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A one-dimensional crystal is considered, of which one half is ordered (masses and coupling constants 
constant) and the other disordered. For the case in which the distribution of masses in the disordered part 
is Markoffian, a simple proof is given that sound moving from the ordered side is completely reflected. 

There is very extensive literature devoted to the 
localization of oscillations in one-dimensional dis­
ordered crystals and to the resulting absence of thermal 
conducti vity (for a review of the literature seePl). The 
oscillations of such a crystal are described by the sim­
ple system of equations (the elastic constant is included 
in mn) 

d2un 
m'F+ 2un-U.-l-Un+l=O, (1) 

where n is the number of the atom and un is the dis­
placement of atom n; atom n in general has some ran­
dom mass mn. 

We consider hereafter oscillations with frequency w. 
Equation (1) can then be written in the alternative form 

( Un+1}=Tn( U. ), 
Un Un- 1 

where the transition matrix Tn is 

T.= (2-7noo2 ~1). (2) 

It is quite obvious that the transition from any pair of 
neighboring atoms to the next is accomplished by a 
product of random (because of the arbitrariness of mn) 
matrices Tn. Both an individual matrix Tn and their 
product belong to the group SL(2, R), in which each 
matrix is real and has a determinant equal to unity. The 
inference about the localization of oscillations in such 
a random lattice is connected with the general proper­
ties of this group (use is made of Furstenberg's 
theorem[2l), and as a result the proof becomes very 
complicated. We give below what seems to us a much 
simpler proof of the absence of acoustic oscillations in 
a random crystal; the proof is based on quite well known 
properties of stochastic matrices (see, for examplepl). 

We consider a lattice constructed as follows. Atoms 
with n::o 0 from a regular lattice (for simplicity, mn 
= 1 in this region). The masses of atoms with 1::0 n 
sNare random, and for n> N again mn = 1. We shall 
seek a solution of the system of equations (1) in the 
following form: 

u,,=De"', n>N. 
(3) 

Here k is the dimenSionless wave vector, connected with 
the frequency w by the relation w = 2\ sin (k/2) \, and 
the quantities Rand D obviously have the meaning of 
coefficients of reflection and transmission. If we intro­
duce new variables Xn = un/un-I. then (1) takes the form 

.r"+,=2-m,,oo'-1/x.,. (4) 
From equation (1) for n = 1, 0 we have 

(2-00 2 ) UO-U-l=U" (2-oo')U_,-U_2=UO; 

by using the condition (3), we get at once 

(5) 

We shall now suppose that the distribution of masses 
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on this atom is independent of the distribution of masses 
on the other atoms (that is, the process is Markoffian). 
We now introduce the distribution function fn(x) of the 
values of x for the nth atom, 

fn(x) =<6(x,,-x», 

where the averaging is over the values of mass. It fol­
lows from (4) that 

f.(xf=<6[ (2-m"oo 2-xn+l) -1_X 1)= ~S p (m)j,,+1 (2-moo2 -~) dm. 
x x (6) 

where p ( m) is the normalized distribution function of 
the masses by hypotheSiS independent of the number n. 

If we introduce the function 

K(x,y)= :'S p(m)6(2-moo'-+-Y) dm, 

then (6) takes the form 
f.(x)=JK(x,y)f.+,(y)dy. (7) 

We note that in accordance with (3), xN+2 = eik; that is, 

f.v+2(x) =6 (eik-x) . 

The kernel K(x, y) of (7) is stochastic; that is, 

K(x, y);;;. 0, SK(x,y)dx=1. 

Then according to general theorems relating to Markof­
!ian processes, we get for N - Q() a solution f(x) inde­
pendent of n and of the initial distribution and satisfying 
the equation 

f(x)= S K(x, y)f(y)dy, S f(x)dx=1. 

For quite general distribution p( m) it is unique and, 
what is most important, determinate for real x (the 
kernel K is here supposed to be regular[Sl). 

Obviously the coefficient \ R \ averaged over x 1 is 

<IRI>= ---. f(x)dx=1. f I x e" I 
x_e-1k 

Thus we have shown that complete reflection occurs at 
the interface between the ordered and disordered lat­
tices (though of course there is some depth of penetra­
tion). We remark here that the result \ R \ = 1 carries 
over completely to the quantum case of reflection of an 
electron from a random system of impurities (the role 
of the ratio xn is played by the logarithmic derivative 
zn)· 

The author is grateful to Ya. Sinal for calling his 
attention to this problem. 
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