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The system of strong-coupling integral equations is solved for the problem of excitation of an ion of charge 
Z> 1 by electron impact. The representation used for the radial Green's function of the Coulomb field 
permits construction of a solution in the form of a proper expansion in the small parameter Z - I. The 
asymptotically exact expression for the scattering matrix contains two terms which respectively describe 
potential and resonance scattering. It is shown that coupling of the open channels leads to small 
corrections in the parameter Z - I to the potential scattering. In the cross section averaged over the 
resonances, the contribution of the resonance term corresponding to strong coupling with the closed 
channels has the same order of magnitude as potential scattering, and in a number of cases it is dominant. 
As an illustration we present the results of numerical calculations of the cross sections for excitation of a 
number of transitions in the lithiumlike ion of oxygen. 

1. In the scattering of electrons by positively charged 
ions, the attractive Coulomb field leads to character­
istic features in the cross sections near the thresholds 
of new (energetically closed) channels (see ref. 1), the 
cause of which is the formation and decay of quasi­
stationary states of the system ion + electron (so-called 
resonance scattering). Baz' [2J established the existence 
of near-threshold resonance structure and jumps in the 
elastic cross sections. Gallitis [3J and Seaton [4] ob­
tained a generalization of the results of Baz' [2J to the 
case of inelastic processes. In refs. 1-4 the analytic 
properties of the scattering matrix have been inves­
tigated in the immediate vicinity of the threshold of the 
new channel. Use of the results of refs. 3 and 4 for cal­
culation of the cross sections for excitation of ions by 
electron impact requires, however, solution of the 
strong-coupling equations, i.e., reduces to another ex­
tremely complex problem. [5J Therefore the question of 
the quantitative contribution of resonance scattering to 
the cross section and consequently of the accuracy of 
methods not taking it into account, which is character­
istic of most applications, remains open to a significant 
degree. 

In the problem of excitation of multiply charged ions 
by electron impact, the small parameter Z-l naturally 
arises, where (Z-l) is the charge of the ion. This per­
mits construction of a solution of the many-channel 
problem in the form of an asymptotic series in powers 
of Z-l. In the present work a proper expansion has been 
obtained on the basis of the approach developed by 
Feshbach. r6, 7J The representation used by us for the 
Green's function of the Coulomb field permits separa­
tion in explicit form of the effects of resonance scatter­
ing, which provide a contribution to the cross section of 
the same order in the parameter Z-l as direct (potential) 
scattering. 

2. We will proceed from the system of radial strong­
coupling equations written in Coulomb units: 

{ ~_I(I+~+~+kr'}Fr=..!:... ~ Urr.Fr .. 
dr' r r Z~ 

r' 

Here Z = Zn-N + 1, where Zn is the charge of the 
nucleus and N is the number of electrons of the ion, 

(1) 

a = 1-Z-t, r is the complete set of quantum numbers of 
the channel, and l is the orbital angular momentum of 
the outer electron. In the general case the potentials 
Urr , are integral operators and are expressed in terms 
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of radial integrals (see ref. 8). It is important that for 
Z » 1 all Urr , are practically independent of Z. 

We will rewrite the system (1) in integral form, 
separating the open channels (r = 0) and the closed 
channels r = (3): 

(2) 

(3) 

The function Pr 0 is the regular solution of the homo­

geneous equation (1) for the entrance channel. The 
kernels of the integral operators are the Coulomb 
Green's functions at>(r, r') which correspond to the 
scattering problem. We will define the momentum of 
the channel in the upper half -plane of the k plane by the 
expression 

kr=l/2(E-!"J.Err.), 1m kr;>O, 

where E and AErr are respectively the total energy 
o 

and excitation energy of the level r. 

(4) 

In contrast to the problem of excitation of a neutral 
atom, in the case Z > 1 the coupling of the open channels 
is weak. From formal expansion of F 0 in perturbation 
theory in the small parameter Z-l, it is evident that in 
the absence of closed channels the n-th term of the 
series falls off as ~ Z-n. Thus, inclusion of only open 
channels gives small corrections to the first-order per­
turbation theory. We note that the question of first­
order perturbation theory-the so-called Born-Coulomb 
approximation and its modifications for inclusion of 
exchange-has been discussed in detail by Bergman and 
Varnshteln. [9, 10J 

In the presence of even one closed channel, there 
arise in each term of the perturbation-theory expansion, 
beginning with the second, resonance denominators cor­
responding to the poles of the Coulomb Green's function, 
in the vicinity of which special consideration is neces­
sary. We will represent the Green's function in the form 
of two terms, separating the part which is the main one 
in energy, which has a pole and a point of crowding of 
poles at the threshold of each closed channel. After a 
number of identical transformations we obtain for 
G~">(r, r') an expression valid for the physical sheet of 

E-AErr : 
o 

Copyright © 1975 American Institute of Physics 31 



lIV' 
c;+) (r. r') = ~ctg(nv)P." (r)P." (r')+C~P) (r. r'). (5) 

(P) , lIV' P.,,(r<) 
G. (r.r )=-, -, -( -) [cos (2n/1)P."(r»-P.,_,_. (r» 1. (6) 

2a sm 1IJ.1 

1 ia 
W .... I +2 . v=k' Imk;;;'O. (7) 

The functions P I for I' = n(n = 1, 2, 3, ••• ) coincide 1', 
with the radial eigenfunctions P n, I of the discrete 
spectrum of the problem of motion in a Coulomb field 
and are related to the functions l\ I of the continuum 
by the expression ' 

P., ,(r) =(.P .. (r). v=ia/k. (S) 

c.= { 2a' }./, 
lIv'[ictg(lIv)+1j • (9) 

which are valid for all I' defined by Eq. (7). 

Factorization of the first term in Eq. (5) in the var­
iables r and r' permits accurate inclusion of the con­
tribution of the pole part in the energy dependence of 
the solutions of the system (2) and (3). Separating in the 
right-hand part of (3) the term corresponding to the 

Green's function G~) regular in k (and independent of k 

as k - 0), we rewrite the system (2) and (3) in the form 

where the quantities A{3' which do not depend on the 
coordinates, are given by 

lIV' n 
A,=-'-ctg(nv) , (P,U,rFr>. 

2a' .6....i 
r 

Here and subsequently we use the designations 

(10) 

(11) 

(12) 

(13) 

For I' ;, n, Eqs. (10) and (11) with regular kernels can 
be formally integrated by the iteration method. Their 
solutions are expressed in terms of the quantities A[3 
as follows: 

When Eq. (12) is taken into account, the quantities A{3 
are solutions of the algebraic system of equations 

(14) 

(15) 

\'"1 [ 2a' i...J Z nv"tg(lIv)llw-<P,W,,'P,,> ]A,,=<p,W,r.Pr,>. (16) 

" 
Equations (14)-(16) contain expansions in the small 
parameter Z-l: 

(17) 
i';';n 

In the series (17) we designate by Gr the quantity G:;> 

for r = a and of) for r = {3. " 

In contrast to standard perturbation theory, each 
term of the expansion used does not contain singular­
ities in energy. The solutions of Eq. (15) are regular 
functions of the energy for all values of I' (see, for 
example, refs. 6 and 7). It should be noted that for com­
plex k the integrals ( ..• ) in Eq. (16) are usually cal-
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culated on the assumption of a finite range of interaction. 
However, this assumption can be avoided by changing 
the order of integration over the coordinates in these 
two integrals or by using the regularization procedure 
developed in refs. 1 and 11. 

From the asymptote of Eq. (14), expressions for the 
T matrix of the open channels follow in an obvious 
manner: 

(IS) 

Tar,=-(P.War.Pr.>. T:r.=-1: <PaW.,P,>A,. (ISa) , 
The wave-function normalization used in the present 

work corresponds to a relation between the Sand T 
matrices: 

S=l+~T S 21 z' rr.=1lrr,+zTrr•. (19) 

The first term TP in Eq. (IS) is completely de­
termined by the generalized potential War given by 
the perturbation-theory series (17) with kehels G~> 
and G(P) which are regular in energy. The second term 

{3 
in Eq. (IS), Tr , describes resonance scattering in the 
presence of a Coulomb field, due to the presence of 
closed channels, and is determined by the solution of 
the system of algebraic equations (16) for the quantities 
A {3' The summation in (16) is carried out over the set 

of quantum numbers [3 which characterize the closed 
channels. 

In the case Z » 1 of interest here, it is sufficient to 
limit ourselves in the series (17) to the first nonvanish­
ing terms for the real and imaginary parts of Wrr" 
The element of the T matrix of potential scattering in 
this case is 

(20) 

i.e., it is identical with the element of the T matrix 
calculated in the first order of standard perturbation 
theory. It is easy to be convinced that, in the absence 
of accidental coincidence of resonances, the nondiagonal 
elements in the left part of (16) can be neglected, and 
the expression for Tr r will take the form 

a 0 

ar, z i...J tg(m',) -Z-'T" h',) +iZ-'~, ' 
, ' (21) 

T' = _...!... \'"1. T.,(V,) T,.,(V,) \ 

~,= ~ T,'o'(V,), 

where 7r{3(I'{3) is a real and symmetric matrix, diagonal 

in the closed channels: 

(22) 

It should be noted that the energy dependence of 7(1') 
in Eqs. (21) and (22) is determined by the quantity 
1'[3 = a[2(6E{3a - E)]-1/2, while in the region of existence 

of resonances (6 Ear 0 ~ Eo ~ 6E{3a) I' {3 »1 and 7 is 

practically independent of energy. The value of 72 as 
I' - 00 is related in an obvious manner [12J to the thresh­
old value of the partial excitation cross section calcu­
lated in first-order perturbation theory. In the case of 
degeneracy of the ionic levels, it is necessary in ob­
taining 7 to diagonalize the matrix (P[3U{3{3'P{3') in the 
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quantum numbers of the degeneracy. 

Expression (21) is the sum of the contributions of all 
energetically inaccessible levels of the initial ion and 
describes the sequence of resonances which form the 
Coulomb crowding at the threshold of each such channel. 
This result is asymptotically exact for Z » 1 and 
arbitrary values of the incident-electron energy, and in 
the near-threshold regions, as we can easily see, it 
contains the known characteristic features. [3, 4J 

Let us determine the contribution of resonance 
scattering to the excitation cross section. The total 
cross section for excitation of a transition Yo - Y1 is 
determined by the relation 

(23) 

where the partial cross section Uv 1 v 1 is related to 
'00"11 

the element of the T matrix by the formula 

g(r,) 1 I' , 
(1'0'0,"" = g(10)Z'Eo Tr,ro nao· (24) 

Here g(r) and g(yo) are the statistical weights of the 
states characterized by the sets of quantum numbers 
r 1 and Yo' The sum in Eq. (24) is taken over the orbital 
quantum numbers 10 and 11, the total angular momenta, 
and the remaining intermediate quantum numbers enter­
ing into r. 

The partial and total cross sections, as can be seen 
Eqs. (21) and (24), have sharp peaks, reaching values 
~ Z2 at the maximum and falling to a value uP depending 
smoothly on energy and determined by TP. The final 
expression for the partial cross section, averaged over 
the resonances as in refs. 2-4, is of the form 

1 E+6E 

O'lolo,Tt l t = !lE S dE (JTolO'T'IL=O'TulQ'TIII+i1~~lo'Tllll 
E_-"-E 

and L; {3 is defined in (21). 

(25) 

Thus, the averaged resonance cross section or gives 
a contribution to the total cross section of the same 
order in the parameter Z-l asaP. Equation (25b) has a 
simple physical interpretation: The process of reso­
nance excitation occurs through formation and decay 
of a doubly excited autoionized state {3 of the ion B Z-l 
of the preceding multiplicity: 

Bz (10) +e-B;~, (~) -Bz·(1,)+e. (26) 

The quantities T~QI which characterize the effiCiency of 
capture into the level {3 obviously are proportional to the 
probability of autoionization decay r{3Q1 of this level: 

r,= L:r, •. (27) 

The equations (25) were obtained on the usual assump­
tion that the probabilities of radiative decay of the quasi­
stationary states are A{3 «r{3' The ratio A{3/r{3 in­
creases with increasing charge (~Z4 for optically 
allowed transitions). In addition, A@. is practically inde­
pendent of v{3' since the main contribution to A{3 is from 
the transition ny - ny' of the optical electron of the 
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initial ion. Therefore with increaSing Z the values of v {3 
for which r {3 (v (3) ~ A{3 decrease and, generally speaking, 
it is necessary to take into account the photon decay 
channel of the quasistationary states. Inclusion of this 
channel [7J leads to replacement in the denominator of 
Eq. (25b) of the probability r{3 (which is proportional to 
L; QI) by the total d~cay probability of the state {3: 

r,-r,+A,. (28) 

In this way we take into account the competing process 
of dielectron recombination 

•• ) B ("')+liro Bz("io)+e-Bz-,(~ - z-< ~, (29) 

which is important for a number of applications (see, for 
example, ref. 12). 

Using Eq. (28), we will rewrite expression (25) in the 
form 

(30) 

Equations (30) and (31) have been written with use of 
L-S coupling, in which r == y • %/rT ; y == (ni/i)nylyLS; 
r T == ST~' where ni1i are the quantum numbers of the 
core, nyly are the quantum numbers of the optical elec­
tron, Land S are the orbital and spin angular momenta 
of the initial ion; LT and ~ are the orbital and spin 
angular momenta of the system ion + electron. 

3. We will discuss as an example the cross sections 
for excitation of the transitions 2p - 3s and 2s - 3s in 
the lithium-like ion 0 VI calculated by means of Eqs. 
(30) and (31). The wave functions of the initial ion were 
calculated in terms of the semiempirical method of 
Valnshtetn. [13J It should be noted that the calculations 
are substantially simplified if we take into account that 
with increase of the principal quantum number ny of the 
closed channel, the quantities T2 approach the limiting 
value n~T2 = const, ny - co. The question of the value of 
ny at which the asymptote is reached must be consid­
ered individually in each specific case; in the present 
case this approach occurs already for ny » 5. 

The contribution of resonance scattering to excitation 
of a level with prinCipal quantum number nyl is effective 
up to an incident-electron energy corresponding to the 
threshold of the open channel with ny = ny1 + 1 (see 
Figs. land 2). In this energy interval the resonances 
converging to all closed levels with ny > nyl are impor­
tant. In our case these levels are the levels with ny = 3 
and all s levels with n y ~ 4, and for excitation of the 
2p - 3s transition also all d levels. With increasing en­
ergy, resonance scattering leads to preferential excita­
tion of the levels of new channels. The broken line in the 
figures shows the cross section uP for direct (potential) 
excitation. For the 2p - 3s transition the effect of reson­
ance scattering determines the value of the cross section 
for incident-electron energies from the threshold 67.4 eV 
up to E ~ 100 eV. This situation is realized in cases in 
which there are effectively excited levels whose excita­
tion thresholds exceed the threshold of the transition 
being studied. As an example we can point to the optic-
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FIG. 1. Cross section for excitation of the transition 2p-3s in the ion 
o VI. The broken line shows the cross section for potential scattering. 

FIG. 2. Cross section for excitation of the 2s-3s transition in the ion 
o VI. The broken line shows the cross section for potential scattering. 

ally forbidden transitions between fine-structure com­
ponents in ground-state configurations of the type 2s22pk, 
which present interest for astrophysical applications. In 
other cases the contribution of resonance scattering is 
not so large and, for example, for the 2s - 3s transition 
(Fig. 2) it is comparable with direct excitation. In the 
cross section for the intercombination transitions 
1s(lS) - 2PCP) in helium-like ions with charge Z > 5, 
resonance scattering is responsible for a correction 
-;;:'3{)%. We note also that the question of accuracy of the 
calculation of these cross sections is very urgent in 
study of the excitation mechanisms of x-ray spectra in 
the solar corona and in laboratory plasmas. 

In connection with the above, special interest is pre­
sented by the direct experimental measurement of 
resonance scattering of electrons by multiply charged 
ions. 

The authors are grateful to L. A. Varnshteln, I. L. 
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