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Relative coordinates spanning connected manifolds are employed to describe the internal motion of 
multielectron atoms. By using differential operations on connected manifolds. the quasiparticle equation for 
atoms is found and an approximate method for its solution is proposed. The method is tested by 
calculations of the ground and excited states of the helium atom and of the ground state of some two­
electron ions. 

The many-electron motion in atoms and molecules is 
usually described by absolute (independent) coordinates. 
Among these are the position sectors with the origin 
fixed at a pOint. The many-electron Schrodinger equation 
in the absolute frame is integrated numerically, and in 
the course of solution one somehow has to take into ac­
count the cooperative features of the many-electron mo­
tion (mutual screening of electron distributions, varia­
tion of the effective potentials, and so on). For example, 
the kinetic part of the two-electron Schrodinger equation 
in the absolute frame 

(1 ) 

(where m is the electron mass, Z is the nuclear charge, 
and rlZ = \ rlZ - rz\) does not reflect the effective varia­
tion of the masses, and the screening effect of the elec­
tron distributions is only allowed for in the repulsive 
potential. 

To avoid numerical integration and take better ac­
count of the cooperative features of many-electron mo­
tion, use can be made of relative coordinates[ll. The 
relative vectors connect particles in pairs and thus have 
no common origin. Both the beginnings and the ends of 
these vectors vary connectedly in a many-particle mo­
tion. For example, the relative coordinates of a three­
particle system are connected by the following identity 

'Ij,+Tj,+Tj,,,,,o. 

and the virtual displacements of their ends are con­
nected by the limiting relations[2] 

(6Tj/6Tj,j i'k=-l (i*;*k). 

(2) 

(3) 

Neglecting the center-of-mass motion, we obtain for 
the helium atom and two-electron ions the following 
equation[l] in the relative coordinates: 

where n, i'j, and i'k = ±1, and N = n(n - 1)/2. Conse­
quently, the relative coordinates can be also used to de­
scribe the many-electron motion in the presence of a 
finite number of attractive centers, i.e., in molecules. 

It should be added that quantum equations stipulated 
in the relative coordinates are not equivalent to corre­
sponding Schrodinger's equations. Nevertheless, the 
quantum equations for atoms and molecules can be 
solved by approximate analytical methods and the re­
suits obtained are in good agreement with experiment. 
This can be comprehended if we note that the relative 
coordinates represent another means of describing the 
many-particle motion, and that the existing analysis is 
not adequate to infer the structure of the connected 
manifolds they span. It is, moreover, possible to con­
struct differential operations on connected manifolds, 
which lead to symmetric equations for the many-parti­
cle motion. 

1. QUASIPARTICLE EQUATION FOR ATOMS 

In order to have a natural definition of the differen­
tial operations on the connected manifolds (2), we 
choose the relative coordinates to be equivalent[2], and 
employ the limit relations (3). The solution of Eq. (4) is 
then sought in its natural form of a product 

, 
~'(Tj"Tj,.'h)= II 1I'J(Tj;). 

J=1 

With this product we evaluate the relative gradients 

V'1I'=(',I/J,)1I',I/J'-1I'I(~,I/J')1I"-"'I11'.(V'1I'3) •... 

v,I/J=-(V,"',)I/J,"',-I/J,(V,1I',)1I',+1I',1I'.(V,,,,,). 

Next, the formal operator condition (6) is rep"laced by 
an approximate (to within 2/ A) relation 

(8) 

(9) 

(V,I/J,) 1jl,,,,,-,,,, (V,1I',) I/J,+"',"',(V,,,,,) ""o. (10) 
[~ fl' • ( Z Z 1 ) ] £....-d;+e- -+--- +E ",(Tj"Tj",J,)""0. 

2ft; '1, '1' ,], (4) In order to transform Eq. (4) to equivalent coordi-
''''''' 

where the effective masses are 

J.ll=J.I,~m. J.I~mIA (5) 

(since the nuclear mass is A times greater than the 
electron mass). Aj is the Laplacian formally defined in 
the space of the relative vector l1j. The latter equation 
is supplemented with the conditions[l]: 

where ~ j are formally defined gradients with respect 
to the relative vectors l1j. 

A system of a finite number of particles n corre­
sponds to a figure composed of the triangles[21 

(6) 

l,Tj'+YJTjJ+l.'Ij.""o U*;*k=1 .... , N). (7) 
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nates, we evaluate three relative Laplacians: 

d,I/J= (Ll,,,,,) "',I/J, +11', (Ll,,,,,) 11',+"',"', (Ll,¢,) 

-2[ (Vi~\) (V;",;)",.+ (V,"'.)1I';(v.",.) -1I',(V ,"',) (v.",.)], 
(11) 

where i ~ j ~ k. Next, we find the scalar products of the 
relative gradients by successively applying the opera­
tors to the approximate equation (8). These products 
are excluded from the relative Laplacians. 

Ll,,,,""4I/J,I/J, (d,tI',). .1,~·~o, Ll,I/J""4 (d,I/J,) I/J,I/J" (12) 

This enables us to consider the function 1/12(112) approx­
imately constant, inasmuch as it is not acted upon by 
differential operators. We then obtain the following 
quasiparticle equation for the helium atom and helium­
like ions: 
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(13 ) 

This equation is essentially different from the two-elec­
tron Schrooinger equation (1) in that its effective mass 
is four times less than the electron mass and the rela­
tive coordinates vary connectedly. The quasiparticle 
equation is solved without the additional condition (9), 
as the latter has been employed in the transformations. 

In a similar way one obtains a quasiparticle equation 
for many-electron atoms by choosing in the triads (7) 
the relative coordinates to be equivalent. 

2. METHOD OF SOLUTION OF THE QUASIPARTICLE 
EQUATION 

In solving the quasiparticle equation (13) we employ 
proportional coordinates 

In terms of the latter the kinetic part of the equation 
consists of ''hydrogen-like'' operators 

Ii' [e'(Z Z 1 2m[(Ll.¢.)1jl,+¢.Col,¢,)1+ 2"" T,+T,"-T," )+E] M,"'O, 

(14) 

(15 ) 

and the unit of energy becomes four times less than the 
corresponding atomic unit. 

As has been shown previously[21, the binding energy 
of a close system of particles of identical mass is given 
by a sum of n(n - 1)/2 integrals of relative motion. 
But inasmuch as the masses of electrons are very small 
compared to those of nuclei, the binding energy of a 
two-electron atom, while remaining constant, can in the 
mean be represented by a sum of the functions 

e' [ o. 0, 1 ( ~ +. ~,T )] E=- ----+- 1- .. :: .. / 1 -- , 
2s ~, ~, ~, <~,1) 

1=1 

(16) 

where a, and as are unknown screening parameters, s 
is an unknown parameter of convergence-in-the-mean 
of the iteration series, and (. .. ) denotes averaging in 
the zeroth approximation. The Coulomb repulsion en­
ergy is expressed from (16) as follows 

(17) 

Next we obtain a transformed quasiparticle equation 
which explicitly takes into account the mutual screening 
of electron distributions 

[ Z, Z3 2 ] (Ll~.¢')¢3 + IP, (t.1.,1P3) + ~ +T, + (1- s) E 1P,IP3 

where we assume fi = m = e = 1, and denote Z, = Z 
- a, and Z3 = Z - a3. 

(18) 

If I s I < 1, as is the case in applications, then the 
series of averaged perturbation terms in Eq. (18) con­
verges absolutely and the magnitude of its mean sum 
turns out to be smaller than the average Coulomb re­
pulsion energy. If one neglects the perturbation series, 
then the proportional coordinates in the unperturbed 
part of Eq. (18) become uncoupled. Therefore, in the 
zeroth approximation the binding energy of a two-elec­
tron atom equals the sum of the binding energies of two 
quasiparticles: 

(19) 

where nk and lk are the principal and the orbital quasi-
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particle quantum numbers. Then, in the same approxi­
mation for the unperturbed part of the quasiparticle 
equation we have an equivalent system of two equations 

[ Znklk] (20) 
t.l.k + ~ + 2 (1 - s) enklk \fonkik (6k);::::: 0, 

which are to be solved under the limit conditions 

lim \fo •• 1. (6.) =0. (21) 
'11_ 00 

The solutions of the equivalent equations with the con­
ditions (21) are known[31. Along with the eigenvalues 

e.klk=-(Z-On"I,,)'/8(1-s)n.' (22) 

they prove to be functions of the unknown parameters. 

To find these parameters, we observe that each elec­
tron in the atom corresponds to one quasiparticle, and 
therefore we must assign to each of the latter the value 
of spin of the corresponding electron. Next, from the 
quasiparticle functions multiplied by the electron spin 
functions we form in the zeroth approximation an anti­
symmetric atomic wave function which will again de­
pend on the unknown parameters. 

The parameters are evaluated in the zeroth approxi­
mation by omitting the iteration series in (16). Upon 
averaging we obtain the following algebraic equation 

_s_ [Zn\ + Z,::'] = <~+ 0:,,, _~ \. (23) 
4(1-s) n, n, ~,~, £, / 

Next we recognize that the difference between the aver­
age attractive potential without screening (in the ab­
sence of the Coulomb repulsion) and the mean attractive 
potential for the screened motion must be equal for 
each electron to its portion of the average repulsive 
Coulomb energy. We then obtain two more algebraic 
equations: 

<.3...>' _ 4<Z - :Jnki" > = 4 nk + lk <..!..',. (24) 
1]k 1]k (n,+I,)+(n3--:-I,,) 1], ... 

where the dash specifies the average over the un­
screened motion, and the factors of four at the averages 
over the screened motion are to ensure the use of the 
atomic units of energy. 

To obtain higher approximations, Eq. (18) is succes­
sively multiplied by each of the conjugate quasiparticle 
wave functions and the average is taken over the ap­
proximate motion: 

[ t.k + Z~:'k + 2 (1 -- s) e"k i" - 2 IT'. (~k)] tnkik (;k);::::: 0, (25) 

where Wk is the average value of the perturbing term. 
The perturbed equations of the obtained equivalent sys­
tem are then solved by usual methods of the perturba­
tion theory [41. 

The quasiparticle equation for many-electron atoms 
is solved in the proportional coordinates in a similar 
way. 

3. SIMPLEST ATOMS AND IONS 

We shall illustrate the method by calculating the 
helium atom and some helium-like ions in the ground 
state. In this state n, = n3 = 1 and l, = is = O. The wave 
functions in the zeroth approximation for both the 
screened and the unscreened motion are proportional to 
the corresponding products 

lPoto(s .. s,)-exp [-z.(~.+~,)121 (z.=z-o), 

'1'"('1'),, '1'),) -exp[ -Z(1].+1],) J. 
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The zeroth approximation for the binding energy in the 
atomic units is given by 

Eo=-(Z-o)'/(1-s). (27) 

Next, from (23) and (24) we obtain two algebraic equa­
tions to evaluate the unknown nonvarying parameters: 

_s_= 100-5 o=(Z+~)-Z[1+~]'I'. (28) 
1-8 8(Z-0)' 32 1024Z' 

In our calculations we first evaluate those parame­
ters that are not subject to variation. Then we deter­
mine the atomic binding energies and ionization poten­
tials in the first approximation for eigenvalues. 

In the table, Z is the nuclear charge, s is the con­
vergence parameter, a is the screening constant, E 
are the calculated binding energies, Jt are the calcu­
lated ionization potentials and J e are their experi­
mental values[Sl. One readily finds from the table that, 
as the nuclear charge increases, the parameter s ap­
proaches zero, while the screening constant virtually 
does not change. Consequently, at large Z expression 
(27) tends to its physically obvious limit Z2. 

In conclusion it should be noted that our method em­
ploys Hartree's idea of an effective potential. Its inter­
pretation, however, is different, since the effective po­
tentials are incorporated directly in the equations of the 
motion. In our calculations we also use the Fock ap-

E,eV Jt,eV Je• eV 

He -O.~13 0.150 7S.8S~ ~4.412 24.58 
Li+ -0.127 O.15~ laS.O" 75.4HS 73.G2 

, BeH -0.000 0.153 371.7,,5 153.S17 153.85 
8'+ -0.070 0.154 399.921 259.384 2J9.40 
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proximation in which the atomic wave functions are 
chosen to be antisymmetric. It is difficult to compare 
our method with that of Hartree- Fock by iterations be­
cause the computational schemes are essentially differ­
ent. 

Nevertheless, there is a way of comparison. The 
amount of computational work by the Hartree- Fock 
method is known to be much larger for calculations of 
excited atomic states than for those of ground states. 
By the indicated method for the (1S)1 (2S)2 configuration 
of orthohelium in the first approximation for eigen­
values we calculated (without computers) the converg­
ence parameter s = -0.0486, the effective electronic 
charges ZI = 2.0031 and Z2 = 1.8663, and the ionization 
potential 0.36 Ry, which is in agreement with the ex­
perimental value 0.35 Ry[3l. The results obtained show 
that the charge distribution of the first unexcited elec­
tron is slightly contracted by that of the excited elec­
tron. 
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