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The fundamental conditions of an essentially unperturbed measurement of the n-quantum state of an 
harmonic oscillator with the aid of an electron beam are analyzed. The limits of sensitivity of the 
measurements and the probability of perturbing the oscillator are determined. 

Earlier[lJ a method of unperturbed measurement of 
the energy of the vibrational modes of an electromag
netic resonant cavity was proposed, permitting one in 
principle to determine the corresponding quantum num
ber n, including n = 0, with high accuracy. The prob
ability of perturbation during the measurement of the 
initial n-quantum state may be extremely small. The 
urgency of the development of such a method is related, 
for example, to the requirements imposed on electro
magnetic amplifier-transducers in gravitational wave 
experiments. 

The feasibility of such a measurement is determined, 
on the one hand, by the rapid growth in the quality of 
electromagnetic superconducting UHF cavities and, on 
the other hand, by successes in the development of 
electron microscopes. The quality factor of supercon
ducting cavities at w = 2 X 1010 sec-1 reaches Q = 5 
X 1011. [2J This implies a relaxation time T* = 2Q/ w = 50 
sec. If such a cavity is in equilibrium with a thermo
stat with a temperature T = 2°K, the lifetime T1 0f the 
vibrational mode in the level n = 0 will be equal to 
T 1 £: liWT*/kT £: 3 sec, but the lifetime in the most 

probable level ~ = kT/liw £: 15 will be TIl'::< liWT*/kT~ 
I'::< 0.2 sec. Therefore, even for kT > tiw but Q » 1, 
the width of the energy levels at not too large values of 
n will be much smaller than tic..: (see[3 J for more details). 
Under such conditions the electromagnetic oscillations 
in the cavity should be analyzed from the viewpoint of 
quantum theory. We note that in the example under con
sideration tiw I'::< 2 X 10-17 erg, and if the measurement 
takes place during a time interval T I'::< 0.1 sec < T l' then 
Ll. E R: til T R, 10-26 erg. 

The fundamental conditions of an unperturbed meas
urement are known (see, for example, [4J): the matrix 
of the interaction must be diagonal in the same repre
sentation in which the quantity to be measured is 
diagonal. However, the question of how exactly this 
fundamental condition can be satisfied, or what limita
tions may appear as a consequence of the uncertainty 
relations in connection with a measurement of the 
energy of the natural modes of a resonant cavity, was 
not analyzed. Let us consider the example of a meas
urement of the energy of the vibrational modes of an 
electromagnetic resonant cavity with respect to the 
scattering by the field of an electron beam (see the 
figure). 

A beam of electrons with horizontal velocity Vx 

passes through the capacitance of an microwave cavity 
of klystron type. Then the electrons enter the system of 
lenses Al and A2, which brings about mirror reflection 
of the electron trajectories with respect to the symmetry 
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plane of the capacitor. After this the electrons again 
enter the capacitance of the resonant cavity under in
vestigation. In this case the resonant cavity must have 
two spatially separated capacitances. If the design of 
the cavity is such that it only has a single capacitance, 
then the scheme depicted in the figure should be sup
plemented by a mirror system. 

The second flight of the electrons that do not hit 
screens B1 and B2 through the resonant cavity is utilized 
for the compensation of that effect on the oscillations 
in the cavity which they produce by passing through the 
cavity the first time. In order for such a compensation 
to occur, the time between the first and second flights 
must correspond to a change in the phase of the oscil
lations by 211m, where m is an integer. This condition 
assumes rather exact knowledge of the frequency wand 
a sufficiently monoenergetic spectrum of the electrons 
in the beam. 

The receiving electrodes, realized in the form of two 
screens, are located at right angles to the axis of the 
beam near the focus of the lenses and symmetrically 
with respect to their optical axis. Under the influence 
of the field in the left condenser, the focal spot will be 
smeared in the plane of the screens. As a result the 
average number of electrons incident on the screens 
varies. Smearing of the focal spot will be observed when 
the increase li(NB) in the average number of electrons 
incident on the screen exceeds the fluctuation Ll.NB in the 
number of electrons which hit the screens in the ab
sence of a field in the condenser. Since li(NB) ~ Nand 
Ll.N B ~ N 1/2 (N is the total number of electrons passing 
through the condenser), the observed smearing of the 
spot will be smaller the larger the value of N. However, 
the probability of a change in the state of the resonant 
cavity increases upon increasing the value of N. The 
point is that the matrix characterizing the interaction of 
the electrons with the resonant cavity is not diagonal, 
and the discussed method of measurement is not com
pletely unperturbing. However, as will be shown below, 
the extent of the perturbation may be extremely small. 

Let us note the fundamental role of the fOCUSing of 
the electron beam. It enables one to eliminate the in
fluence of the uncertainty in the initial coordinate y of 
the electrons in the beam on the sensitivity of the meas
urements, [lJ which in principle will be limited only by 
the uncertainty in the momentum of the electrons in 
their time of flight through the resonant cavity. In a 
rough but quite reasonable approximation, the resonant 
cavity with a clearly expressed capacitance spacing is 
an oscillatory system with one degree of freedom with 
lumped parameters !i' and C. If the voltage U on the 
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capacitor is chosen as the generalized coordinate, the 
generalized momentum p = 2'C2U. In this connection the 
Hamiltonian operator takes the form 

if =p'/29?C'+CU'!2. (1) 

It follows from the Ramo-Shockley theorem about 
induced currents that the force of excitation of the reso
nant cavity associated with an electron's transit has the 
form of a pulse whose amplitude is equal to ey/Y (e is 
the electron charge, Y is the distance between the plates 
of the parallel plate capacitor, and y is the electron 
coordinate measured from the plane of symmetry of the 
capacitor, i.e., from the zero equipotential). If Y is 
much smaller than the length of the plates, the duration 
of the pulse fronts will be much smaller than the total 
duration Ttr of a transit pulse, and their influence can 
be neglected. 

In the general case y = y + V T + 0 (T), where y is 
o Y 0 

the electron coordinate upon entering the capacitor, v 
is the component of the electron velocity normal to th~ 
plates at the moment of entrance, and OCT) is the elec
tron displacement due to the influence of the field inside 
the capacitor. In many practical cases (for example, for 
Y l'" 10-1 cm, Ttr l'" 10-10 sec, U F::: 10-6 V) the rms value 
is «y~»)1/2 »O(Ttr); therefore, the quantity OCT) can be 
neglected. Therefore, the force perturbing the resonant 
cavity during a single transit of an electron through the 
capacitor will be given by 

f(-r:)={ e(yo+v,-r:)IY, o';;-r:';;-r: tr 

0, "[';;0, -r:;;"tr' (2) 

As is well known, if a force f(T) (f = 0 as T _ ± 00) 
acts on a quantum oscillator, the probability for a tran
sition of the oscillator from the ground state into an ex
cited state is given by [5J 

the second term in formula (5), since in the majority of 
cases of practical interest it is relatively small. For 
C = 0.3 pF, W = 2 X 1010 sec-\ and Y l'" H, the quantity w 
is equal to 10-2. That is, a single electron slightly per
turbs the ground state of the resonant cavity. However, 
if aN electrons hit the screens out of N electrons pass
ing through the resonant cavity, the value of w is in
creased by aN times. 

We note that the mechanical degrees of freedom of 
the resonant cavity play an important role in the de
scribed scheme. The change of the electron momentum 
is accompanied by a change in the mechanical momentum 
of the resonant cavity. But since the mass of the latter 
is suffuciently large, its position remains well de
termined. 

The number N of electrons sufficient for the meas
urements is determined by the voltage potential in the 
capacitor gap and by the distribution of the probability 
density for the electron coordinates in the plane of the 
receiving electrodes. If the distribution of the probabil
ity densities corresponds to diffraction, the minimal 
root-mean-square value of the potential of the observ
able field in the case of narrow screens, located in the 
region of the first diffraction minimum, will be given by 
(we omit the uncomplicated but tedious calculation) 

l "n Y B 'I. 
( U 2» 'I, .a w ( ) < B ~---==---- - . 

1'2e H N 
(6) 

Here 

B=HpA/2nL. (7) 

P is the momentum of the electrons, A is the width of 
the screens, and L is the focal length of the lens. Since 
the ground state of the cavity resonator corresponds to 
<U2) = tlw/2C, the number of electrons required for its 
observation must be given by 

_ 5(llwC)'(Y)' 
N~--e'- 7i B. (8) 

(Relations (6) and (8) are valid for B:5: 1). Out of the 
total number of electrons, the following number is in
cident on the average on both screens 

<NB )=Nn-'(,/,B'+2B<'6'». (9) 

P=i-c''", (3) where 

where 

(4) 

If the electron does not hit the receiver screens and, 
after a time which is a multiple of the oscillation period, 
it again passes through the capacitor region of the 
cavity, then from Eq. (4) we obtain w = O. Only those 
electrons which pass through the capacitor region only 
once will cause excitation of the resonant cavity. Let us 
determine this perturbation. 

Since the quantities Yo and Vy have random values 

within the limits determined by the cross section of the 
beam and its divergence, it is necessary to average 
expression (4) over the ensemble of electrons. Then, 
putting WTtr = 11, we obtain the following result from 
Eqs. (2) and (4): 

lO=-~[~+ (4+n';-;;:] 
21lwC 3Y' Y'w' . (5) 

In formula (5) it is considered that, for equiprobable 
values of Yo within the limits ±H/2, one will have 
? = H2/12. For Simplicity of calculation we, shall neglect 

o 
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<s')=e'<U')H'/(llw) 'Y'. (10) 

Equation (10) corresponds to the optimal time of flight, 
Ttr = 11/ w, through the capacitor space. 

The ground state of the resonant cavity corresponds 
to 

<'6')=e'H'/2nwCY'. (11) 

Multiplying (5) by (9) and taking (8) and (11) into con
sideration, we obtain 

e' H' N (B' e' H') 5 [B' nwC Y 2 

lOB = 6tzwC Y' -;:;a "6 + B -tzwCY' ;;. 6n' "6----;;- (Ii) +B']' (12) 

For W = 2 X 1010 sec-I, C = 0.3 pF, B = 0.5, and Y = H, 
the value of the right hand side in expression (12) will 
be equal to 1.3 x 10-2. Thus, after the measurement 
the oscillator remains in the ground state with a prob
ability of 0.98. For such a measurement it is necessary 
to pass N = 1600 electrons through, of which only two 
hit the screens. (We note that the parameters must be 
chosen in such a way that no less than one electron hits 
the screens). 
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In the case of the utilization of semi-infinite screens, 
the minimal potential of the observable UHF field is 
determined by the relation 

« U '»'I'~~~~ 
~ ~e HN!.· (13) 

IT, in this connection, the screens are nontransparent 
for the electrons, the perturbation of the ground state 
will be appreciable since close to 20% of the total num
ber of electrons will hit the screens. 

Let us discuss the feasibility of such a measurement, 
in which one can distinguish the n-state of the oscillator 
from the (n + I)-state. These states will be distinguish
able if the difference between the average numbers of 
electrons incident on the screens for these states 
{(Nn>, (Nn + I» will satisfy the inequality 

<N.+I)-<N.);;:.«N.»'h.. (14) 

Fulfilment of the following condition [s,sJ is neces
sary in order that the probability of perturbing the 
n-state shall be small: 

(2nWN) '1,<1. (15) 

Taking into consideration that (U2 ) = EiC, from Eqs. 
(9) and (10) we find 

(16) 

Having substituted (16) and (9) into (14), we obtain one 
of the conditions of measurement: 

n' (IiWC Y')' N;;'-B -- +nn'liwCY'/2Be'H'. 
24 e' lI' (17) 

Since wn = w(Nn> in the inequality (15), by utilizing 
expressions (5), (9), and (17) we find that the probability 
of perturbing the n-state will be small provided that 

and 

e' H' 3. 1 
--<- i.e. w<
liwC Y' n' ' 2n" 

B<4/n. 

(IS) 

(lSa) 

The conditions (IS) and (lSa) for the smallness of the 
perturbation indicate that there is no limitation in prin
ciple on the possibility of determining an arbitrary 
n-state of an oscillator. However, the technical dif
ficulties will grow with increasing values of n. In order 
to fulfill condition (lSa) for a width of the screens no 
smaller than several atomic layers, it is necessary to 
have a rather broad diffraction maximum. For this it is 
necessary to reduce the energy of the electrons or to 
obtain magnification of the picture with the aid of elec
tron lenses. 

We note that, although it is necessary to utilize all 
the achievements of electron optics in the discussed 
experiment, the posed problem differs substantially 
from the problem of the design of an electron micro
scope. IT in the latter case it is required to obtain the 
smallest possible electron spot, in our case it is suf
ficient that the size of the spot be determined basically 
by the diffraction effect, and its absolute magnitude does 
not playa fundamental role. In practice it is more con
venient to have a broad focal spot. It is already possible 
in the current state of electron optics to realize the 
conditions under which the size of the spot will be 
basically determined by the diffraction effect. 

The influence of the nonmonoenergetic nature of the 
electrons, the diffraction perturbation of the electron 
beam by the screens, and the interaction between the 
electrons were not taken into consideration in the 
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estimates cited above. From relations (4), (5), and (9) 
one can easily find the requirement on the relative 
spread of the electron velocities: 

( ~V')' 2 <NB) 1 (B3 ) -. <----=-- -+2B< ') 
v. (2nm)' N 2n'm' 6 S. (19) 

For the above used numerical values of the parameters, 
in the case n = 0 it follows from formula (19) that 
;:"vx/vx < 1.5 x 1O-2/m• One can easily satisfy this con
dition up to m R: 103 • In the case n ~ 1, from Eqs. (19), 
(IS), and (lSa) we obtain 

~v./v.<O.25/mn·'·. (20) 

Diffraction perturbation of the electron beam by the 
screens depends on the distance between the screens, 
their widths, and on the quantity A = hlp. Since the ab
solute size of the focal spot can be increased with the 
aid of electron optics, the distance between the screens 
can be made much larger than A. Therefore, in prin
ciple the diffraction perturbation can be made quite 
small. . 

Let us note one more important property: in the cal
culation of the values of w for n = 0 and n f. 0 the re
ceiving screens were assumed to be nontransparent. In 
other words, the electrons incident on them a second 
time, did not pass through the resonant cavity. However, 
if sufficiently "transparent" screens are used (for 
Vx R: 1 X 1010 cm/sec, the thin layers in contemporary 
transmission electron microscopes significantly scatter 
a small fraction of the electrons), the value of w can be 
made even smaller than in the examples cited above. 

In conclusion let us once again emphasize the two 
important conditions for the experimental realization of 
a determination of the n-quantum state of a resonant 
cavity with a small probability of perturbation after the 
measurement: 

1. A second flight of the electrons through the reso
nant cavity, without hitting the screens in order to com
pensate for the perturbation. Such compensation is 
possible only if the frequency of the cavity oscillations 
is known and the beam is sufficiently monoenergetic. 

2. Focusing of the electron beam with the aid of an 
electron-optic system and the utilization of narrow 
screens. 

The authors take this opportunity to express their 
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