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The interaction between an excited atom and a potential well of small radius is discussed. Expressions 
valid for an arbitrary atom are obtained for the asymptotic energy shifts of the atomic and ionic energy 
levels in the region of their quasi-intersection. It is shown that in the purely Coulomb case the splitting of 
terms on quasi-intersection as a result of the degeneracy of the levels is approximately vm times greater 
than for an arbitrary atom with the same energy (m is the principal quantum number). It is also shown 
that all of the asymptotic formulas have higher accuracy (for expansion in inverse powers of the 
internuclear distance) than was assumed previously. 

1. The interaction between a bound electron which 
has an extended wave function and a potential well of 
small dimensions has been discussed in many theo­
retical papers, which have been collected, for exam­
pie, in the book by Smirnov. u) The main result of 
these studies is that the electron energy shift from 
the initial unperturbed value Em is 

E{R)-Em=2rrLI'I'm{R) I', (1) 

where L is the scattering length of the electron in the 
unperturbed potential well, if; m is the wave function 
of the initial unperturbed state of the electron in the 
atom interacting with the well considered, and R is 
the distance from the nucleus of the atom to the cen­
ter of the perturbing well, which is assumed spheri­
cally symmetric. The atomic system of units is used: 
e = m ='h = 1. 

The result (1) is the zeroth approximation in the 
expansion of the exact wave function in a small para­
meter which is the ratio of the extent of the pertur­
bing well to the electron wavelength. The method of 
obtaining this result is based on matching the exact 
wave function of the electron, which satisfies the wave 
equation 

[-M2+V.{r)+V2 { Ir-RI) -El'¥{r) =0, (2) 

with the unperturbed wave function 

[ -L'1/2+V.{r)-Eml'l'm{r) =0. (3) 

Here V1 is the interaction of the electron with its 
atomic core, and V2 is the interaction with the pertur­
bing well. Since the size of the region of perturbation 

for the main atomic field. Since the perturbing objects 
are neutral atoms whose extent is determined by their 
polarizability Q!, this method works for the condition 

[) 
(2a.IEml),J,<1. (4) 

According to Komarov et al. [2,3) the energy levels 
are determined from the condition for the logarithmic 
derivative of the electronic Green's function G of the 
field V1: 

[ ~pG{r,R,E)] "" ~(E,R)~ - L1 , (5) dp ._0 

P == Ir -RI. This condition is obtained in the zeroth ap­
proximation in expansion of the solution of Eq. (2) in 
the small parameter (4), which corresponds to replace­
ment of the well V 2 by an effective 5-function well with 
a scattering length L. 

Komarov et aly,3) investigated Eq. (5) for the purely 
Coulomb function G obtained by Hostler et al. [4,5) In 
this work the energy levels given by Eq. (5) are studied 
for the case of an arbitrary atom in which the field V 1, 
in addition to the asymptotic Coulomb part, has an 
added core. It is shown that because of the specific 
degeneracy of the levels the purely Coulomb case is 
special. 

2. We will investigate the asymptotic shift of the 
levels when the perturbing well V 2 is far in the sub­
barrier region (for V d of motion of the electron. We 
assume that V1 __ r-1 as r _00 and has a core for 
r ~ O. Since, as the perturbing well is made more re­
mote, the levels approach the unperturbed levels of 
the wells V1 and V 2, it is necessary to find a double 
expansion of the function G(r,R,E) in inverse powers 
of R and powers of the energy shift E - Em. 

As shown in the next section, the function G for 
R» (-2Efl can be written in the form 

1/lm(r)'I'm{R) W' (yin) W(xln)-W(yln) W' (xln) 
G(r,R,E)= Em-E + 2nlR-rl 

of the exact wave function is L, the expansion parame­
ter in this solution of the problem will be L(-2Em)1/2 
« 1, and also r2(-2Em)1/2 (r2 is the size of the well V 2), 
for it is necessary that at distances ~L, r2 from the 
center of the well V2 the function if;m not vary strongly. 
It is easy to see that this construction of the solution 
will be valid only for energy shifts small in comparison 
with the distance between the atomic levels, since 
otherwise the solution beyond the limits of the pertur­
bation region must differ greatly from if;m' On the other 
hand, Eq. (1) already shows that the energy shifts can 
be large. In fact, if the perturbing well falls in the re­
gion of the main distribution of electron density, then 
here the square of the modulus of the wave function is 
~m-3, Le., of the order of the distance between levels. 

+O(R-')+O{I'I'm(R) I'), ne (-2E)-"', (6) 

Another method of determining the electronic levels 
proposed by Komarov et al. [2,3) does not require ful­
fillment of the first of the above criteria, since the cal­
culations are carried out with use of a source function 
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x~r+R+IR-rl, y~r+R-IR-rl· 

Determining the quantity cP (E ,R) by expanding of the 
Whittaker functions Win Eq. (6) (see Eq. (28) below) 
and substituting it into Eq. (5), we obtain an equation 
for determination of the energy: 

2n1 'I'm (R)I' +~_ (-2E-2.)'/' =0. (7) 
Em-E L R 

If the electron with well V 2 forms (L > 0) a bound state 
(negative ion) with an energy not falling in resonance 

Copyright © 1975 American Institute of Physics 6 



with the atomic levels, we find the behavior of this 
ionic level, discarding the first term from Eq. (7): 

E_(R)=E_(oo)-1/R, E_(oo)=-1/2L'. (8) 

As we see, retention of the radical in Eq. (7) and (8) in 
a form not expanded in powers of R- i is convenient for 
a determination of the ionic level, although it is actually 
exceeding the accuracy. This excess, however, occurs in 
a remote order proportional to R-4 (see Eq. (28)). 

In the region where E-(R) is close to the atomic 
levels, Eq. (8) is not valid, since in this case the first 
term in Eq. (7) cannot be discarded. For a correct de­
termination of the point of intersection of the ionic 
level with the atomic level, we retain the radical in 
Eq. (7) in the unexpanded form as before. Then Eq. (7) 
is easily reduced to a cubic equation, one root of which 
is superfluous: 

, '..L .,. , ., 2nl'l'm(Il) I' ~ ..L~.' "_/ (E-Em) ,[E",-L(R)](E-Em) ---L--(E-lOm) ,_it l~m(R)1 -l. 

(9) 

Here E-(R) is determined by Eq. (8). At the point of 
intersection the coefficient in the quadratic term goes 
to zero. Near this point in Eq. (9) we can neglect the 
free term, which leads to a solution 

E=E",+E_(R) +~[(Em-E_(R))2+~I¢m(R)121"'. (10) 
2 2 L 

In this way there is a quasi-intersection of the atomic 
and ionic terms with a minimum distance between them of 

mini~EI=(8JtIL)I1jJm(Ro)l, Em-E_(oo)=-l/Ro. (11) 

This result is valid for intersection of the ionic term 
with each of the atomic terms. 

Equation (10) agrees with the well known expression 
for the splitting of terms in the two-level approxima­
tion (as should be the case), the non diagonal matrix 
element being a factor of two smaller than expression 
(11). Far from the point of intersection, Eq. (10) des­
cribes the shift of the atomic terms incorrectly, since 
in this region one cannot neglect the free term in Eq. 
(9). The correct shift of the atomic terms far from the 
point Ro is found by setting E = Em under the radical 
sign in Eq. (7): 

E=E + 2nLI1jJm(R) 1'[1+0(R-')] 
m -1---'L""[--'-2-=E-m +"-2C:-:VC:-,--'-(R::C)--:]-;O-,,,-'-. (12) 

This expression agrees with the result of Ovchinnikova [6] 

except for the estimate of the accuracy. For R > Ro the 
denominator here is less than zero and we obtain an 
attraction between the wells (L> 0), and for R < Ro 
in a repulsion. At the point Ro itself, instead of Eq. (12) 
it is necessary to use Eq. (10). For a negative scatter­
ing length (L < 0), Eq. (12) is always applicable in the 
sub-barrier region. In Eq. (12) both the radical and the 
square of the modulus of the wave function must be 
taken with an accuracy to R-\ inclusive. To the left of 
the classical turning point the radical in Eq. (12) be­
comes imaginary. Then we can utilize an expansion of 
the radical and obtain 

E=E _ 2nLI1jJm(R) I' (12 ) 
m 1-L(-2Em),"-LV,(R)/(-2Em )," a 

Equation (12) describes also the case of initial reson­
ance, where Em = E_(oo). The shift of the atomic level 
for this case is 

E=E _ 2n(-2Em)', (R) I' 
m V,(R) 1jJm • (13) 
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It is evident that the resonance situation for R = 00 is 
in fact weakly resonant, since the rapid shift of the 
ionic level (which always is given by Eq. (8)) spoils the 
resonance. The true resonance situation appears on 
intersection of the ionic and atomic levels. Only in this 
case do we have an appearance of the exchange-charge­
transfer interaction (which is proportional to expres­
sion (11)), due to a sub-barrier transition of an electron 
from one well to the other. 

In Smirnov's work(7] the separation of the terms on 
quasi-intersection of the atomic and ionic states was 
studied by a method different from that presented here. 
Specifically, the wave function of the ionic state with 
inclusion of the Coulomb field was determined in the 
quasiclassical approximation with boundary conditions 
specified at the ion boundary. The result was 

'¥ion ,., A Y ~ r;n x(p) [ 1+0 (!)] , 
R n 

x(p)= (--) rnPlR; rlIR, r<R. 
(14) 

R-p 

Here A is a coefficient that accounts for the correct 
amplitude of the unperturbed ionic function at large 
distances (A = 1 in the model V2 "" 0(P)). The method 
of obtaining the Coulomb Green's function used in 
ref. 4 permits an exact expression to be written for 
the ionic function. It is identical with the second term 
in Eq. (6), so that (see Eq. (22)) 
,. '" W'(y/n) W(x/n)-W(y/n) W'(x/n) ""N e-p/, (~)'. 
v ,on N IR 1 R ' -r p -p 

(14a) 
r-R>n', rllR, r<R. 

As we see, the exact solution (14a) doe~not contain the 
weak quasi-clasSical exponential e-nP1H, as a result 
of which the expression obtained by Smirnov[7] for the 
splitting of the terms on quasi-intersection differs 
from Eq. (11) by a factor [mL/rem]1/2. The question 
of improving the quasiclassical solution is fundamen­
tal in nature and remains open. 

Thus, the method discussed here permits a single 
description of all particular cases with substantial 
improvements in the results. In addition, the asymp­
totic formulas (10}-(13) written out above are suitable 
for any potential Vi' Thus, the asymptotic behavior of 
the terms for the case discussed by Smirnov[B] of two 
a-function wells is obtained from these formulas if we 
set Vi == D. 

3. Before deriving and investigating Eq. (6), we will 
briefly study the pure Coulomb case, for which there 
is a closed expression for the Green's function ob­
tained by Hostler[4,5! 

G,CE,r,R)= ~~~;~~I [M' ( ~) W ( : )-M( ~) W' (:)], (15) 

where the variables x and yare defined in Eq. (6); M 
and Ware Whittaker functions, M being regular at the 
origin and W at infinity. [9] The quantity ~ defined by 
means of Eq. (15) is listed in ref. 2. For investigation 
of the asymptotic behavior of the terms it is conven­
ient to use another representation for ~: 

(j)(E,R)=-~+2r(1-n) f M(~~~(~) d~, (16) 
2R/n 

which is obtained by integration of the sum of the Whit­
taker equations for M and W. 

Equations (5) and (16) permit investigation of the 
shift of the Coulomb (hydrogen) terms in numerical 
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integration of the Whittaker equations. In Figs. 1-3 
we give the results of such numerical calculations. 
In Figs. 1 and 2 we show the shifts of the atomic 
levels of hydrogen with n = 2 and n = 3, inter­
acting with wells having the scattering lengths of 
the helium and argon atoms. It should be noted that the 
polarizability of the argon atom a. Ar = 11 at. un. is 
so large that criterion (4) for the levels n = 2 and 3 
is not satisfied, so that the lower curves in Figs. 1 and 
2 describe the interaction with other atoms with the 
same scattering length but with smaller polarizability. 

Using the well known representation of the Green's 
function in the form of a sum over eigenfunctions, it 
is easy to find that for a pure Coulomb field in the 
asymptotic formulas (11) and (10}-(13) the sumof the 
squares of the moduli of the wavefunctions of all de­
generate states must enter. Using the asymptotic forms 
of these functions, [9] it is easy to obtain 

m-t 

hpm(R) I' = ~ 1 tpmlO (R) 1'''''mltp,.oo(R) 1'[ HO(1IR) J. (17) 
"-i 

Consequently, for degenerate states the shift of the 
atomic levels is larger by a factor m, and the split-

H(n=2) 
V,eV L= 1.19 ~ \ 

7.0 0.007 
\ I . \ 

\\ 
0.5 0.(1005 .~ 

"" 0 
5 15 20 

R,at. un. 

-0.5 H(n=2) 
l=-1.7 

-1.0 

; 

FIG. I. Interaction of H (n = 2) with atoms having scattering lengths 
1.19 (He) and -I. 7 (Ar). The solid curve is a numerical calculation, the 
dot-dash curve is a calculation with Eq. (I), the dashed curve with 
Eq. (12), and the dotted curve with Eq. (18). 

V,eV 
0.3 

0.2 

0.7 

-0.1 

H(n c 3} 
L =1.19 

R,at. un. 

FIG. 2. The same as Fig. I but for H (n = 3). 
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ting of the terms on quasi-intersection is larger by 
a factor rrn, than for an isolated state without angu­
lar momentum. This result is also obtained explicitly 
from Eq. (5) with use of the asymptotic values of the 
Whittaker functions in Eq. (16). In Figs. 1 and 2 the 
asymptotic shifts of the levels are given with allow­
ance for Eq. (17). 

The level splitting obtained in ref. 2 for quasi­
intersection for a pure Coulomb field agrees with 
Eq. (11) with inclusion of relation (17). 

In Fig. 3 we show the behavior of the terms for the 
case L = 3 in the region of quaSi-intersection of the 
ionic level with the atomic level for m = 2. The mini­
mum distance between the terms turned out to be 0.108 
eV in the numerical calculation, while Eq. (11) predicts 
0.109 eV. The numerical calculation confirms the 
high accuracy of the asymptotic formulas (10}-(13). 

Daladchik and Ivanov [10, 11] have made a study of 
the terms by means of Eq. (5) for the case in which 
a perturbing well of small dimensions is in the re­
gion of classically allowed motion of the electron in 
the field Vi. In their articles it is shown that in the 
region of values R considered the degeneracy of the 
Coulomb levels affects the splitting of the terms even 
more strongly. Specifically, the hydrogen terms are 
shifted according to the relation 

L ( 2 1 )'!. E-Em""-p(R), p(R)"" --- • 
nm' R m' 

(18) 

In Figs. 1 and 2 we have shown the terms given by this 
formula. As can be seen, the exact (numerical) terms 
oscillate slightly about the terms (18), which also is 
predicted in refs. 10 and 11. The difference of the field 
of real atoms from a Coulomb field is taken into ac­
count in refs. 10 and 11 by introduction of a second 
well of small dimensions placed near the origin, which 
removes the degeneracy only for the s terms. 

4. In the approximation of a potential of zero range, 
the wave function of the negative ion coincides with the 
Green's function of the external field in which the nega­
tive ion is located. The equality (5) is the condition of 
matching of this function with the internal part of the 
wave function. Demkov and Drukarev[12] have used this 
approximation to study the behavior of the negative ion 
in a uniform electric field. In the present work this 
same problem is discussed for a Coulomb field with a 

E(R):eV 

0.15 

0.10 

0.05 

-005 

-0.10 

R,at. un. 

FIG. 3. Region of quasi-interaction of terms for L = 3. Solid curve­
numerical calculation, dot-dash curve-calculation with Eq. (10). 
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core. A feature of the present problem, in comparison 
with ref. 12, is the existence of bound states and their 
interaction with the ionic state. 

The one-electron Green's function G(r,R,E) is the 
solution of the equation 

(- ~ +VI(r)-E)G=6(r-R). (19) 

The function (15) is the exact solution of this equation 
for a pure Coulomb field VI' Writing the Whittaker 
function M finite at the origin in the form of combi­
nations of functions Vi and W having a specified beha­
vior at infinity, [9] we represent (15) in the form 

G,(1)= 1 [W' (JI..)w('!'-')-w (JI..)w'"('!'-')] , (20a) 
2nlR-rl n n n n 

G~') C(E)r(l-n) [W'(..!L)W (.!.-.)-w (..!L)W' (-=-)1, (20b) 
2nlR-rl n n n n J 

M=C(E)W+~ G=G(I)+G(2) 
r(1-n) , , , " (21) 

W(s) "" s-ne,!2 [1+0 (-i-)] , W<;J "" sne-I/2 [ 1+0 (+)] . 
According to the method of constructing Go proposed 

in ref. 4, the function (20a) is an exact particular solu­
tion of the inhomogeneous equation (19), and (20b) is 
the general solution of the homogeneous equation. Using 
asymptotic expansion[9] of the functions Wand W, we 
obtain an expansion for G~l): 

Gt'",,- --- 1+--+ ... , r-R:J>n'. e- p/n (r+R+p)" [ n'p ] 
2np r+R-p rR+rR 

(22) 

We will seek a solution of Eq. (19) for a general po­
tential VI (Coulomb plus core) in the form of the sum of 
a particular solution of the inhomogeneous equation G (I) 

and the general solution of the homogeneous equation 
G(2). Since at large r ~ R» 1 the field VI differs from 
the Coulomb field by an amount ~ r -4 determined by 
the polarizability of the core, G(l) coincides with the 
same accuracy with G61 ) , where the asymptotic expan­
sion of G (ll is given by the series (22), in which two 
additional terms can be taken into account. 

The second component of the Green's function G(2) 
should differ substantially from the Coulomb compo­
nent Gb2), since the spectrum of its energy poles dif­
fers substantially from the Coulomb spectrum of en­
ergy eigenvalues. 

We seek a solution of the homogeneous equation (19) 
in the form 

G'o)"" 1jJm(r)1jJm(R) +1jJm(r)1jJm(R)F(r,R), (23) 
Em-E 

where F is a new unknown function. Substitution of (23) 
into the homogeneous equation (19) leads to an inhomo­
geneous equation for F: 

[ t. V1jJ", 1 ---- V -(E-Em) F=-1. 
2 1(lm " 

(24) 

We construct a solution of Eq. (23) regular at r _"". 
In the region of large r ~ R » 1 we can discard from 
this equation the second derivatives, and in the product 
of the gradients leave only the derivative in the direc­
tion of exponential damping of I/!m. Then from (24) we 
arrive at the equation 

(25) 

The solution of this equation symmetric with respect 
to the substitution r !:+R has the form 
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F=_l_[exp { E-E .. (r+R) }-1]. 
E",-E 1'-2E", 

(26) 

After obtaining this Simple solution, it is evident that 
the basis for the transition from the exact equation (24) 
to the approximate equation (25) is the fact that the ac­
tion of the second derivatives on F leads to appearance 
of terms of higher order in powers of E - Em, Le., ex­
pression (26) is the principal order of expansion of the 
function F in powers of E - Em. According to Eqs. 
(1l}-(13), the energy shift E - Em drops exponentially 
with increasing R, and therefore 

I E-E", / I (r+R)<: 1. 
(-2Em ),' 

Consequently, in the region of values r ~ R the expo­
nential in (26) is not greatly different from unity and 
therefore 

F--(r+R)/(-2Em ),/', r~R. 

As r goes to infinity, Le., for r» R, expression (26) 
increases exponentially for E > Em and falls exponen­
tially if E < Em. In both cases the complete expression 
(23) is exponentially damped as r _00, since IE - Eml 
« IEm l. 

Thus, we see that the second term in Eq. (23) is a 
quantity of higher order than the first (exponentially), 
and can be discarded. Adding (23) and (20a), we arrive 
at Eq. (6). 

The two components of the source function G (1l and 
G(2) have a singularity at the origin, while their sum­
the complete function G-for an accurate solution of 
Eq. (19) should not have this singularity. 

We now find the desired expansion of the logarith­
mic derivative of the Green's function. By analogy with 
Eq. (16) and using Eq. (6), we have 

Il>(E,R)= 2nl1jJm(R)I' -~+2 j W(6)W(6) ds. (27) 
E",-E n '"In S' 

By means of the asymptotic series [9] of the functions Vi 
and W, we obtain the expansion 

1 w lTW 1 n n' n' n'+5n' 
--+2 S-d~""--+-+-+-+--+ ... 

n '"." %' n R 2Rz 2R' 8R' (28) 

( 1 2 ) 'I, Cl._ 0 ') n' 
=- -;;;-R' - R'+ (R- ; Cl._""t;, 

which with an accuracy to R- 5 is the sum of the expan­
sion of the radical written out above and the polariza­
tion interaction of the negative and positive ions. The 
expressions for the negative ion polarizability (1_ 

agrees with the expression obtained in ref. 12. Substi­
tuting Eq. (28) into (27), we obtain Eq. (7). The polar­
izability of the atomic core can be neglected, since it 
is much less than the polarizabiUty of the negative ion. 

In conclusion the authors express their gratitude to 
O. B. Firsov and M. A. Leontovich for an extremely 
helpful discussion of questions involved in this work. 
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