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An effective mechanism is discussed for the establishment of an equilibrium large-scale magnetic field in a 
weakly inhomogeneous, rotating, turbulent medium (the a effect) for large values of the hydrodynamic 
Reynolds number. It is shown that when R m< I and Rm> I, where Rm is the magnetic Reynolds number, the 
steady-state magnetic energy can be much less than the turbulence kinetic energy. Estimates are obtained 
for the ratio of these two energies. Conditions are found for the parameters of gyrotropic turbulence which 
ensure the generation of a regular magnetic field. 

INTRODUCTION 

The generation of large-scale magnetic fields in 
turbulent conducting fluids (the turbulent dynamo prob
lem) has been discussed by many authors in connection 
with the origin and maintenance of magnetic fields in 
astrophysical objects. [lJ 

There is a well-known kinematic formulation of the 
problem where the statistical characteristics of the 
random velocity field are assumed given, and the reac
tion of the magnetic field on the motion of the conducting 
fluid is not taken into account. This analysis is valid, for 
example, for cosmic systems in which the energy as
sociated with the magnetic field is much less than the 
kinetic energy of random motions. Existing estimates 
based on this approximation suggest that it is possible 
to amplify the large-scale magnetic field by small-scale 
turbulence when the latter exhibits helical symmetry. [2J 

This property of turbulence, called gyrotropy, is connec
ted with the existence of helical motions with a special 
direction along the helix axis and is characterized by 
the quantity (v' curl v) which is averaged over the pulsa
tions, where v is the velocity of turbulent motionso It is 
shown in [1 ,2J that the conditions prevailing in cosmic 
objects readily admit the appearance of turbulent plasma 
motions with the required type of symmetry. For exam
ple, the situation may arise in a rotating star with a de
veloped convective envelope. The possibility that the 
magnetic field can be amplified by the turbulent dynamo 
is also confirmed by experimental data but these, un
fortunately, are not as yet very extensive and have been 
obtained under conditions somewhat different from those 
for which the theory was developed. [3J 

In the kinematic approximation, the equation describ
ing the variation in the magnetic field B = (H), averaged 
over the velocity-field ensemble, may have solutions 
which increase exponentially with time. For sufficiently 
large times and, consequently, for large magnetic fields, 
this approximation will no longer be valid because the 
reaction of the electromagnetic forces on the motion of 
the fluid becomes important, restricting the unbounded 
increase in the field and leading to the establishment of 
a stationary state. The question then arises as to what 
are the conditions for the existence of the stationary 
regime and what is the value of the steady-state mag
netic field. 

In general, theoretical analyses of this problem are 
complicated by the fact that it is necessary to solve the 
self-consistent equations of hydrodynamics and electro-
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dynamics. Estimates of the steady-state magnetic field 
are therefore frequently derived from the condition that 
the magnetic and kinetic energies are uniformly distri
buted, B2 ~ 41Tp(V2) (where p is the fluid density). How
ever, more careful analyses performed within the 
framework of various approximations have shown that it 
is possible to depart from this uniform distribution. 

Thus, the authors of [4J have considered the case of 
homogeneous gyrotropic turbulence generated by a direc
ted flux of random waves in a fluid rotating with high 
angular velocity n for large values of the hydrodynamic 
Reynolds number (Re » 1) and much smaller values of 
the magnetic Reynolds number (Rm «Re). The angular 
velocity was assumed in (4J to be much greater than the 
characteristic frequencies of the conducting turbulent 
fluid, Le., n »uolo\ Wo, vml~2, where to is the turbu
lent energy scale, Wo is the frequency of the exciting 
force, Uo is the root mean square velocity with scale to, 
and vm is the magnetic viscosity. It was assumed, more
over, that the large-scale magnetic field amplified in the 
gyrotropic medium was sufficiently large, i.e., wB 
» vml~2, where wB = Bt~1(41Tprll2. It was found that, 
under these conditions, the stationary large-scale mag
netic field might reach values much greater than the 
kinetic energy associated with the turbulence. 

On the other hand, we have the real possibility of a 
stationary state with a magnetic field much smaller than 
the value corresponding to the case of uniformly distri
buted energy, i3 = B2/41Tp(V2 ) « 1. This possibility was 
pointed out by Vatnshtetn, (5J who noted that a growing 
magnetic field in a gyrotropic medium with Re »1 led 
to the appearance of a force in the conducting fluid which 
acted as the source of additional (magnetic) gyrotropy. 
The sign of the helical symmetry of the excited gyro
tropic motions is then opposite to the sign of the helical 
symmetry of unperturbed gyrotropy, and this leads to a 
reduction in the quantity (v· curl v) and, consequently, to 
a weakening in the growth of the large -scale field. In 
this case, the establishment of a stationary regular 
magnetic field satisfying the condition i3s t < 1 is only 
achieved at the generation threshold when the growth 
rate YB is close to the growth rate YBLk <. (v T + vrJ, 

where LB is the characteristic size of the large-scale 
magnetic field and vT is the turbulent viscosity. 

It is shown in the present paper that, for large values 
of the Reynolds number (Re »1), one may have to take 
into account an effect of magnetic stresses on the gyro
scopic media, which is analogous to the effect of dissi-
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pative forces with an effective viscosity proportional to 
B2. This magnetic dissipation of the quantity (v'curl v) 
leads to a reduction in the growth rate and to the estab
lishment of a stationary energy which is associated with 
the regular magnetic field generated in the gyrotropic 
field. The effectiveness of this stabilization mechanism 
is demonstrated below in two cases, namely, small 
values of the magnetic Reynolds number (Rm < 1) when 
h < B (h is the random component of the magnetic field, 
and for Rm »1 in the case of a Gaussian distribution of 
probabilities for the velocity field and a 6-function time 
correlation. In both cases, the characteristic frequency 
of turbulent pulsations in the conducting fluid T~1 ~ UOl~1 
is assumed to be much greater than 0 and wB and, there
fore, the influence of resonance frequencies, which play 
the leading role in, [4J is not taken into account. 

It is assumed that the amplification of the magnetic 
field occurs for f3 « 1 in a time much greater than all 
the hydrodynamic times. As the regular magnetic field 
increases under these conditions, its influence on the 
hydrodynamic quantities may be looked upon as a per
turbation which does not affect the form of the generation 
equation obtained in the kinematic approximation. [1J We 
can derive from the generation equation the stationary 
equation for the magnetic energy averaged over the en
tire volume occupied by the turbulent fluid: [5J 

(1 ) 

where 
rx=_'/,.,<V rot v>, V,='/,T,<V'>. 

The right-hand side of (1) corresponds to a positive 
influx of magnetic energy from the kinetic energy of the 
pulsations for solutions which increase in time, when 
aB' curl B > 0, and the left-hand side corresponds to 
the outflow of magnetic energy due to the turbulent vis
cosity. 

Equation (1) can be used to estimate the stationary 
value f3st. All that is required is to establish the de
pendence of a and IJT on the magnetic field. 

1. ESTIMATES OF GYROTROPY IN MAGNETIC MEDIA 

As a first step, let us estimate the gyrotropy in a 
turbulent medium in the absence of a magnetic field. 
Although this estimate has been obtained by Steenbeck 
and Krause, [2J it does not appear to be sufficiently ac
curate because the correct value of a must be obtained 
with allowance for the viscosity of the medium, and this 
was not taken into account in [2J . 

It is well known [6J that helical motions with a pre
ferred direction of the helix axis may arise in an in
homogeneous rotating fluid. For the sake of simplicity, 
we consider a turbulent medium in which the density 
varies continuously and the root mean square velocity 
remains constant, 'i1p/p = q ~ l/Lr, Lr »lo where Po is 
the density, lo the prinCipal turbulence scale, and (v2) 
= const. starting with the Navier-Stokes equations, we 
have 

:t <vrotv>=4<vrotrvX01>-( diV-;rv VPol) (2)* 

+v{ <rot vLl v>+<v rot Llv> l. 

In this equation, n is the angular velocity of the fluid, 
OTo < 1, I' is the kinematic viscosity, PO is the pressure 
connected with the effect of Corio lis forces. and 6PO 
= 2 div p(v x 0). 
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The expressions 

<div [[vxrotvlxvl>, <div [vxVv'l>, <div [vx[vxO]]>, 

and (div p-1(V x 'i1po), where Po is the isotropic part of 
the random pulsations, are removed in the course of 
averaging. Using the continuity equation div pVo = 0, and 
eliminating Po from (2), we have, to within quantities of 
the order of l~ L"F 

d .. 
di<vrotv>=4Q-4v J dkk'F(M), , 

Q=<vrot [vOl>=-<vOdivv>='/,qo<v'>, (3) 

( divf-rv, Vpol) =0, 

where the spectral function F(k) corresponds to the gyro
tropic part of the correlation tensor of the velocity field 
in k space ikrEijF(k)/41Tk4 and defines the required quan
tity 

<vrotv>=-2 S dkF(k). , 
In these expressions, Q is the source of the helical mo
tions which determines, together with dissipation, the 
gyrotropy spectrum. The sign of Q corresponds to the 
predominance of the right-handed or left-handed spirals 
in the volume over which the average is evaluated. We 
note that, in the present case, Q is nonzero only when 
div V ~ 0, and this corresponds to the anisotropy of tur
bulent motions, It is clear that, in the case of weak in
homogeneity (Lr » Lo), the turbulent eddies will be 
anisotropic only for scales close to lo or greater, so that 
the main contribution to the source Q, and hence to the 
gyrotropy, will correspond to large scales. In the sta
tionary state, 

(v rot v>=Qv-''A,', 

where Ag, which characterizes the equilibrium gyrotropy 
spectrum, is defined by 

i.,'= j dk F (k) [j dk k'F (k) r'o 
o , 

In accordance with [7J, we introduce a scale which 
characterizes the energy spectrum E(k) of the turbu
lence: 

1.'= S dkE(k) [Sdkk'E(k) ] -I, 
, 0 

where A21J-1 ~ To, We then have 
(v rot v>=Q'os-QLf-llo'.o-';, 

where ~ = A~A -2, If the spectral function F(k) is sub

stantially nonzero in a narrower interval of values of k 
near l"f/ than the spectral density E(k), we have the con
dition ~ > 1 (or ~ »1), and the resulting estimate for 
the stationary value of the gyrotropy differs from the 
corresponding estimate in [2J by the factor ~ , 

The above example shows that the special direction 
of the helix axis in the medium is closely connected with 
the existence of anisotropic pulsations, There is experi
mental evidence that the anisotropy is exhibited only by 
eddies with the maximum scales, the wave numbers of 
which lie in the above energy interval and are shifted 
toward lower values. On the other hand, experiment 
indicates the existence of a high degree of isotropy of 
turbulent motion [7, 8J for scales much smaller than lo 
(large k), which is the basis of the proposed existence of 
the universal equilibrium scales. We assume that the 
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gyrotropic part of the turbulent motions must also 
undergo isotropization in the course of transition to 
smaller scales (large k). Its spectrum must therefore 
fall more rapidly toward larger k than the spectrum of 
the main isotropic part, so that for Re » 1 we have the 
condition ~ > 1. For example, if we suppose that E(k) 
~ k-5 /3 and F(k) ~ k-2 right up to the dissipation scales, 
then ~ = In Re. Of course, this assumption requires ex
perimental verification. 

The conclusions of this section do not depend on the 
adopted model of turbulence. In particular, they remain 
the same for inhomogeneous velocity fields (v2) = f(r) 
with characteristic inhomogeneity scale Lr »lo. When 
this is so, expressions of the form (div .. J in (2) will be 
nonzero (these expressions correspond to the flow of 
gyrotropy through the boundary of the volume in which 
the average is taken). It can be shown that, if we neglect 
terms of the order of (loL?)3, the contribution of these 
terms is of the order of the gyrotropy source Q, Le., 
O(v2q + vf), and that allowance for these terms does not 
essentially affect the estimated level of gyrotropy. This 
is readily verified by substituting a pseudo scalar of the 
form div A, where A is a pseudovector determined by a 
combination of q and the pseudovector 0, or one of these 
vectors. We note that, in general, the existence of gyro
tropy is not necessarily connected with the compressi
bility of the fluid and, moreover, any anisotropy produced 
by the presence of pseudovector and vector quantities in 
the turbulent medium may lead to the formation of the 
pseudoscalar quantity <v· curl v). 

2. EFFECT OF A WEAK REGULAR MAGNETIC FIELD 
ON TURBULENCE 

We shall assume that the condition {3 « 1 is satisfied 
for a regular magnetic field frozen into turbulent plasma. 
We shall show that, for large hydromagnetic Reynolds 
numbers (Re »1), the effect of a weak large-scale 
magnetic field on the balance of the kinetic energy <v2) 
of stationary turbulent motions in a conducting fluid can 
be much less than the effect on the balance of the quan
tity <v· curl v) which characterizes the turbulence 
gyrotropy. 

We shall consider stationary uniform turbulence, pro
duced by uniformly distributed sources, and denote by E 

the amount of energy entering the fluid per unit time per 
unit mass in the energy interval with characteristic 
scale 10 • Let us write down the equation for kinetic
energy dissipation with allowance for the magnetic force 
in the Navier-Stokes equation for 

<11'>=2 I dk E (k), 
o (4) 

~ 

e=4v f dk k'E(k) +(2np)-'{-rot B<[vh]>+B<[vroth] >+< [roth, h]v>}, 
o 

and also the balance equation for the energy associated 
with the random component of the magnetic field h, when 

00 

\h2) = 2 fH(k)dk, 
o 

O=vm(np) -, f dk k'H (k) - (2np) -'(B< [v rot h] >+< [rot h, h]v> l. (5) 

Combining (4) and (5), we obtain a generalization of 
the corresponding expression obtained by Chandrasek
har [9J for the case when there is a regular component 
of the magnetic field: 
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- ~ 
8=4v J dH2E(k)+vm(np)-'J dkk'H(k)-(2np)-lrotB<[vXb]>. (6) 

o 0 

For small values Rm « 1, the random component of the 
magnetic field is small in comparison with the regular 
component (h « B), and the second term on the right
hand side of (6) can be neglected in comparison with the 
first. 

When Rm « 1 we then have 
2 ~ ~ 

<[vb] > =-j"Rm {BTO J dkF(k)- rotBTo f dkE(k) }; 
o 0 

(7) 

<vrotv>=-2 f dkF(k), 
o 

if the inhomogeneity is neglected. 

The last term on the right-hand side of (6) is of the 
order of Rm{3( loLB)T~1<V2), Le., it is also much less 
than the first term which is equal to V,\ -2 <v2) to within an 
order of magnitude. The effect of a weak ({3 « 1) regular 
magnetic field on the quantity < v2), i.e., the stationary 
turbulence level, can therefore be neglected for Rm « 1. 

For large values of Rm, the random component of the 
magnetic field, h, can reach values much greater than B 
and may have an important effect on the equilibrium 
turbulence spectrum. One cannot then neglect the second 
term on the right-hand side of (6). To estimate the con
tribution of the regular magnetic field B to the energy 
balance equation (6), we shall use the well-known result 
for <vxh) [lJ for the Gaussian distribution of velocity
field probabilities and o-function correlations in time. 
This expression differs from (7) by the factor Rn\. The 
last term on the right-hand side of (6) is therefore of the 
order of (3(loLB)2T~1<V2). This is negligible in compar
ison with the first term on the right-hand side of (6) if 
the characteristic time of the large-scale magnetic field 
Tb ~ To(LBl~1)2 is much greater than the characteristic 
dissipation time ,\ 2 V -1 which, in general, is no longer a 
quantity of the order of To. 

When Rm »1 and vm > v, we can follow [lOJ and 
take ,\ .;:;;, 10 a:::; 12 as the upper estimate for the scale ,\ of 
the spectral function E(k) for uniformly distributed tur
bulent kinetic energy and magnetic pulsation energy. 
This is done by analogy with the fact that, in the absence 
of the magnetic field, ,\ .;:;;, 10Re-112. The requirement that 
the mean magnetic field must be regular, TB » ,\2v-1, 
can then take the form Rm (LBl~1)2 »Re, where Rm may 
be less than Re. We note that for the steady-state regu
lar magnetic field generated in the gyrotropic fluid, the 
last term on the right-hand side of (6) is vm (21Tpr1 
x (curl B)2. 

To take into account the effect of the weak regular 
magnetic field on <v· cur 1 v), which determines the gyro
tropic properties of the turbulence, let us consider the 
uniform gyrotropic fluid approximation, when the med
ium contains a gyrotropy source Q which is determined 
by the influence of external conditions on the maximum 
turbulence scale. It is well known [llJ that, in the case 
of a uniform fluid, the quantity <v ·curl v) is an invariant 
as v ~ 0, since the equation for this quantity, which is 
given by (2), does not contain contributions due to non
linear terms, just as in the case of the equation for <v2 ). 

Therefore, the gyrotropy balance equation obtained from 
the Navier-Stokes equation with allowance for the mag
netic field can be written in the form 
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m 

Q=4v Sdk k'F(k) + (2np)-1{B<[rot v,x roth]> 
o 

+rot B< [h rot v j >+< [rot v, rot hjh>}. 

When Rm « 1 and h « B, and if we neglect terms of 
the order of 13~, 13(loLB)3, and J321oLB , we obtain 

(8) 

Q=4v jdkk'F(k)+~~RmTo-l fdkF(k). (9) 
o 3 0 

The second expression on the right-hand side of (9) des
cribes the additional (magnetic) dissipation of gyrotropic 
motions, and the first term has the form 

m 

4'1'1.,-' S dkF(k). 
o 

In accordance with (9), when the weak regular magnetic 
field grows slowly, its influence on <v curl v> is des
cribed by 

l<vrotv>I""IQITOS(1+1/s~R",s)-" s>L (10) 

Vatnshtetn [5J has calculated the contribution of the 
magnetic force in (8) within the framework of the 
Gaussian distribution of velocity-field probabilities and 
Ii -function correlations in time in the case Rm » 1. If 
terms of the order of 13(loLB)3 and 13210LB are neglected, 
the second term on the right-hand side of (9) is, in this 
case, replaced by 

4 m 

3~TIV Sdk k'F(k) , 
o 

and if this is taken into account, we obtain 

I<Vl'otv>I""IQIT"~(1+1!3~T,)-1, Re;;>T,>1. (11) 

Therefore, the influence of a weak regular magnetic 
field on <v 'curl v> may turn out to be important, 
whereas its influence on the kinetic energy of the tur
bulence is still negligible. 

The term in (8), which corresponds to the magnetic 
gyrotropy source, [5J MO!B2B' curl B is of the order of 
T2f32L-1T~1<V2>, where Re 2: T2 > 1, when Rm »1 and 
T2 ~ ~ when Rm « 1. If we substitute this expression 
into the numerator in (10) and (11), then, using (1), we 
can verify that when f3 st < 1, allowance for the magnetic 
gyrotropy source gives small corrections (of the order 
of f3~t) to the stationary value 13st. 

3. ESTIMATE OF THE STATIONARY LARGE-SCALE 
MAGNETIC FIELD 

The stationary value of the magnetic energy averaged 
over all space when Rm « 1 can be obtained, using (1) 
and (10), from the expression 

Rm'ZoLu-vm (1 +lh~s,Rm6)' 

Here, RmO!o is the coefficient in (1) when the effect of 
the magnetic field on the motion of the fluid is not taken 
into account, o!o ~ %m~Lt~. For the steady value of the 
ratio of the magnetic energy to the kinetic energy of the 
turbulence, we have 

~st-3Rm {QToLBLj-1-36-1R", -'}. 

Positive f3st is in agreement with the condition for mag
netic-field generation in the kinematic formulation of 
the problem, Rm O!oLB > /.1m' which has the form 
OToLBL? > 3 Cl~ 0 Since OTo < 1, the generation con
dition for the regular magnetic field in the gyrotropic 
medium with Rm « 1 can be satisfied when 3~~ -1 < 1, 
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i.e., for ~ »1. The maximum estimate for ~ = ~~~-2 

~ Re yields ~ ::s l~~ -2 ~ Re, and hence we must satisfy 
the condition Re > 3~ »1. 

When Rm »1, we have from (1) and (11) 

~st-.'lT,-' {QToLBL j -'_S-1}. 

The condition that the regular magnetic field will 
grow O!oLB > /.IT then assumes the form OToLBLfl 

> ~-l. It is clear that, in the above cases, f3 st can be 
much greater than unity, and this is in agreement with 
the assumption made in Sec. 2. If we substitute LB ~ Lt, 
we can take f3st ::; OTo as the upper limit for the regular 
magnetic field. 

Let us now estimate the stationary magnetic field 
which can be maintained by turbulent motion in the con
vective envelope of a star, without taking into account 
differential rotation which tends to decrease with in
creasing turbulent viscosity. Consider, for example, a 
red giant of radius R ~ 10 Rev (where Rev is the solar 

radius) with a broad convective zone ~0.9R, rotational 
velocity V cp ~ 5 X 105 cm/sec, and height of homogeneous 
atmosphere H ~ 109 cm. If we take the characteristic 
turbulence scale to be 10 ~ O.lH, and root mean square 
velocity v ~ 5 X 103 cm/sec, we find that the upper limit 
for the steady-state magnetic energy is 

Hence it follows that B::s 4vliiT'J, i.e., when the density 
in the envelope is p ~ 107 g/cm3, we have B S 1 G. 

We note, in conclusion, that the generation of magnetic 
fields in a gyrotropic turbulent medium is determined by 
the magnitude of external factors which lead to the aniso
tropy of the eddies. The small ratio of the magnetic 
energy to the turbulent kinetic energy in this case is, 
therefore, due to the fact that the parameters charac
terizing the effects of inhomogeneity and rotation on tur
bulence are small (loL? « 1, OTo < 1). 
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