cide with the plates x = ±d/2. A stable state of the sys­
tem of vortices is possible if the mean magnetic field 
B at x > d/2 for -d/2 :s x:s d/2 and at x < -d/2 will 
be B2 + H1, B1 and B2 - HI, respectively, Here B1 and B2 
are the equilibrium inductions for a given field Ho in the 
first and second superconductors. It has been assumed, 
of course, that the value of HI does not exceed some 
critical value (which is determined by the critical cur­
rent). In each of the three enumerated parts of the space 
(to the right, in the plate, and to the left of it) the density 
of the vortices will be different, but homogeneous, The 
jump in the vortex density, which is produced on the 
boundaries of the plate by HI' indicates the existence of 
a transport current which is localized near the surface 
of the plate. The region of localization is of the order 
of A from each of the sides of the surface of the plate. 
Actually, the vortex density changes at the boundary in 
discontinuous fashion and the change in the magnetic 
field takes place at a distance of the order of A. Thus, 
the surfaces of the plate serve as conductors of sort for 
the nondissipative current in the mixed state, which flows 
along a "corridor" of width about 2 A along the first and 
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second superconductors near each surface of the plate. 
In the flow of the transport current, a Lorentz force is 
generated which acts on the vortices and the entire vor­
tex system as a whole is displaced in the direction of 
this force, Then a force gradient arises immediately, 
which counterbalances the Lorentz force. The equili­
brium is preserved until the current becomes less than 
critical. 

We now sum up the results obtained in the previous 
section. It is convenient to do this by introducing the 
normalized current leo and referring the external field 
to the quantity H1: 

(16) 

Equation (15) now takes the form (h > 1) 

{ ink 
i,=max (1/41'h)lnh' 

It follows unequivocally from this formula that at 1 < h 
< 54.6 we have ic = %h-1/2Inh. The quantity 54.6 is the 
root of the equation 1 = Y4 lnh. We now write out the 
final result for the critical current: 

i,=h-'/', 1 <h<54.6, 

i,='/,h-'" In h, h>54.6. 

(17) 

(18) 

(19) 

Thus, over the entire range of magnetic fields, the de­
pendence of the critical current of the plate on the mag­
netic field is a monotonically decreasing function. The 
value of the field H1 is determined by the difference be­
tween the characteristics of the two contacting super­
conductors, 

We now consider a specific case. Let both metals 
differ only by the concentrations of the impurities, i.e., 
by the mean free paths of the electrons. This means that 
OH m = 0 and, in accord with (11), p = -%. Then H1 
= IYc2/(321Te) "" 3.7 x 1O-3Hc2' In this case, all three 
formulas (17)-(19) will be realized. 

We now estimate the order of the critical current 
density jco = IcO/2A, where IcO is determined by Eq. 
(16), taking it into account here that for the considered 
case H1 = Hc2 /321Te we have . 

. cH,m 6", 
J,o=~T' 

Let OA/A = 0.01, K "" 100, Hcm ~ 103 Oe, A ~ 10-5 cm. 
Then jco ~ 105 A/cm2, i.e., a difference in the penetra­
tion depth of only 1% guarantees a sufficiently large 
density of the critical current along the interface. 

A similar situation arises in a strongly plastically 
deformed superconductors. For a sufficiently high de­
gree of plastic deformation, a cellular dislocation struc­
ture arises (see, for example, [9]). Here the mean free 
paths of the electron inside the cell and outside will be 
different. This should lead to somewhat different values 
of the penetration depth. Narlikar and Dew-Hughes [9] 

were the first to point out such a difference as the reason 
for pinning of the vortices on the dislocation cells. It is 
clear that the results of our calculation can be used to 
explain the pinning of the vortex lattice by the dislocation 
cells. 

Further, our calculation with p = -Y2(OHcm = 0) can 
explain the strong interaction of the vortices with the 
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grain boundaries. It is shown in some papers that the 
second critical field is anisotropic (see, for exam-
pIe, [10,11]), and the anisotropies can reach values of 
several percent. It then follows from our calculation that 
the boundary between the grains can effectively pin the 
vortex lattice and serve as the guide for the supercon­
ducting transport current. 

Finally, we estimate how the dependence of the mean 
volume force of pinning of the vortices (fp) should de­
pend on the temperature. For this it is convenient to ex­
press the pinning force in terms of Hc2' Defining fp 
= c-1jcB, neglecting the differences between Band Ho, 
and assuming that oA/A does not depend on the tempera­
ture (such would be the case if OA were to arise from a 
difference in the mean free paths of the electrons), we 
get from Eq. (16) 

Fietz and Webb observed just such a dependence of fp on 
Hc2 [12] in strongly deformed Nb-Ti alloys. 

We note in conclusion that the difference between our 
final result (Eqs. (17)-(19)) and the result of [1] (Eq. (1)) 
arose because the effect of refraction of the lines of flow 
of the vortices on the interface of two superconductors 
was not taken into account in [1]. 

l)Institute of Physics Studies, Armenian Academy of Sciences. 
2)Of course, if the plane boundary has infmite length in the direction of 

the vortex fIlaments, then the pinning of the vortices by the boundary 
can occur only if the magnetic field will be strictly parallel to the bound­
ary. There cannot be pinning at the smallest inclination of the vortex 
relative to the boundary-this is understood from simple geometric con­
siderations. Actually, however, the surface of separation has a very com­
plicated and irregular form. In this case, one can always separate the 
portions of the separation surface which are parallel to the vortex fila­
ments. The vortex filaments will be pinned in these sections. 
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3)The arrow in Fig. I is mistakenly directed in the opposite direction. 
4)Inasmuch as the final result will be obtained in what follows for the 

case in which the superconducting characteristics of the contacting 
materials are close to one another, we shall not take into account the 
possibility that the right and left systems of vortices can be displaced 
by different distances (AI and A,) under the action of the transport 
current. 
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