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Thermodynamical singularities of a perfect Bose gas near the Bose condensation temperature To are 
considered in the presence of a generalized field H that serves as a source of condensate particles. The 
dependence of the generalized angular momentum (the square of which gives the number of particles in 
the condensate) on the field H and on the temperature T near To is quite peculiar and'its form is 
identical to the corresponding equation of state for the two-dimensional Slater model with mobile 
impurities. The influence on the transition of randomly distributed pinned impurities is also investigated. 
Their presence results in the smoothing of the singularities in the thermodynamical quantities, and Bose 
condensation becomes possible in the one- and two-dimensional cases as well. However, since the Bose 
condensation in this case corresponds to localization of a macroscopically large number of particles in a 
microscopic region, the inclusion of the effect of finite compressibility is expected to lead to an essential 
alteration of the results and in particular to disappearance of the transition in the one-dimensional case. 

1. INTRODUCTION 

Singularities in the thermodynamic quantities at 
second-order phase transitions are widely discussed in 
literature, Particular interest has been attracted by the 
form of the equation of state in the critical region, i.e., 
by the dependence in this region of the order parameter 
on the temperature and on the generalized field (the latter 
induces that phase which is realized below To in the ab
sence of the field). The perfect Bose gas is the only 
exactly soluble three-dimensional model with a second
order phase transition (except for the somewhat non
physical spherical model [lJ). It seems, therefore, inter
esting to discuss the form of the corresponding equation 
of state near the Bose-condensation point. 

True, the above-mentioned generalized field has no 
direct physical meaning for a Bose gas, and corresponds 
to a certain source producing the Bose condensate par
ticles, [2J However, as has been discussed in a number 
of works, e.g" [2,3J introduction of such a field makes the 
thermodynamical problem analogous to those of magnetic, 
ferroelectric, and the like transitions in the presence of 
a field. Therefore, the results can provide some infor
mation about such transitions. It will be shown that the 
appropriate equation of state is quite peculiar and is of 
the same form as the analogous equation in the ferro
electric two-dimensional Slater model with mobile im
purities. [4J 

We shall moreover consider the effect which randomly 
distributed pinned impurities may have on the character 
of transition. This question has also been discussed in 
literature, Thus, it has been shown in [5J that in various 
spin systems the presence of such impurities gives rise 
to "diffuse" transitions and smooths out all the thermo
dynamical singularities. It was pointed out in [6J that the 
presence of pinned impurities makes Bose condensation 
possible even in the one-dimensional case, despite the 
fact that no phase transition occurs in the pure one
dimensional Bose gas, 

Following the arguments of [5J it will be shown that in 
the field of impurities the Bose condensation is "diffuse" 
as well, i,e., both the specific heat and the generalized 
susceptibility become less singular. As to the transition 
in the one-dimensional case, we shall note that Bose 
condensation in the field of impurities in this case ac
tually corresponds to a state of infinite density, i.e .. to 
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a macroscopically large number of particles in a micro
region. Therefore, any inclusion of the effect of finite 
compressibility should probably eliminate the possibility 
of such transitions. This is illustrated in the instance of 
a Bose-gas model with strong repulsion, considered 
in [3J 

2. THERMODYNAMICS OF THE PERFECT BOSE GAS 
IN THE PRESENCE OF A GENERALIZED FIELD 

The Hamiltonian for the perfect Bose gas in the 
presence of a generalized field H, creating condensate 
particles, can be written in the form:[2J 

:Je= ~ E,a,+a,- ~ H J dr[1Jl+(r)+1Jl(r)]' 1Jl(r)= ,Ea,<p,(r). (1) 

Here all and a~ are the Bose operators, and Ell and 'fJv(r) 
are, respectively, the single-particle energy levels and 
wave functions at H = O. If the motion of particles is 
free, then the functions 'fJ1I(r) are plane waves 
V-1 /2exp (ip' r). But as we are going to apply this to the 
case when impurities (i.e., scattering centers) are pres
ent, we shall use for now the general expression (1). 

According to (1), the role of the order parameter, 
similar to the magnetic moment in a ferromagnet, is 
played by the quantity 

M=} J dr<1Jl+(r)+1Jl(r»=f-~ <a,+<p:+a,<p,), Cf,= J dr<p,(r), (2) 

where the angle brackets denote Gibbs averaging. In what 
follows, this quantity will be referred to as the moment. 
Following the analogy, noted in [3J, between the phase 
transitions in a Bose gas and in a lattice formed by two
dimensional dipoles, we can say that M and H precisely 
correspond to the moment of the lattice and the field 
acting on an individual dipole. 

The thermodynamic potential 0 is connected with the 
Hamiltonian (1) by the usual relation 

(3) 

Here {3 = l/T, N is the particle number operator, and the 
chemical potential/J. is related to the number of parti
cles in the system by N = -ao/a/J.. 

Formally, the Hamiltonian (1) does not conserve the 
total number of particles. However, as can be readily 
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seen, the time derivative of the particle number density 
n = N /V behaves like ri a: (a~ - ao)/IV. Even though the 
quantities a~ and ao are themselves of the order of -IV, 
their difference is of the order of unity, and hence the 
particle number density is conserved in the statistical 
limit as N - co and V - co. 

The operator;' - liN, with;- given by (1), can be 
diagonalized by a canonical transformation all = all + fll 
wh~re th~ constant fll is determined by the condition that 
in £- liN have no terms linear in all and a~. As a re
sult, we find from (3) that 

For the case of free particles CPll' given by (2), equals 
Vl/20pO' and (4) assumes the form 

~ - ~ -'!.L\d 1 1- ~W-'p) 
V - 4ft + (21th)" J p n I e j, 

where Ep = p2/2m, g = 2S + 1, and S is the spin of the 
particle. Differentiating (5) with respect to Ii, we find 

(4) 

(5) 

N IF g J dp 
n=V-=4ft' + (21th)' exp[~(ep-f!)l-l' (6) 

Expressions (5) and (6) determine the thermodynamics 
of the system. In particular, the generalized moment M 
and associated susceptibility X are given by 

M 1 ii~~ H 1 aM 1 
-y- -V- all = -2;' )(=-y aH =- 2f!' (7) 

It will be recalled that for the perfect Bose gas Ii < 0 [7J, 
and hence both M and X are positive. 

We shall now consider the thermodynamics in the 
vicinity of the Bose condensation point To in the absence 
of the field, Le., near the temperature at which the sec
ond term in (6) equals n at Ii = 00 The explicit expression 
for To is given, e.go, in [7J 0 We then obtain from (6) for 
small Hand T = (T - T o)/T 0« 1 the following expression 

H' y21"d 
11:+ 4f!' = -1.-, 

where the constants y and ,\ are given by 

(8) 

1='/,n, ).=T,1;,'(,/,) (2nn') -', 1;,('/,) =2,612. (9) 

Going over from Ii to M according to Eq. (7), and re
placing the magnetization M and field H by dimensionless 
quantities m and h defined by the relations M = mVyl/2 
and H = hy5/2,\, we obtain the equation of state h(m, T) in 
the following form 

h=m(m'+'t)'. (10) 

Equation (10) is identical in form to the analogous 
equation for the two-dimensional Slater model with mo
bile impurities near the upper transition temperature 
T20 [4J In that model the specific heat Cv in the absence 
of the field has a kink at T and its derivative suffers a 
discontinuity. This again coincides with the behavior of 
Cv and dCV/dT in the three-dimensional perfect Bose 
gas under consideration. Thus, these two models have 
the same thermodynamical Singularities at the phase 
transitions 0 

As was pOinted out in [4J, Eq. (10) suggests rather 
peculiar magnetic properties. Let us give some asymp
totic relations: 
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(11a) 
(11b) 

X=1/411:1'I'h"', m=l'N for 1:<0, h<I1:I'I,. (11c) 

Thus, in a weak field and at T - To + 0 the suscepti
bility increases as T-2, whereas for all T < To and small 
h it rises as h-l /2. The magnetization m increases pro
portionally to the square root of IT I, as it does in the 
phenomenological theory of phase transitions. [7J The 
square of the spontaneous moment M2 represents the 
condensate particle density No = ?'aNT, which is an expan
sion near To of the exact expression[7J No 
= N[l - T/To)3/2] • 

In contrast to CV' the specific heat at constant pres
sure Cp has a singularity at T - To. Expressing Cp 
through Cv [7J and USing the thermodynamic identity 
(oP/oV)T = -n(oli/oN)T' we obtain the following asymp
totic forms for the singular part of Cp in the regions 
considered in (11): 

1 1 11:1" 
a) Cp~-,' b) Cp--' c) C.--. (12) 

'T h2/ S ' h 

It should be noted that the Singularity in Cp at h = 0 
and T - + 0 is the same as in the phenomenological theory 
of the critical point ([7J , Sec. 84). We also note that the 
particle correlation radius rc ([7J, Sec. 120) increases 
on approach to To as well: rc ~ 11i1-l /2 • In particular, at 
h = 0, T - +0 this gives rc ~ liT which is markedly dif
ferent from the Ornstein and Zernike result r c 
~ T-l /2 ([7J, Sec. 119). For h »T5/2 the radius rc in
creases as h-2/5. 

It can be shown that the critical exponents for CV' X, 
m, and rc satisfy all the relations of the scaling hypothe
sis which is usually employed to describe the sin1ulari
ties at second-order phase transitions (see, eogo, 8J)0 If 
we write the singular parts of these quantities at h = 0, 
T « 1 and at T = 0, h « 1, respectively, in the form 

and the correlation function K(r) at h = 0, T = 0 in the 
form r- ll, then in our model we have for the critical ex
ponents 

cx=-1, e=-'/,; 1=2, 1.='/,; 
~=lh, 15=5; f!=1, p='/,; v=1. 

Note that negative values for the exponents a and E, 
which characterize the singularity in the specific heat, 
correspond to finiteness of Cv at the transition point. 

As is well-known, in the one- or two-dimensional 
cases there is no phase transition in a perfect Bose gas. 
Still, at low temperatures both the correlation radius 
and the susceptibility X increase sharply. For the two
dimensional case (6) is replaced by 

H' . mg 
n=--xTln(l-e~') X=--

4f!' '21th' . 

(Here and below m is the particle masso) Whence we 
obtain for X at H = 0 

1 1 { [ n }-' x = 21;1 = - 2T In l-exp ( - -;r) ] 

(13) 

(14) 

Thus, in the two-dimensional perfect Bose gas at low 
T the quantities X and rc grow exponentially, as in the 
one-dimensional Ising model. In the one-dimensional 
case we find for small T 

-f!=lhm(gT/nh)', 

which gives X ~ 1/T2 and rc ~ l/T 0 
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3. PERFECT BOSE GAS IN A RANDOM EXTERNAL 
FIELD 

We shall now consider Bose condensation in the pres
ence of randomly distributed pinned impurities. The 
effect of each impurity will be described as an external 
repulsive field acting on the system. The Hamiltonian 
will still be given by (1), but €v and cp v(r) will now repre
sent the particle energies and wave functions in the 
random field of impurities at H = O. The thermodynamic 
potential is given by Eq. (4) which can be written in the 
form 

g H2~CIJ(8)dE ~ 
-= --S--+ T Sln[i-e.(.-djp(e)d8, (16) 
v 4 0 8-11 0 

where 

(17) 

p(E) is interpreted as the density of states for a par
ticle in the field of impurities. This function, as well as 
ib(€), can be expressed in terms of the retarded Green's 
function Ga of a particle in this field: [9J 

p(e)= ~ Sdr ~ ImGR(r,r), CIJ(e)= ~ Sdrdr' ~ ImGR(r,r'). (18) 

The exact expressions for the spectrum and the wave
functions of a particle in a random field are unknown for 
the three-dimensional case. However, only small values 
of E in (16) will matter in describing the tranSition, 
specifically, E « U, n2/ma2, where U is the height of the 
potential due to a single impurity, and a is its range. 
Then, for the case of low impurity concentrations c (to 
which, for simplicity, we shall confine ourselves in the 
sequel), just from dimensionality considerations, similar 
to those used in [10,9J, it is natural to assume that for 
small E the functions p(E) and ib(€) are of the form 

p(8,c)=po(e)f(~), CIJ(e,c)=~g(~). (19) ca. ca. cao 

Here a = 2/d, d being the space dimensionality, and Po(E) 
is the density of free particle states: po(E) = const 
x Ed/2-1. At x - 00 the function f(x) tends to unity, and 
at x « 1 both fex) and g(x) exponentially vanish: 
f, g ~ exp(-xd (2). The factor c- a in front of gin (19) 
is determined by the condition . 

Sill de=i. (20) 

• 
which must be fulfilled in order that Eq. (16) should go 
over into (5) as c - O. 

Differentiating (16) with respect to IJ. we obtain an 
equation for IJ. (I', H, c): 

(21) 

The transition temperature T o(c) is determined from 
Eq. (21) at H = 0 and IJ. = O. At the considered small c, 
the shift in the transition point (i T 0 = T o(c) - T 0(0), ac
cording to (19), is proportional to C 1/3 in the three
dimensional case. Moreover, Eq. (21) suggests that 
(iTo> 0, since in the important region of small E the 
level density decreases, f(x) -f(oo) < O. 

The above-mentioned exponential decrease in p(E) 
and ib(€) tends to smooth out the singularities in all the 
thermodynamic quantities near To. For example, the 
susceptibility X given by the coefficient at H2/2 in (16) 
becomes finite at all temperatures. In particular, in the 
three-dimensional case at H = 0 and T « C 1/3 we find 
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from _~19) and (16) that X ~ C-2/3, and at T »C1/3 we have 
X ~ T , as before. The specific heat Cy is infinitely 
differentiable as T - To ± 0 even though it suffers a 
jump at the pOint of transition: OCy = Cy(I' 0 - 0) 
- Cy(I'o + 0) ~ C1/3. The specific heat Cp remains finite 

C (I' ) -1/3 atT-To: p 0 ~c • AtT<Toandinthepresence 
of field H the chemical potential is nonzero only if the 
field exceeds a certain critical value Hc(T). Near Tc ' in 
particular, we find from (21) that I IJ.I = aT + bH2, where 
the constants a, b > 0 so that for small T we have Hc (I') 
~"To-T. 

As in the impurity-free case, the condensate particle 
density near To depends on T linearly: No ~ N(I'o-T). 
However, the spontaneous magnetization M/y 
= -1/y (an/aH)H = 0 is absent below To. Indeed, let us 
denote by Vo the lowest energy state at which the conden
sation occurs. The quantity Cifv which, according to (2), 

o 
determines the moment M, will be a finite microscopic 
quantity in the presence of impurities, in contrast to the 
impurity-free case when (jivo = fil. The distinction is as
sociated with the fact that, as pointed out in [10, 11J, in 
the presence of impurities the lowest energy states are 
always localized. Therefore, in the statistical limit 
y - 00, N/Y = const the quantity (jvoN~/2/y vanishes, so 
that in the absence of the field the moment is zero at 
all T. 

All these results remain also valid for the one-dimen
sional (and two-dimensional) case, discussed in [6J, if 
we replace the concentration C in the above relations by 
c 3 (or, respectively, by c2). In the one-dimensional case 
the functions p(E) and ib(E) in Eqs. (16) and (19) can be 
written down explicitly (for small E we are interested 
in). The function p(E) was found in [9J, and ib(E) enters 
also in the solution of a random-walk problem consid
ered in [12J. Therefore, if we write the result of [12J for 
the probability W(t) in the one-dimensional case in the 
form 

(22) 

then, .(E) can be found by comparing (22) with Eq. (12) 
from [12'J: 

nc2 en 4c::' en 
p(e)=-.. sh-'- <lJ(e)=-sh-'-

4k· 2k' k' k ' (23) 

where k = (2mE/1'i2)1/2. Formulae (23) illustrate the gen
eral properties of the functions P and ib in (19) which 
have been discussed above. 

For the one-dimensional case Eqs. (16), (21), and (23) 
yield To(c) ~ nc2, and, in view of the above, x(To) ~ 1/c2, 
and No ~ To - T. The speCific heat Cy(I' 0 ± 0) is infin
itely differentiable and (iCV ~ c. For the two-dimen
sional case To(C) ~ n(ln(n/c)fl, x(To) ~ lIc, (iCy ~ fC, 
and so on. 

For the most part, the results obtained agree with 
those of [5J, especially in the region T > To: all the 
thermodynamic quantities become finite and infinitely 
differentiable at the transition point. On the face of it, 
this seems to corroborate the point made in [5J that the 
presence of pinned impurities results in "diffuseness" of 
the thermodynamical singularities at a transition. 

However, certain features of the model considered 
demand great caution if we want to compare its results 
with more realistic models. The trouble is that the low
est energy level, at which condensate particles are to be 
found, would correspond to an impurity-free region of 
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maximum possible size Vo. This arises from the fact 
that the impurities surrounding this region create a po
tential barrier on its boundary, so that the particles 
"locked up" in the region have the lowest energy £0 

~ n2/m V~73 [9-l1J. But the probability to find such a reg
ion for a Poisson distribution of impurities is equal to 
c exp (-cVo). Therefore, as was mentioned above, in the 
statistical limit, N, V - 00, N /V '" const we must assume 
that V o/V - 0, or else exp(-cv 0) == O. We thus come to 
the conclusion that in such a system all the condensate 
particles fall into a region of a microscopic size, i.e., 
their density in space is infinite: No/Vo - 00 as N - 00. 

It can be easily seen that these results will still be valid 
if we allow for the pOSSibility of condensation into a 
group of lowest impurity levels and that the present 
argument pertains to the case of arbitrary (one, two, or 
three) dimensions. 

The fact that Bose condensation makes no physical 
sense under such circumstances is also apparent in the 
case of impurities with an attractive potential. One such 
impurity with an attraction sufficient to create a bound 
state of a single particle is enough for the whole perfect 
Bose gas to condense into this level, i.e., a macroscopic
ally large number of particles No ~ N would appear in a 
micro-region around that impurity. 

Incidentally, similar arguments seem to be appropri
ate in conSidering Bose condensation in a graVitational 
field. [13J In this case, like in the presence of impuri
ties, the singularity in the specific heat Cv again changes 
from a kink, a discontinuity in dCV /dT, to a jump oCV' 
However, an examination of the state of particles in the 
condensate shows that the Bose condensation in this case 
corresponds to localization of particles with microscopic 
height near the container's bottom. 

Thus, any inclusion of the effect of finite compressi
bility (repulsion at small separations) should probably 
banish some of the above features of Bose condensation 
in the field of impurities, notably the one-dimensional 
Bose condensation. 

To illustrate this assertion we shall consider a model 
of the Bose gas with strong repulsion, proposed in [3J • 
According to that work, the singular part of the Bose
gas partition function can be reduced to the partition 
function for a lattice of planar dipoles with a nearest
neighbor interaction. In doing so, the interaction con
stant J is expressed through the interaction parameters 
and the density of the Bose gas. In the one-dimensional 
case this model corresponds to a chain of planar dipoles. 
The presence of the above pinned impurities of concen
tration c can then be described by introducing randomly 
distributed impurity bonds J' f. J of a relative concentra
tion C2 ~ c/n. The resulting partition function is analog
ous to that discussed in [uT for the one-dimensional Ising 
model with impurities, and is of the form 

(24) 
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Here Io(x) is the Bessel function of an imaginary argu
ment and C1 '" 1 - C2 is the concentration of "normal" 
bonds J. Other ways of simulating the effect of impuri
ties in the chain also yield similar results (see, for ex
ample, [14J ). 

Expression (24) has no singularities at any tempera
ture, which indicates that no phase transitiun occurs. It 
is, therefore, believed that allowance for repulsion 
indeed leads to the disappearance of the phase transition 
in a one-dimensional Bose gas with impurities. 

The authors are deeply grateful to B. T. Ge'ilikman 
for his interest and valuable comments. 
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