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Layered and quasi-one-dimensional superconductors are considered in which the attraction between 
electrons located on neighboring layers or filaments is the strongest. A superposition of states with spin 0 
and spin I is realized in such superconductors. The influence of a magnetic field and electron hopping on 
the properties of these superconductors is investigated. A comparison is made with experiment. 

1. INTRODUCTION 

It has been observed in certain layered superconduc­
tors that the superconductivity does not vanish in mag­
netic fields, several times exceeding the paramagnetic 
limit. [1J One possible explanation of this phenomenon is 
that the electrons in such superconductors form pairs 
with total spin equal to one. Such pairing arises if the 
attraction between electrons located in different conduct­
ing layers is the strongest. Polarization of the mole­
cules of the dielectric spaced between the conducting 
layers is a possible mechanism for this attraction. 
Below we shall not investigate specific mechanisms for 
an attraction between electrons located in different 
layers, but we shall ascertain what consequences such 
an attraction induces. It leads to the result that the elec­
trons appearing in a given pair are located in different 
layers. For a small probability of electron hopping be­
tween the layers, the Pauli exclusion principle is unim­
portant' and the total spin of the pair may be equal to 
zero or one. The most favorable situation is a super­
position of these two states. Only the pairing with spin 
one remains in the presence of sufficiently strong mag­
netic fields, parallel to the layers. An analogous 
phenomenon may appear in quasi-one-dimensional 
superconductors, In this case the fluctuations destroy 
the long range order. 

2. EQUATIONS FOR THE GAP IN LAYERED 
SUPERCONDUCTORS 

Let us consider a system of parallel planes. The 
interaction between the electrons is described by an 
effective potential V(r - r'), including the Coulomb re­
pulsion. We assume that the electrons on neighboring 
planes are attracted to each other. Neglecting electron 
hopping from one plane to another, let us write down the 
Gor'kov equations for such a system: 

(iwn-~(P)+ /loH)G,;(wn.p)+ ~ ,i"i./(w",p)=6u• (1) 

(iw,,+1;(p)-/loH)F i /(U)n,P)- L: D.i;&.;(Wn,P) =0, 

• 

On 

In Eqs. (1) and (2) 

(G<i)«~=-(T,ai« (p)a" +(p) >. 
(Fi/) «~=-(T,ai« + (p)a" + (p) >. 

(2) 

a and f3 are spin indices; i and j label the number of the 
planes; J.1. is the Bohr magneton; ax' a y' and az are the 
Pauli matrices; ~ (p) = vo(lpl - Po), and Vo and po denote 
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the velocity and momentum at the Fermi surface. Sum­
mation is carried out over repeated indices, and the vec­
tor p is parallel to the planes. Furthermore, 

V - p (' V (r r') ei(P-P'xr II -r I ') d'r ' dn' 
i} - ~ - II 2i'""' (3) 

where p is the density of states at the Fermi surface 
and n' = p'/lp I. The magnetic field in Eq. (1) is parallel 
to the planes and does not affect the orbital motion. 

First let us consider the case when the magnetic field 
is equal to zero. A nonzero solution of Eqs. (1) and (2) 
for Aij first appears at a temperature T c which is deter­
mined from the usual relationship 

1=TV~J~ 
.t.... '0,.'+0.' ., -

(4) 

In formula (4) V = max{-vij }, We assume below that 
electrons located in neighboring planes are most strongly 
attracted to each other, In this connection the interaction 
of the electrons in one plane, which may be repulsive, 
does not affect the obtained solution, 

The values of .6.ij' which are the solutions, differ from 
zero only in the case when i and j denote the labels of 
neighboring planes, (The contribution from the interac­
tion of electrons, located in planes with labels differing 
by more than two, is small and is not taken into consid­
eration belOW,) 

We shall seek the form of Aij at temperatures below 
Tc' From Eqs, (1) we obtain the following equation for 

Fi( 
(5) 

•. t 

As a consequence of the antisymmetric ,!lature 9f the 
electron wave functions, the quantities Fij and Aij must 
change sign upon simultaneous interchange of the coor­
dinates and transposition of the spin indices. Here Aij 
= 0 if i and j do not denote neighboring planes. The gen­
eral expression for .6.ij has the following form for neigh­
boring planes: 

(6) 

where nij is a unit vector which may depend on the num­
ber of the plane; aij and bij are functions of the numbers 
used to label the planes, symmetric with respect to 
interchange of the subscripts, 

The first term in Eq. (6) corresponds to pairing with 
the total spin of the pair equal to zero, and the second 
corresponds to the total spin being equal to one. 
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Equations (2) and (5) admit the following obvious solu­
tions: a and b are simultaneously equal to zero, or else 
a or b is separately equal to zero. However, for tem­
peratures smaller than Tc these solutions do not corre­
spond to a minimum of the energy. The smallest free 
energy corresponds to the solution in which 

(7) 

With this choice we have 

(8) 

We can easily find Fij from Eq. (5). Substituting Fij 
into Eq. (2), we obtain the condition that determines 6: 

l=TV~S d£ 
"-.I con'+~'+il" (9) 
". 

The solution found for ';ij has a simple form if the Z 
axis in spin space coincides with the direction of the 
vector n. In such a representation, the matrix ';ij is 
given by 

( 0 e(i-j) ) . 
:\ii=il 0 exp('<jlij), 

-8(j-i) 

8(x)=1, x>O; e(x) =0, 1<0. 
(10) 

This means that an electron with spin directed along the 
Z axis is paired with an electron having the opposite 
projection of the spin on the Z axis and located on only 
one of the two neighboring planes. 

3. MAGNETIC FIELD PARALLEL TO THE LAYERS 

An investigation of paramagnetic effects in an ex­
ternal, homogeneous magnetic field H is of interest be­
cause of the anomalous nature of the pairing. In the ab­
sence of electron hopping between the planes, no dia­
magnetic currents exist in the quasi-two-dimensional 
case in a field parallel to the planes. The magnetic field 
only acts on the spins. At temperatures close to T C' one 
can obtain equations of the Ginzburg-Landau type from 
Eqs. (1) and (2) by an expansion in terms of 6 and H 

where 

a (.-2Bft'H') =a(3a'+b')B, 
b'(JD.L =b (a'+3b')B(JD.L, 

b (.-2Bft'H') (JD" =b (a'+3b') Ban", 

1',-1' 
T=--

1', ' 

(11) 

(12) 

nil is the component of the vector n parallel to the field 
H; n 1 is the component perpendicular to the field H. The 
state with the least energy corresponds to nil '" O. For 
T < Tc we find the following results from Eqs. (11): 

{ 
a'=T/4B-'/,ft'Jf' 

for ft'H' < 3~' 
b'=·/4B+'/,ft'}f' 

a=O 

b'=./3B 

for ft'}f'>~. 
3B 

Only the trivial solution exists for T > Tc' 

(13) 

The solutions (13) completely determine the behavior 
of the system near Tc in the presence of a magnetic 
field, which does not cause diamagnetic currents. In 
sufficiently strong magnetic fields a '" O. It is physically 
clear that a sufficiently large field completely suppres­
ses the spinless state at arbitrary temperatures, since 
the electrons in a pair cannot have opposite spins. The 
electron spins are parallel in the state with spin one; 
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therefore, one can anticipate that the field does not affect 
this state. For a '" 0, Fij bom Eqs. (1) has the form 

(14) 

where 
2ib sin q 

F(q)= - con'+(~-ftaH)'+4b'sin'q (15) 

Substituting Fij from Eqs. (14) and (15) into Eq. (2), 
we have 

TV ~S sin'qdsdq 
1 = -;:;- "-.I con' + (£+ftoH) '+4b' sin' q 

w" 

TV ~S sin'qdsdq 
= -;:;- "-.I co,,'+£'+4b' sin' q . (16) 

w. 

Thus, in the presence of a sufficiently large field H the 
value of the gap ceases to depend on H, but becomes 
strongly dependent on the transverse momenta. The gap 
vanishes for momenta parallel to the planes. One can 
determine the quantity b(O) at T '" 0 from Eq. (16): 

b (O)~:\ (O)!y~ (17) 

A gap exists in the excitation spectrum in the region 
where aij F O. Therefore, the system undergoes a phase 
transition at the point where ~j vanishes. The phase 
transition line between the two superconducting states is 
determined by the equation 

1 = TV ~ S dsdqsin'q . 
".::...l (ol,,-iftoH)'+£'+4b'sin'q (18) 

"" 

In weak fields the transition temperature is close to T c 
and, as is evident from formulas (13), is a quadratic 
function of H. At low temperatures, in order of magni­
tude the critical field corresponding to this transition is 
6 (0)/fJ.. 

Formulas (1), (2), and (6) enable us to find the aver­
age spin S in the magnetic field, which determines the 
Knight shift: 

(19) 

In a sufficiently strong field, where a '" 0, the Knight 
shift is the same as in the normal metal. In weak fields 
a '" b '" 6/2, and in the linear approximation with respect 
to the field the average spin S is given by 

s=) H1' ~ S £'-con' d 
1ft .::...l (£'+co.'+il'), t (20) 

". 

In expression (20) it is more convenient to carry out the 
integration over ~ before the summation over wn. In this 
connection a difference is obtained between the average 
spin in the superconducting and normal metal. The final 
answer for the spin susceptibility X '" as/aH takes the 
form 

(21) 

where X '" P fJ. is the spin susceptibility of the normal 
metal anra. Xs is the spin susceptibility of a superconduc­
tor with the usual pairing. At T '" 0 the value of the spin 
susceptibility is equal to half the spin susceptibility of 
the normal metal. Near Tc formula (21) gives 

X=Xn(l-T). (22) 

Expression (21) indicates that only half of the "super­
conducting" electrons does not give a contribution to the 
spin susceptibility. 
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4. EFFECT OF ELECTRON HOPPING 

Hopping of the electrons from plane to plane leads to 
the appearance of diamagnetic currents even in a field 
parallel to the planes. The hoppings can be taken into 
account if the energy of the single-electron state is writ­
ten in the form 

;(p, q)=;(p)+2W(1-cosq). (23) 

in Eqs. (1). As before the vector p is parallel to the 
planes. We assume everywhere that W «tF' The solu­
tion ~ij = bij ((1" nij)uy(i - j) corresponding to pairing with 
spin one, appeared previously in the presence of a mag­
netic field. Let us consider what effect a small proba­
bility of hopping has on the temperature at which such a 
solution first appears. In accordance with this, below we 
assume that a = O. We neglect the nonlinear terms in 
~ij' Near Tc the equation for ~ij takes the form 

(24) 

AII=(A.,A.), v- (:x' {jay), 

and Xij = 2eA2(i, j)d, where d is the distance between the 
layers. In Eq. (24) B is determined by formula (12) and 
~ denotes the coherence length in the planeo This quan­
tity depends on the temperature and on the mean free 
path in the usual wayo 

Let us choose A in the form 

A=(Hysine, 0, -Hy cos fl) 

so that HII = H cos 9 and H 1 = H sin 9. 

(25) 

Let us take the solution which doesn't depend on the 
number of the plane 

l\,;=b (an) (i-j). (26) 

Then we have the following equation for b: 

[ d' 2W'B 
-1-;'·-, + 4e';2H'sin'ey'+--(1-cos(2eHcos eyd» 1 b=O. (27) 

dy < 

An analogous equation for the usual pairing in layered 
superconductors was obtained by Bulaevskii:'. [2J How­
ever, the term allowing for paramagnetic destruction of 
the superconductivity is absent from Eq. (27), which 
substantially changes the temperature dependence of the 
critical field. The condition 

«W'/T,'. (28) 

is satisfied in a narrow range near the transition tem­
perature T c or for a sufficiently large probability of 
hopping 0 In this connection small values of yare impor­
tant in Eq. (27), and it goes over into the equation deter­
mining Hc2(9) in anisotropic superconductors: 

( W'Bd'cos'e )-'1' 
H" (fl) = H" (n/2) sin' fl + , 

<s' 
(29) 

where Hc2(1T/2) is determined by the same formula as in 
isotropic superconductors: 

H" (n/2) =cIl,/21l6'. (30) 

Formula (29) shows that near the transition point the 
field Hc2(9) is proportional to T, just as in ordinary iso­
tropic superconductorso 

In the opposite limiting case, for T »W2/T~, the last 
term in Eqo (27) can be treated as a perturbation for 
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arbitrary fields. The critical field is determined by the 
component perpendicular to the layers 

H,,(fl) =H,,(n/2)/sin fl. (31) 

A field parallel to the layers only leads to a certain re­
duction of Tc' In weak fields this reduction is deter­
mined by formula (29) and is proportional to the field. In 
strong fields, 

H»WcIl,/T,d6(0) , (32) 

the cosine term in Eqo (27) oscillates rapidly and can be 
neglected. In these fields the transition temperature 
Tc(H) doesn't depend on the field and is given by 

T,(H) =T,(O) (1-2W'B). (33) 

The electron hoppings are essential in connection with 
an estimate of the influence of fluctuations on the exis­
tence of an order parameter in layered superconductors. 
In the absence of hopping, the average value of the order 
parameter would tend to zero. The presence of hopping 
leads to the result that this value decreases by the 
amount 

(34) 

For any reasonable values of W, the fluctuations be­
come important only in a very narrow range near Tco 

5. QUASI-ONE-DIMENSIONAL SYSTEMS 

Let us consider a system of parallel, conducting fila­
ments. As in the preceding case, we assume that the 
attraction between electrons located on neighboring fila­
ments is the strongesto In such a model there is an in­
stability in the zero-sound channel (the Peierls instabil­
ity) in addition to an instability in the superconducting 
channel_ We shall assume below that each filament has 
a large number of conducting bandso In this connection 
the Peierls instability does not appear, and the system 
may be described by the usual formulas of the theory of 
superconductivity. [3J In particular, Eqs. (1) and (2) are 
valid if the substitution 

(35) 

is made. The subscripts i and j determine the number 
of the filament. At a temperature close to T C' one can 
expand Eq. (2) in powers of ~ and the Ginzburg-Landau 
equation can be written down. In this approximation and 
in the absence of hopping, the expression for the free en­
ergy has the form 

F=~nSPS[-A~ '&'&'-~ c(~t.,)(~:i .. ) 2 4 1] 1l ~ az; oZ J 
I,J l,J 

(36) 

where ~ij is defined by expression (6). The minimum 
free energy for a square lattice corresponds to the solu­
tion 

(37) 

In contrast to the quasi-two-dimensional case consid­
ered above, the phases <Pij are not arbitrary, but are 
connected by the relation 

CPi;-CPJk+CPkl-cpli=(2m+1)n, m is an integer, (38) 

where i, j, k, and l are the sites of the elementary lattice 
enumerated in the order of going around the perimeter. 
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Expressions (37) and (38) represent the solution of 
the Gor'kov equations (2) and (5) at arbitrary tempera­
tures. The temperature dependence of the parameter ~ 
is determined by the usual equation (9). 

Relation (38) can be rewritten in a form which is more 
convenient for the investigation, if one changes to a new 
system of coordinates X and Y in which the origin is 
located in the middle of the side of an elementary square, 
and the axes are directed parallel to the diagonals of 
the square. The new coordinate system is rectangular. 
Any segment, joining two neighboring filaments, is de­
termined by the coordinate of its midpOint. In this nota­
tion Eq. (38) takes the following simpler form: 

rp(X, Y)-rp (x, Y ± d_\ +rp (x± d_, Y ± ~) 
'2"/ '2 '2 

-rp (X ± ,;, Y) = (2m+1) 11, (39) 

where d is the period of the lattice. 

The general solution of Eq. (39) is written in the fol­
lowing form: 

",(X, Y)=(2m+1)lIXY+f,(X)+f,(Y). 

where fl and f2 are arbitrary functions. 

(40) 

The influence of a magnetic field can be taken into 
account in the same way as in the case of layered super­
conductors. In a sufficiently strong magnetic field, the 
coefficient ~j in expression (6) for ~ij vanishes, but the 
coefficient bij doesn't depend on the field. 

In order to clarify the role of fluctuations, it is neces­
sary to expand the free energy near its minimum. Here 
the fluctuations in the mOdulus of the parameters a and b 
and in the direction of the vector n are three-dimen­
sional. In a model with a large number of bands n, these 
fluctuations are small in the region not too close to the 
transition point T »n-213, [3J and they will not be taken 
into consideration below. Only the fluctuations of the 
phase are important. The free energy has a minimum 
when the dependence on the coordinates is determined by 
expression (40). Near this minimum the free energy is 
given by 

a)' 1 (a' 2 
F=n J[ Cd' (a; + ""8 B L\' ax ~Y ) ] dZ dX dY" 

Let us utilize this expression for a calculation of the 
correlation function 

(41) 

( < (rp(O)-<p(Z))') ) (42) 
<L\(O~L\·(Z»=L\'<ei.(Ol-i.(Zl) = L\'exp - 2" 

Fluctuations in which the phases of all bonds by a 
single filament change by the same amount do not violate 
relation (38) and do not change the free energy (36). Such 
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fluctuations are one-dimensional and lead to an exponen­
tial decrease of the correlation function (42).1) 

The electron hoppings lead to the occurrence of a 
phase transition into a state with long range order. 

6. CONCLUSION 

The properties of quasi-one-dimensional and layered 
superconductors essentially depend on the ratio of the 
hopping amplitude W to the temperature. For W »Tc 
the system is three-dimensional and the difference con­
sidered above between such superconductors and ordin­
ary superconductors manifests itself in the value of the 
spin susceptibility (the Knight shift). The case W « Tc 
is more interesting. Then the quasi-two-dimensional 
systems may change into the superconducting state for 
an arbitrarily small value of the hopping probability. At 
temperatures not very close to Tc ' the superconducting 
state with pairs having nonzero spin is not destroyed by 
an arbitrarily large field. In the quasi-one-dimensional 
case the direction of the field may be arbitrary, but in 
the quasi-two-dimensional case it must be parallel to the 
conducting planes. 

The behavior of layered superconductors of 
TaS2-(pyridine) was investigated in experiment[IJ in 
magnetic fields up to 150 kOe. Such a field, parallel to 
the layers, did not destroy the superconductivity. The 
ordinary pairing would have a paramagnetic limit equal 
to 60 kOe. By analyzing the experiments of [4,5], 
Bulaevskir showed that the coherence length and the total 
mean free path are close to one another. Therefore, such 
stability with regard to the disappearance of supercon­
ductivity cannot be a consequence of spin-orbital scat­
tering. The existence in TaS2-(pyridine) of a pairing of 
electrons located in different planes serves as a possible 
explanation. Further experimental investigation is re­
quired for a final answer to this question. 

0Note added in proof (20 November 1974)" As noted by B. 1. Gal'perin, 
to whom the authors express their gratitude, the fluctuations of the spin 
are also one-dimensional. 
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