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Interaction processes in a system of random. weakly nonlinear. acoustic waves are discussed. It is shown 
that a system of this kind exhibits both self-interaction and appreciable wave mixing. which leads to the 
smearing out of the leading edge of a sawtooth wave and. in this sense. is similar to turbulent viscosity. It 
is shown that the system spectrum in the inertial frequency band can. in general. be divided into two parts. 
The first of these is determined by the spectrum of the sawtooth wave and the second corresponds to the 
acoustic turbulence spectrum. 

Nonlinear effects in an ensemble consisting of a large 
number of finite-amplitude acoustic waves manifest 
themselves in two ways. Firstly, in the distortion of 
each of the waves as a result of self-interaction and, 
secondly, in the redistribution of energy over the spec­
trum as a result of interaction between the waves. 

If we ignore the self-interaction process, we may 
suppose that all the harmonic waves are uncorrelated. 
A system of this kind, called acoustic turbulence, was 
discussed by Zakharov and Sagdeev. [IJ Assuming that, 
in a certain region lying at sufficiently low frequencies, 
wave excitation takes place and absorption is appreciable 
only at very high frequencies, we can establish the char­
acter of the energy spectrum in the intermediate fre­
quency band, i.e., in the so-called inertial interval. It 
turns out that the spectral energy density @"k in the iner­
tial interval satisfies the three-halves law: [lJ 

(1 ) 

In reality, however, the self-interaction processes, 
which are typical for acoustics in the absence of disper­
sion, and lead to the transformation of a harmonic wave 
into a sawtooth wave, are very effective and this has, in 
fact, been noted by Kadomtsev and Petviashvili. [2J They 
have pointed out that the generation of sawtooth waves 
leads to an expression for the energy density which is 
different from that given by (1), i.e., 

(2) 

The present paper is concerned with the analysis of 
both nonlinear effects, Le., self-interaction and mixing, 
in an ensemble of weakly nonlinear waves, and the 
elucidation of the character of the energy spectrum of a 
system of this kind. We shall use an approximate ap­
proach, based on the assumption that the wave interac­
tion is weak. This will enable us, in the first approxima­
tion, to ignore the interaction between the waves and de­
termine the parameters of sawtooth waves from the 
solution of the self-interaction problem for a single 
wave. We shall then consider wave packets correspond­
ing to sawtooth waves which, in the next approximation, 
will enable us to take into account their self-interaction. 

Let us begin by considering the evolution in time of 
the following system of weakly nonlinear waves: at the 
initial time, the wave vectors are close in magnitude 
within a small range in the neighborhood of ko, but can 
have any direction so long as the solid angle no = ki/k~ 
contains one wave. The wave phases are assumed to be 
random. Therefore, k~ is the area on the surface of a 
sphere of radius ko in k space, which is defined by the 
characteristic scale of the angular correlation MJ 
= ko/ko. 
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The equations describing the propagation of acoustic 
waves with allowance for nonlinear effects in the second 
approximation take the form 

au, 1 ap' au, 1 ap' p' 
-+-_=-u.-+----at po ax, ax. po ax, poco" 

ap a 
-a + -a (pu.) =0, 

t x. 
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(ac') po 
"(= - -.+1. ap • Co 

(3) 

In this expression v, p', and p' are the velOCity, density, 
and pressure perturbations due to the acoustic wave, and 
c is the velocity of sound. The zero subscript indicates 
equilibrium values of the hydrodynamic parameters. In 
terms of the dimensionless variables 

v=u/Co, p'=p'/Poco' 
this system can be written in the form 

a1jl. 
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(5) 

If we seek the solution of (4) in the form of an expansion 
in terms of the solutions of its linear part, which is 
orthogonal in a unit volume, i.e., 

.p,= L,c.1jl"k exp{i(oo.t-kx)}, 

• 
then, following Vedenov, [3J we obtain the following equa­
tion for the slowly-varying amplitudes Ck(t): 

ac. ~ Tt= .l...lv ...... C •• C ... exp{i(ook+OOk .. -OO.)t}. k"=k-k'. (6) 
k 

The interaction potential is given by 

1 ' (k'k") (kk") 
V . ["t- ( + )+ Co (k"+k'k") ,_'----'-'_-'-klr.'k"=' -- Wk' Wt" - -Co 

2 (Uk' Olk'Wk"CJ)k 

(7) 

with the following normalization: 

~ Ck'OOk= ~ N.oo k = ~ /S.=~=M' 
~ ~! ~ poCoz 

t 
(8) 
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where Nk is the "number" of waves with wave vector k 
and E is their energy per unit volume. This equation 
describes the amplitude variation for a wave with vector 
k, due to its interaction with waves having wave vectors 
k' and k". In particular, if there is only one initial wave 
with wave vector k' = k", this equation describes the 
growth of the second harmonic of the wave due to the 
self-interaction: 

c,..=v ...... c •. 't. 

The condition that the second harmonic becomes com­
parable with the first leads directly to an estimate for 
the characteristic wave distortion time: 

1 
-- V .. • ... C ••. 
Tn 

Since, in accordance with (7), we have Vkk'k" 
l'>j %(Y + 1)w3i2, we obtain the following well-known ex­
pression for ~he time taken by the wave to be trans­
formed from a sinusoidal waveform of frequency w to 
the sawtooth waveform: [4J 

(9) 

The width /) of the low-intensity break in the sawtooth 
wave is determined by dissipation, and the order-of­
magnitude estimate for it is 

6!},.=1/Re, (10) 

where A is the wavelength of the original wave, 
Re = CtVOA/1I is the acoustic Reynolds number, II is the 
effective viscosity which determines the attenuation of 
the acoustic wave, 

pV=~T)+T)'+" (~-~), 
3 C. C. 

11 and 11' are the shear and volume viscosities, K is the 
thermal conductivity, and Cv and Cp are the specific 
heats. From the spectral standpOint, the transformation 
of the wave from a sinusoidal to a sawtooth waveform 
corresponds to the appearance of correlated harmonics 
such that the break width determines an important wave 
characteristic (see [5J), namely, the number of harmonics 
N = kN/ko, where ko and kN are, respectively, the wave 
numbers of the fundamental wave and its high-frequency 
harmonic corresponding to the spectrum limit, i.e., 

N=Re. (11) 

The appearance of breaks leads to strong attenuation 
of the wave. Its amplitude falls by an order of magnitude 
in the time given by (9) to within a numerical factor. We 
may therefore suppose that T = Tn determines the life­
time of wave packets corresponding to sawtooth waves. 

Let us now consider the interaction between wave 
packets. We recall that the harmonics making up the 
packet are correlated with one another. Because of the 
large number of interacting waves, this process has a 
random character and this was reflected in the above 
assumption that the phases of waves traveling at differ­
ent angles were uncorrelated. This process can be des­
cribed by the kinetic equation [6J 

(12) 

where k" = k - k' and . 
R(w)= S exp{i(wk+W,"-Wk)tldt. 

° 
Using the assumption that the interaction time was 
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sufficiently long, the authors of [6J aSSUll).e 'in the deriva­
tion of the kinetic equation that 

R(ro)=b(rok.+ro ... -Wt). 

In our case, the wave interaction time is determined by 
the wave lifetime, so that we have the order-of-magni­
tude result R(w) - T. 

We now estimate the time T x during which there is an 
appreciable change in the energy of the k-th harmonic 
(k = nko) of one of the sawtooth waves as a result of its 
interaction with other wave packets. To do this, we can, 
in principle, sum in (12) over all terms describing the 
interaction of the given harmonic with all the harmonics 
of another sawtooth wave, and then sum over all inter­
acting sawtooth waves. Since, however, the main contri­
bution is made by the interaction with the lowest­
frequency harmonics of the sawtooth wave, in which its 
energy is largely concentrated, it is sufficient in esti­
mating the interaction with one of the sawtooth waves to 
take into account the contribution of only one term NkNk' 
for k' ~ ko, and then sum over the angles in order to 
take into account the number of interacting waves. The 
result is 

k'-ko, k"=k-k'. 
(13) 

In this expression, the factor 0/00 corresponds to sum­
mation over the angles and takes into account the number 
of interacting waves. Moreover, 

(14) 

where k 1 is the transverse component of the wave vector 
of the harmonic and kll is the longitudinal component. 
The angle 0 defines the size of the "interaction cone," 
i.e., the region in k space which corresponds to inter­
acting waves. The quantity k 1 can be determined as fol­
lows. The departure of the wave from the ko direction by 
an angle characterized by k 1 leads to a change in the 
wave number modulus given by 

lJ.k= l' kll',+k.J.' -kll ""k/12kll , 

and this, in turn, leads to a relative dephasing given by 

(15) 

which is equivalent to frequency detuning by ~w = c~k. 
On the other hand, the lifetime T allows an efficient 
interaction between waves for which ~w does not exceed 
the value 

and hence ~w/w l'>j Mn' Equating this expression to that 
given by (15), we obtain an estimate for k1: 

k.J. 'lkll '=1'.1 n. (16) 

Since, in accordance with (7) 

we have for k' l'>j ko and k" = k - k' 

(17) 

Substituting in (13) the expressions for T = Tn and E 
given by (8) and (9), we obtain 

(18) 

where Ne = (ko/ke)2 = 1/00 is the number of waves per 
unit solid angle, 

It is clear that the interaction time decreases with 
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increasing wave frequency, so that the harmonics with 
higher n undergo faster mixing than the initial waves. 
Let us now determine which harmonics succeed in mixing 
during the lifetime T of the wave packet. For this, it is 
clear ly necessary to set Tn = T x which yields clM2wnNe 
"" Mw, and hence 

n=l/aMN,. (19) 

Comparing this result with (11), we conclude that when 
1/aMNe < Re we have n < N, and this means that har­
monics whose numbers lie between nand N do succeed 
in mixing. In the opposite case, Le., (aMNer1 > Re, we 
have n > N and harmonics of the sawtooth wave having 
the maximum number N do not succeed in interacting. 
Therefore, (19) defines the maximum number of saw­
tooth-wave harmonic in the first case. In other words, 
in this case, the width of the shock wave is no longer 
determined by viscosity, but by the interaction of high­
frequency harmonics, and is given by 

(20) 

If we introduce the turbulent viscosity IJT by the condi­
tion 

formula 1\,/A=Re,-', 

where ReT = v,\/vT' we obtain 

(21) 

We note that the expression for TX and the turbulent vis­
cosity coefficient can also be obtained in another way, 
without bringing in the kinetic equation (12). If we con­
sider the propagation of a wave with oscillatory velocity 
is v in a given noise field with fluctuation velocity E, 

using the method of Lifshitz and Rozentsverg, [7J and 
substitute for v in (3) the sum of the mean velocity u and 
the fluctuation velocity w, we can solve the equation for 
w. If the result w = W(EU) is then substituted into the 
equation for the mean velocity, this results in the ap­
pearance of the viscous term a3u/atax 2 in this equation. 
The coefficient of this term is identical with the turbulent 
viscosity given by (21). 

We thus find that for suffiCiently large initial wave 
amplitudes (when M is not too small) and sufficiently 
large No, the nonlinear wave mixing processes turn out 
to be appreciable. It is also clear that the effectiveness 
of the process depends on the number Ne of independent 
waves propagating in the interaction cone and, as Ne in­
creases, there is an increase in the number of harmon­
ics which succeed in mixing during the lifetime of the 
wave packet. 

When NoM « 1, we can have two cases: 

1. When (aMNef1 > Re, the width of the sawtooth 
wave front is determined by the spectrum of the saw­
tooth wave and is given by (2). 

2. When (aMNef1 < Re, the formula given by (19) de­
termines the maximum number of coherent sawtooth­
wave harmonics characterizing the limit of the regular 
part of the spectrum in the inertial frequency interval. 
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At higher frequencies, we have intensive mixing of 
waves, and the spectral energy density in this band is 
determined by (1) (see figure). 

When Ne ;G M-1 or no = M, Le., when the independent 
(in the sense of absence of correlation) wave corresponds 
to a solid angle ~M, the time T is sufficient to allow all 
the harmonics to mix, and there are no sawtooth waves. 

We note in conclusion that the above results can be 
used to analyze the time-independent problem of the 
spectrum of acoustic turbulence considered in [1, 2J. In 
particular, we shall suppose that, in the low-frequency 
part of the spectrum corresponding to k "" ko, there is 
continuous wave excitation whereas, at higher frequen­
cies, we have wave damping. In the intermediate fre­
quency band, the character of the spectrum is deter­
mined by nonlinear effects. 

The foregoing discussion can also be used for this 
problem although one must then introduce the concept of 
the wave range I ~ CoT rather than lifetime. 

We are indebted to L. P. Pitaevskilfor discussions 
and useful suggestions. 
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