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The low-temperature magnetoresistance of pure metals with closed Fermi surfaces is considered in 
conditions when the relaxation processes are entirely determined by electron collisions with phonons. and 
the thermal momentum of the phonons is small compared with the characteristic dimensions of the Fermi 
surface. Detailed account is taken of the diffusion of electrons over the Fermi surface as a result of normal 
collisions. the Umklapp processes. which occur only in the regions of closest approach (the lunes) of the 
closed Fermi surfaces. and the nonequilibrium character of the phonons (phonon drag). It is shown that in 
the region of strong magnetic fields the solution of the problem can be formulated in the form of Kirchoff's 
rules for branched electrical circuits with "resistances" of Umklapp and diffusional origin. The electrical
conductivity tensor of the metal is calculated for different topological properties of its Fermi surface. 
different magnetic-field orientations. and in different ranges of temperature. At temperatures that are not 
too low the transverse conductivity U' xx displays substantial anisotropy: U' xx reaches a maximum and is 
entirely determined by Umklapp processes if the magnetic field is oriented such that several lunes lie in the 
section p, = const (overlapping of the lunes); For other field directions U'xx is determined by electron diffusion 
processes. The transverse resistivity is a maximum in the case of overlapping lunes if the number of 
electrons is not equal to the number of holes, and is a minimum in the case of a compensated metal. The 
possibility of separating the effect of the U mklapp processes in a broad range of temperature and for a 
large number of metals (including compensated metals) essentially distinguishes galvanomagnetic 
phenomena from conduction in the absence of a magnetic field. It is shown that at temperature that are 
not too low there exists a broad region of intermediate magnetic fields in which the conductivity depends 
in an unusual way on the field strength and temperature. In particular. the formation of effective open 
orbits (for a closed Fermi surface) is possible in this region. 

INTRODUCTION 
It is well known that in strong magnetic fields the 

asymptotic behavior of the electrical resistivity of a 
metal as a function of the field strength is entirely de
termined by the topolOgical properties of the Fermi 
surface and by the direction of the field. This result 
can be proved rigorously, without any assumptions 
about the electron-scattering mechanism [1]. However, 
properties of the magnetoresistance such as its depen
dence on the temperature and on other parameters char
acterizing the collisions, the dependence on the orienta
tion of the magnetic field, and, finally, the magnitude of 
the field at which the emergence into the asymptotic 
dependence occurs, are determined in an essential way 
by the properties of the electron-scattering mechanism. 
In the general case all that can be asserted is that the 
resistivity is a monotonically increasing function of 
the field[2] and that this increase becomes appreciable 
for OTtr ~ 1 (Ttr is the mean free time, which deter
mines the electrical conductivity in the absence of a 
magnetic field: 0'0 ::>! (ne2/m)Ttr, and 0 is the Larmor 
frequency). 

In the simplest case, when the characteristic elec
tron-scattering angle <I> ~ 1 (collisiOns with local crys
tal-lattice defects of the impurity-atom type), satisfac-

I tory results can be obtained in the relaxation-time ap
proximation. In this case the resistivity depends on the 
single parameter OT; in the region OT« 1 the effect 
of the magnetic field is small ("weak" fields), and the 
asymptotic dependences are attained for OT» 1 
("strong" fields). But if the scattering angle <I> « 1 
(electron-phonon collisions at low temperatures, scat
tering by dislocations, etc.), the situation becomes sub-
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stantially more complicated. In conditions of small-angle 
scattering, in addition to Ttr, which is connected with the 
diffusion of an electron across the Fermi surface, the 
characteristic time between individual collisions (T' 
::>! Ttr<I>2 « Ttr) is also important. As Pippard has 
shown [3], in a strong magnetic field the effectiveness 
of small-angle collisions increases substantially in the 
presence of certain features of the Fermi surface that 
lead to rapid variation of the electron distribution func
tion in momentum space. In this case the emergence into 
the asymptotic dependences with increasing magnetic 
field is very protracted and is realized when OTtr» <I>-1 
or even when OTtr » <I> -2. However, Pippard's treatment 
is of a highly model character and, in particular, does 
not take account of specific features (on which the re
sults of the present paper are based) of the momentum
relaxation mechanism in the electron-phonon system of 
the metal. 

In the study of the electrical conductivity of pure met
als with closed Fermi surfaces, Umklapp processes in 
electron-phonon collisions playa fundamentally impor
tant role. At sufficiently low temperatures, when Um
klapp processes in collisions between phonons can be 
neglected, it is precisely these processes that determine 
the relaxation of the momentum of the electrons. Also 
important is the fact that the phonons, because of their 
frequent normal collisions with electrons, cannot be 
considered to be in equilibrium (for more detail, cf. [4]). 

In the absence of Umklapp processes the electrical con
ductivity 0'0 in zero magnetic field is infinite (for ne 
f nh), and in a strong magnetic field only the off-diagonal, 
Hall components of the tensor of the transverse electrical 
conductivity are nonzero: 
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(Here ne and nh are the electron and hole densities and 
z is the magnetic-field direction.) 

At low temperatures, when the thermal momentum of 
the phonons is small compared with the characteristic 
dimensions of the Fermi surface, the scattering of elec
trons in normal collisions with phonons is small-angle 
and can be described in terms of diffusion of the elec
trons over the Fermi surface[4]. Umklapp collisions are 
possible only in comparatively small regions on the 
Fermi surface-the "lunes,,[5J (the regions of closest 
approach of isolated electron or hole groups). The lune 
radius ro « PF. 

The present paper is devoted to the study of the gal
vanomagnetic properties of metals with closed Fermi 
surfaces at low temperatures, with allowance for the 
nonequilibrium character of the phonons, Umklapp 
processes and electron diffusion over the Fermi sur
face. In the first three Sections we consider the region 
of strong magnetic fields, and in Sec. 4 the region of 
intermediate fields. 

1. DIFFUSION EQUATION IN A STRONG MAGNETIC 
FIELD 

In the presence of a magnetic field the diffusion equa
tion has the form 

1 (Jr.. • ~ - --;;-iit + dIV D,(Vx,--a(x,» +lI,=-eEn" 

8(1..)= SA""y.,'dS'. (1) 

Here -Xp8n/B€ is the nonequilibrium correction to the 
electron distribution function (Xp does not depend on the 
energy E), n(€) = (e(€-IL)/T +1]- , t is the orbit period 
in the magnetic field, v = B€/ap and n = vivo One must 
understand by div and V the corresponding two-dimen
sional operators in the tangent plane to the Fermi sur
face. The second term in the left-hand side of Eq. (1) 
describes normal collisionsl): Dp is the diffusion ten
sor, and the integral term a is associated w,th phoQon 
drag. Explicit expressions for the tensors Dp and Appl 
are given in[4]. We note that Dp ex T5, and Appl does not 
depend on the temperature. 

The term IIp describing the Umklapp processes can 
be representea in the form 

_ 16n' dN 
.1i pk= h--- Mp(e)qwq -d ' 

VpVk Wq 
IIp = L~3iPk(XP -xk)dSk. 

~ 

where q = k - P - g. The momenta p and k are positioned 
in equivalent lunes, between which Umklapp processes 
are possible; g is the reciprocal-lattice vector corres
ponding to the given pair of equivalent lunes (in the case 
of a multiply-connected Fermi surface for transitions 
within the Brillouin zone, g = 0); Wq is the energy of the 
phonon as a function of its quasi-momentum q; Nq 
= [exp(wq/T) -lrI. The matrix element of the electron
phonon interaction is written in the form [qMp(e)]I/2, 
e = q/q. 

We note that in the derivation of the diffusion equation 
the fact that the lunes are small has already been used: 
in the integral term a(xp) terms associated with the ef
fect of Umklapp processes on the phonon distribution 
function have been omitted; in the term IIp, only transi
tions between isolated lunes have been retained. 

The electric-current density is 

2e S j = h' n.x. dS,. 
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In calculating the current in a direction perpendicular 
to the magnetic field it is convenient to use the formula 

h= - h:;'S [Hxp]II.dS.+e(n.-n.)ux, (2) 

where uH = cH-2[E x H] is the Hall drift velocity. This 
relation is easily obtained from Eq. (1) or from the 
original system of kinetic equations for the electrons 
and phonons by making use of the conservation of quasi
momentum in normal collisions. 

In a strong magnetic field (the appropriate criterion 
will be given below), in solving Eqs. (1) it is natural to 
make use of the method of successive approximations. 
We have X = XII) + X(2) + ••• , with 

(3) 

ax(" ---+ vdivD(Vt-a(f»+vlI(x(I)=-eE,v,. (4) 
(Jt 

In the latter equation we have made use of the invari
ance of the flux Vx -a(x) under the galilean transforma

~T4] tion xp -Xp +u·p • 

In calculating the electric current in a strong mag
netic field it is sufficient to confine ourselves to the 
first approximation (3). However, the function f(pz) is 
determined from the conditions that the second-approxi
mation equation (4) be soluble: 

<v div D(V/-aU) )>+<vlI(xU ') >=-eE.<v.>. 

!, S p,vlI(x(l)dS=-eE,(n.-n.). (5) 

The angular brackets describe averaging over the period 
T (Pz) of the rotation 

eH r 

<'·'>"'I-c If ... dt. 

We next perform the replacement f(Pz) =UcPz +1jI(Pz) 
and thereby transform to the co-moving reference 
frame[4]. In the co-moving frame, according to its de
finition, Eq. (5) can be solved by iterations in the in
tegral term a(1jI). We shall confine ourselves to the first 
iteration (i.e., we simply omit the term a in the co-mov
ing frame). After simple transformations we finallyar
rive at the following equations for the function 1jI(Pz) and 
velocity uc 2) 

where 

-.!!...D~+<vlI(up+IjJ»=-eE,<v,>, 
dp, dp, 

:' S p,lI(up+ljJ) dS=-eE,(n,-n.), 

(6) 

(7) 

Here~Dtt is the diagonal element of the diffusion ten
sor D along the direction perpendicular to the orbit. The 
term with the derivatives in Eq. (6) describes the dif
fusion of electrons over the Fermi surface in the direc
tion perpendicular to the orbits; - Dd1jl / dpz is the total 
diffusion current through the section pz = const. We 
emphasize that in a strong magnetic field we can neg
lect the diffusive displacement along the orbit, and the 
diffusion therefore has a one-dimensional character. 
The term (vII) gives transitions between electron orbits 
passing through equivalent lunes. Eq. (7) describes the 
quasi-momentum balance in the direction of the mag
netic field. 
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2. KIRCHOFF'S RULES 

The character of the solution of Eqs. (6) and (7) de
pends essentially on the mutual disposition of the lunes 
on the Fermi surface, the orientation of the magnetic 
field, and the temperature range. We begin by consider
ing the simplest physical situation, although, as will be
come clear from the following, the results obtained have 
a considerably wider range of applicability. Namely, we 
shall assume that the layers of orbits passing through 
each lune ("belts" on the Fermi surface' do not over
lap and that the distances between the belts are consid
erably greater than their width. 

In the case under consideration the result of solving 
Eqs. (6) (7) can be formulated in terms of the prob
lem of the flow of stationary currents over branched 
electrical circuits (cf. [4]). The analog of the potential is 
the function l/I(Pz). The diffusion current is 

ld =-Dd1'p/dp,. (8) 

First we shall consider the case of crossed fields E 
and H, i.e., Ez = O. Then from (8) the potential difference 
is 

Here the integration is taken within the layer between 
two neighboring belts, and Rd has the meaning of the 
resistance of this portion. 

The Umklapp current through the given lune is 

(9) 

Ju = Rut lug + "'. -IfO'], RlJ = - ~ 5lpkdSpdSk' (10) 

Here g is the corresponding reciprocal-lattice vector 
(it is assumed that Ap« g, 1/10 is the value of the func
tion 1/'{pz) in the given lune, and 1/10* is its value in the 
equivalent lune. ([n the model under consideration, the 
variation of the function I/I(pz) within the belt can be 
neglected.) The quantity RU has the meaning of the 
Umklapp resistance. 

By integrating Eq. (6) over a small region encom
passing one of these belts, we find 

Id,+ld,+lU=O, (11) 

where Jd1 and Jd2 are the diffusion currents at the 
boundaries of the belt; for the first lune, corresponding 
to the minimum PZ' Jd1 = 0, and for the second lune 
Jd2 = O. (Current emerging from a lune is taken to be 
positive.) 

Eqs. (9)-(11) taken together with the continuity con
dition on the function l/I(Pz) coincide with Kirchoff's 
laws for a certain electrical circuit. As an example, a 
Fermi surface with two pairs of equivalent lunes o!o! * 
and {3{3* and the corresponding circuit are drawn in 
Fig. 1. (We note that equivalent lunes are not neces
sarily positioned centro-symmetrically.) Sources of 
emf ,f = U· g are included in the circuit (cf. (10)). 

If Ez f 0, the function I/I(Pz) is conveniently sought 
in the form 1/1 = 1/11 + 1/J2, with 

d:' D ::' = -eE.<v,>. 1'p,(p,)-:l:eE, S ~(~;) dp:. (12) 

where the upper sign is taken for the case of an elec
tron Fermi surface and the lower sign for a hole Fermi 
surface, and Sl(Pz) is the area of the section of the 
Fermi surface made by the plane Pz = const. The func
tion 1/12(PZ) is determined by Kirchoff's laws with an 
EMF ,f = u. g + I/I~ -'P~*. The quasi-momentum balance 
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FIG. 1 

equation (7) has the form 

!, ~g"'J=eE,(n.-nh)' 
• 

The summation runs over all inequivalent lunes. 

The relations given make it possible to find the func
tion 1/J(pz)(to within an unimportant arbitrary constant) 
and the velocity uc of the co-moving system. The elec
tric-current density is 

i.e = - ~ '\1 [g' X H11u'+e (n.-nh) UH, 
h'B'':'" 

• 
(13) 

(14) 

We shall discuss the physical meaning of the results 
obtained. In order of magnitude, JU = uH' g(Rd + Ruf1, 
and according to (13) the transverse conductivity is 

an'" (c'g'/h'B') (f/d+RU)-" (15) 

The conductivity O'xx is proportional to the number of 
Umklapp scatterings; however, if we completely neglect 
the diffusion, the concentrations of nonequilibrium elec
trons in equivalent lunes turn out to be equal, and 
O'xx = O. (For Rd = 00, according to (9)-(11), 
U· g + 1/Jo -1/10* = 0 and JU = 0.) In other words, in order 
that JU f 0, it is necessary that there be a diffusion 
current from one of the equivalent lunes to the other, 
closing the Umklapp flux between these lunes. Therefore, 
the effective relaxation time characterizing the electri
cal conductivity is composed of the Umklapp and diffusion 
times. 

We note, in this comection, that the expression (15) 
can be represented in the form 

axx"'neffe'/mQ''t eff, 

b 
neff~-n, 

p,. 
(16) 

Here T eff is the effective mean free time with respect 
to Umklapp collisions; neff is the number of electrons 
which participate in these collisions; b is the distance 
between belts (b> ro); PF is a characteristic dimension 
of the Fermi surface, n ~ (PF/h)3; T~b)"=l (PFb/v)RS 
~ TF (b/PF)2 is the time corresponding to diffusional 
displacement over the distance b, where TF 0:: T- s is 
the usual transport time for the electron-phonon inter
action, corresponding to diffusional displacement over 
the distance PF; TU ~ riiRu/v, and TiT 1 is the probability 
of an Umklapp scattering for an electron situated in a 
lune; r~/p~ is the probability of finding an electron in 
a lune. 

The diffusional resistivity of a layer of thickness b 
equal 

Rd') ",RFblpF, RF"" PF/DooT-', (17) 

where RF corresponds to a diffusional displacement 
across the whole Fermi surface (cf. (9». 

To calculate RU it is necessary to have recourse to 
concrete models of the lunes (cf. Sec. 3). However, 
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certain conclusions can also be drawn in the general 
case. At temperatures T:;::' To = ApS (s is the speed of 
sound and AP is the minimum distance between the 
Fermi surfaces), the Umklapp processes, like the nor
mal collisions, are effected by thermal phonons with 
momenta qT ~ T/s. However, diffusion over the distance 
PF requires (PF/qT)2 Brownian steps, whereas an Um
klapp process is realized as a result of one step and 
therefore requires less time. As a result it turns out 
that RU ~ (qT/PFfRF, n:;::' 1. (The exponent n depends 
on the shape of the Fermi surface in the region of the 
lune; cf. Sec. 3). At temperatures T < To the Umklapp 
processes are effected by phonons with momenta Ap 
> qT; RU ex: exp (To/T) increases exponentially and is 
comparable with R F at a certain temperature Tp« To 3 ). 

The temperature dependence of the ratio RF/RU is de
picted schematically in Fig. 2. 

In the absence of a magnetic field the electrical con
ductivity of a metal with a closed Fermi surface and un
equal numbers of electrons and holes has the form [5] 

and, in accordance with what has been said above, the 
Peierls exponential dependence (J ex: exp(To/T) can be 
observed only at temperatures T S Tp « To. In real 
conditions, however, at such low temperatures the prin
cipal role will be played by scattering of electrons by 
crystal-lattice defects. 

In the case of conduction in a strong magnetic field, 
it is possible to avoid the competition of the Umklapp 
and diffusion times by orienting the magnetic field in 
such a way that an electron can travel from the initial 
lune to one equivalent to it as a result of its motion 
along the orbit. In the scheme of Fig. 1 this means 
that one of the diffusional resistivities Rd = 0, and in 
the corresponding part of the circuit a large current 
JU ~ u' gRU then arises, and (Jxx ex: RU' We emphasize 
that this result does not depend on the relationship be
tween the numbers of electrons and holes. 

Thus, the possibility arises that the Umklapp pro
cesses in a broad temperature range, and in particular, 
the dependence (Jxx ex: exp(-To/T) for T < To (cf. [6]) can 
be investigated experimentally. In experiments one usu
ally measures the resistivity tensor fi = 6-1 • In order of 
magnitude the transverse resistivity is 

p,,, "" (J~ "" '-----h'( ~-)-, (Rd+Ru)_', n,=I=nh, 
OXY e nr,;-n" 

It can be seen from these formulas that for T> To and 
for magnetic-field directions corresponding to overlap 
of lunes, the reSistivity has a maximum if ne I nh and 
has a minimum if ne = nh. 

We shall now discuss the range of applicability of the 
results obtained. 

FIG. 2 
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Kirchoff's rules (9}-(1l) are based, in essence, only 
on the assumption that the function ifi(pz) varies little 
within the limits of a lune belt and, because of this, 
effects from diffusion and Umklapp processes can be 
separated. 

We note, first of all, that if the equivalent lunes are 
not positioned centro-symmetrically, overlap of two in
equivalent lunes does not lead to overlap of the lunes 
equivalent to them, and the results obtained remain valid. 
(In this case, an electron mOVing out of a given lune 
along an orbit in the magnetic field and undergoing Um
klapp processes cannot return to the initial lune without 
the participation of diffusion processes.) 

Moreover, the results remain valid for any field di
rection, if for b = ro the condition Rd « RU is fulfilled: 
for small b the diffusion resistivities can be neglected, 
while for b » ro Kirchoff's rules are applicable. This is 
valid in any case for T < Tp. 

We note, finally, that the relations (9}-(1l) are easily 
generalized to the case of a multiply-connected Fermi 
surface. In this case, for transitions between isolated 
groups within the Brillouin zone, we have, in place of 
(10), 

JIFRu- ' (U<1p+Ij),,'-\jJ:::+I)' 

where Ap is the minimum spaCing between neighboring 
groups with labels m and m+1. 

To conclude this subsection we shall give the results 
of solving the relations (9}-(12) for certain special cases. 

1. At the lowest temperatures T < Tp, the resistivities 
Rd can be neglected in comparison with RU for any mag
netic-field direction, and the function ifi1 can be rsumed 
constant. Then, as is easily shown, J~ = u . gk(RuP, 
Uc = -UXSyxS~~; and the electrical-conductivity tensor 
has the form 

~ U% zz 

!l.n.c 8 8-1 (18) 

_ !l.nec 8 8-1) 
H %Z%% , 

where 

.·(!l.n)·8;~ 

S.,= !,E g.·g,'(RU)-', <1n=n.-n.=I=O. 

• 
2. For T> Tp it is necessary to take into account 

the dependence 'Pl(PZ), and only the elements of the 
transverse conductivity tensor have a relatively simple 
form. 

For the case when the equivalent lunes are positioned 
centro-symmetrically, and for directions of the field 
H such that all Rd » RU, (Jxx and (Jyl. are determined by 
the same formulas as in subsection ,in which, however, 

S _2 ~( ._ '-1) ( '- '-') (R···-I)-I ., - h' ~ g. g. g, g, d . 

• 
Here R~,k-1 is the diffusion resistivity of the layer 
between the (k - 1 )-th and k-th lunes. and Rdo is the re
sistivity of the layer between the central section and 
the first lune. (The labeling of the inequivalent lunes 
starts from the central section.) 

If, however, Rd« RU for some of the lunes (the lunes 
either overlap completely, or are close to such a posi
tion), then (Jxx and (Jyyare principally determined by 
such lunes. In this case, in the determination of the cur
rents JU the corresponding parts of the circuit can be 
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regarded as isolated. The result has the form 

_ _ ill. II. ''I. il!._l (C)' 2 -
0=- H h'1: (gy -g,) (RU) , 

'.' 
g;=.E g/'(Rn;')-' /1: (RUk )-" 

, 
where k labels the layers of the overlapping lunes and 
i labels the lunes in each layer. 

It can be seen from the formulas presented that for 
T ~ Tp the transverse conductivity is strongly aniso
tropic: 

where bmax is the maximum possible spacing between 
the lune layers. 

3. The case when there is only one pair of equivalent 
lunes, or, more accurately, when the probability of an 
Umklapp process is considerably greater for one pair 
of lunes than for all the others, is special. In the pre
sence of only one Umklapp vector g and for arbitrarily 
small deviations of the vectors H and g from perpendicu
larity, drift arises along the magnetic field, such that the 
resultant velocity u = uH -H(g·UH)(g·Hfl turns out to be 
perpendicular to the vector g. The result [j =e(n -nh)u 

0] . e , 
O'xx = O'yy = is exact for any H and is not due to the 
diffusion approximation, since the total collision integ
ral is made to vanish by a drift solution with velocity u 
perpendicular to the vector g. It is clear that for small 
g 'H, when Uz _00, allowance for arbitrarily weak scat
~ering mechanisms (scattering by impurities, and the 
influence of other lunes) will have a substantial effect on 
the result:. By adding, in the diffusion equation, a term 
(1/J + ~. p)TOl describing these scattering mechanisms, we 
obtam 

We note that O'xx is strongly anisotropic: O'xx(cp)/O'xx(O) 
RI [1 + (cp/cp)2r1, where cp is the angular deviation of the 
magnetic field from a direction perpendicular to g, 
cp~ RI TU/To, and TU RI TU(g/ro)2 is the effective Umklapp 
time in the absence of a magnetic field. 

A situation similar to that described also occurs in 
the case when there are several pairs of equivalent lunes 
positioned in the same plane, with the electric field 
parallel to this plane. In this case, 

° "" -- 1+ g '1: K-'R -, ~ g 'R -, 2c' (.E )-' 
xx h3H2 ,,0 U i..J Y U· (20) 

• 
We emphasize that the results (19) and (20) are es-

sentially associated with the phonon drag. 

3. UMKlAPP PROCESSES AND ANISOTROPY OF THE 
CONDUCTIVITY 

To determine the Umklapp resistivities and analyze 
the conductivity in the case of overlapping lunes, it is 
necessary to consider concrete models of the lunes. 
Below we shall consider three models: 1) "broad" 
lunes-the radius of curvature of the Fermi surface in 
the region of the lune is r RI PF ~ ~p; 2) "narrow" 
lunes-broken cylindrical necks with radius of curva
ture r ~ ~p; 3) "prolate" lunes with two appreciably 
different radii of curvature rl RI PF ~ ~p and r2 ~ ~p. 

1. Broad lunes (Fig. 3). In this case the character
istic lune dimension is ro RI (PFqT)1/2 [5]. For Umklapp 
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FIG. 3 

p, 

processes the local approximation is applicable, i.e., 
we can assume that the transitions occur between points 
p and p* situated on one horizontal4 ) (see Fig. 3). The 
term IIp in the diffusion equation (1) can be written in 
the formes] 

~ 

q,,,= Ip-p'l, t(x) = J eY (eY-l)-'y' dy, 

Do=T' 30;(5) M (21) 
nh"'v'l s'" 

where Do is the diffusion coefficient in the lune. Sub
stituting this expression into (10), we obtain 

Ru"" 30; (5) .!!!.. [24; (3) + ( t.p ) '] -, exp (~) . (22) 
JlDo PF qr qr 

As already noted, the results of the preceding section 
were essentially based on the assumption that the dis
tribution function is constant within the lunes. If the lunes 
overlap or almost overlap (b ~ ro), this assumption is 
fulfilled provided that the corresponding diffusion resis
tivity R~ « RU' It can be seen from the relations (17) 
and (22) (see also Fig. 2; in the given case, n = 1) that 
such a situation occurs only at sufficiently low tempera
tures T < T', where Tp < T' < To. At higher tempera
tures the character of the anisotropy of O'xx, generally 
speaking, is such that a transition from the "Umklapp" 
to the "diffusion" situation occurs when there is signif
icant overlapping of the lunes. To analyze this transition 
it is necessary to take into account the dependence 
1/J(pz) inside the lune. 

For simpliCity, we shall first consider the case when 
only two equivalent lunes overlap. According to (6) and 
(21), we have (for Ez = 0) 

d d~ 1 ( b) dpz D dpz - 2:.9t p, -"2 [ug+¢ (p,) -¢ (p,-b) J 

-+..w(p,+ ;)[-ug+¢(p,)-¢(P,+b)I=O. (23) 

Here .oI(Pz -PzO) = (vA(p», where PzO is the center 
of the corresponding lune and Pz is measured from the 
mean section, equidistant from the centers of the two 
lunes. 

It is easy to show that for b « ro Umklapp processes 
lead in Eq. (23) to additional diffusion with coefficient 
d = 1/2b2d(Pz). We have 

~D!!+""::"d(d",+ug)=o (D+d)~+~ug=coust. (24) 
dp, dp, dp, dp, b' dp, b 

The constant in the latter equation is the diffusion cur
rent beyond the boundaries of the overlapping lunes. 
This current is inversely proportional to the large res
istance to diffusion to the neighboring lunes, and can 
therefore be taken to be const = O. Now, making use of 
(13), it is not difficult to obtain the electric current 

j, "" 4cgy(ug) S~ d ,.9t( ) [1+ (~)' .9t(p,) ]-' (25) 
h'H _~ p p, by .9t (0) , 
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b ,_ 2D. _ .( qT )'/,{ 1, T>T, 
, - d(O) ~ T, P; (TIT,)' exp(T,IT), T<T," 

(26) 

In the calculation of the transverse conductivity axx 
in (25) we can put u = ux. (Taking into account the effect 
of the nonoverlapping lunes, we can show that uH • g 
» ucgz.) For b «: bo the conductivity is determined by 
the Umklapp resistivity and, in accordance with (15), 

S- , {T" T>T, 0=",,2 st(p,)dp,=Ru "" 
_00 TT,'exp(-ToIT), T<T, . 

(27) 

In the region ro» b» bo we have axx cc Dob-2ln(b/bo) 
cc Tb-2• Finally, for b» ro we have, in accordance with 
(15), axx cc (R3r l ex: Tb- l • 

The angular dependence of the conductivity is shown in 
Fig. 4a (the solid line). (We recall that b/PF is the angle 
of inclination of the magnetic field to the direction corres
ponding to exact overlap of the lunes.) Qualitatively, such 
a dependence follows from formula (16), in which we must 
take 

Although the change of pz as a result of Umklapp 
processes is small (.1pz = b), the electron flux through 
the overlapping lunes that is associated with Umklapp 
processes is large (cc b -2) and for b «: ro the overlapping 
lunes playa decisive role in the balance of the z-com
ponent of the quasi-momentum. In view of thiS, the velo
city Uc of the co-moving system, and with it the quantity 
azx (cf. (14), turn out to be substantially anisotropic. 
A contribution to this effect, of the same order of mag
nitude, results from the "potential drop" (cf. 24)) 

61jo""uxgT,b-' [ 1 + (b,lb) ']-'. 

that arises between the edges of the overlapping lunes. 
The result is shown in Fig. 4b; the dashed curve cor
responds to the case when, for exact overlap of the 
lunes, azx = 0 because of the symmetry of the problem. 

In the case of overlap of several pairs of lunes the 
situation is more complicated. We shall not carry out 
the calculations here, but confine ourselves to formu
lating the main results. 

If all the overlapping lunes lie in the same, central 
section, the conductivity is 

D 0 

ou"" f dp, {d (D+d) (.E g"b.st.) -. 

FIG. 4 

b 
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It can be seen from this formula that in comparison with 
the case of one pair of overlapping lunes an additional 
term arises in axx (the second term in the curly brac
kets), which does not vanish as D ...... 0, i.e., in the absence 
of ordinary diffusion. We note that this term is non
negative (by virtue of the Cauchy-Bunyakovskir inequal
ity) and vanishes only when bk/~ = const = cP, i.e., 
on rotation, about the x-axis, of tlie central section in 
which all the vectors ~ lie (cp is the angle of rotation)S). 
In the latter case the angular dependence of the conduc
tivity has approximately the same form as for overlap 
of one pair of lunes. On rotation about any other axiS, 
inside the limits corresponding to the overlap of the 
lunes the additional term depends weakly on the angle 
and obviously decreases for b ~ ro (see Fig. 4a (the 
dashed curve); if the dimensions ro of the overlapping 
lunes differ appreciably, several steps will appear in 
the graph). 

It can be shown that what has been said above about 
the anisotropy of the quantity axz (see Fig. 4b) remains 
valid in the case under consideration. Finally, we point 
out that the results cited are qualitatively conserved in 
the case when overlapping of lunes occurs in several 
planes. 

We remark that in the case of Na and K, for which 
.1p Rj PF/3, we should hardly expect large anisotropy 
of the conductivity. (In particular, the condition bo«:ro, 
as can be seen from (26), cannot be fulfilled, and there
fore the region axx ex: b-2 is absent.) In these metals 
axx is probably a smooth function of the magnetic-field 
direction, reaching maxima when the lunes overlap. The 
temperature dependence of the conductivity in the region 
of the maxima has the form (27). 

2. Narrow lunes (Fig. 5). It is assumed that the ther
mal momentum qT of the phonons is small compared 
with the length of the protrusion on the Fermi surface. 
(Otherwise, the presence of the protrusions is unimpor
tant and the lune can be regarded as "broad.") The 
characteristic area of the lune is So Rj qTr. 

It is easy to show that for overlap of lunes Rd/RU 
'S qT/PF «: 1, and the equality Rd = RU is achieved 
under conditions in which the lunes are far from over
lapping. This means that the variation of the function 
Xp within a lune can be neglected and for any magnetic
fleld direction the Kirchoff rules obtain in the preceding 
Section are valid. It is clear that the character of the 
anisotropy of the conductivity can depend substantially 
on the shape of the protrusion (especially on its length) 
and on the shape of the rest of the Fermi surface. By 
making use of formula (10), it is not difficult to calcu
late the Umklapp resistivity: 

h'v' (!J.P ) R"" 9Xp-. 
U 16n'Mr'qT(qT+!J.P) , qT 

(28) 

Thus, the temperature dependence of the conductivity 
for directions close to overlap has the form 

{ T', T>T. 
O:cx

CO TTo2exp(-ToIT), T<To' 

3. Prolate lunes. In this case the large characteristic 
dimension of the lune is rOl Rj (PFqT)1/2 and the smaller 
dimension is r02 Rj [qT(r2 +qTW/2 • From the same ar-

FIG. 5 
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guments as in the preceding subsection it follows that 
Kirchoff's rules are valid for any field direction. The 
resistivity of the prolate lune is 

R "" h'v'exp(l!plqT) 
u 16n'MqT(qT+l!P)'(qT+r,) [PF(qT+l!P) l'" . 

(29) 

The temperature dependence of the conductivity for 
directions close to overlap has the form 

\
T',', T>T. 

0 .. "" T'T:" e-To/T , r,s<T<T •. 
TT:" r,se-To/T , T<r,s 

We note that formulas (22), (28) and (29) can be used 
for a direct determination of the matrix element M of the 
electron-phonon interaction in the lune from the experi
mental data. 

4. REGION OF INTERMEDIATE MAGNETIC FIELDS 

As we have seen, the effective relaxation times de
termining the electrical conductivity in the region of 
strong magnetic fields (T~ff) and in zero magnetic field 
(T~ff) can differ substantially. This fact is most strongly 
manifested in conditions of total overlap of lunes at tem
peratures T > Tp. In this case, the time T;ff associated 
with Umklapp processes is small compared with the 
time T~ff associated with diffusion across the Fermi 
surface: 

'( ~ff""'(~PFlr., '(:ff ""'tF~'tU""'(U (pFlro)'~'t:ff' 

The region of strong magnetic fields (OT;ff» 1) does 
not adjoin the weak-field region (OT~ff ~ 1), and there 
arises at broad intermediate region: (PF/ro)TU ~ 0-1 
« TF' 

In this section we shall not present the calculations 
but shall confine ourselves to formulating the principal 
qualitative results for thp. case when exact overlap of 
one pair of broad lunes occurs. 

In the diagram in Fig. 6 the regions in which the con
ductivity behaves in qualitatively different ways are 
drawn schematically in the variables T, 0-1 a: H-1, and 
the dependences of CTXX on H are indicated. It is assumed 
that the lune dimension ro ~ (PFqT)1/2« PF; however, 
factors of order In(PF/ro) are not taken into account. 
The regions I and VI correspond to strong and weak 
magnetic fields respectively, and the regions ll-V 
correspond to intermediate fields. 

The curves 1-6 in Fig. 6 correspond to the relation
ships 

The conductivities in the regions I, •.. , VI respectively 
have the forms 

m 1 (ro)' 1 (ro)' ( ro ) 3 

O;a: ~::::: Q21 •u PF 'Q2Tu p; ,'IF \P; , 
(30) 

Coefficients of order unity have been omitted. 

We shall discuss the physical meaning of the results 
given. In the region I of strong magnetic fields the prob
ability of an Umklapp process during the time of passage 
through the lune is low: 0-1 « TUPF/ro. As the magnetic 
field is decreased (to the right of curve 1) the electron 
has time to undergo an Umklapp process several times 
during the time of passage through the lune. Each time 
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FIG. 6 

5 

sr' 

the electron hops from one equivalent lune to the other 
it changes the direction of its motion along the Px-axis 
(the py-axis is directed along the reciprocal-lattice 
vector corresponding to the overlapping lunes). It is 
clear that such a process is a distinctive type of dif
fusion along the Px-axis, with elementary step-length 
1:1 ~ PFWb and step-time Tb. An electron that starts 
its diffusion path at one edge of a lune (say, with 
Px> 0) will, with high probability, emerge from the 
equivalent lune on the same side, i.e., will be found in 
the neighbOring cell in the repeated-zone scheme. Thus, 
the electron moves along an effective open orbit, and 
this will continue until either there is some small pro
bability of passing right through the lune (region II) or 
the electron moves away from the lune belt as a result 
of ordinary diffusion along the Pz-axis (region 1lI). 

The electrical conductivity of a layer of open orbits 
of width ro has the form 

e2 ro 
(Jxx~n--T. 

m PF 

In region II the time T is equal to the half-period (20fl 
multiplied by the number of returns of the Brownian par
ticle to its starting point during the time of the displace
ment over the distance ro, i.e., multiplied by ro/l:1: 
T ~ ro(PF02Tbf1. (It is curious that, although the elec
trical-conduction mechanisms are essentially different 
in regions I and II, the final results are the same. 
However, this situation is connected with the model used: 
e.g., it can be shown that in the case of overlap of two 
pairs of equivalent lunes the dependence of the electrical 
conductivity on 0 in region II differs from that in region 
I.) In region 1lI we have T ~ TF(ro/PF)2 and, as is charac
teristic for open orbits, the electrical conductivity does 
not depend on the magnetic field. 

On further decrease of the magnetic field, in a half
period an electron has time to diffuse over a distance 
1>* '" PF(OTFf I/2 » ro along Pz, and therefore an open 
orbit does not arise. (In regions IV and V, ro« 1>* 
« PF') Nevertheless, for an estimate of the conductivity 
in region IV we can make use of the expression (31), 
taking T ~ 0-1• We note that in this region the transverse 
resistivity Pyy a: H. This result has been obtained, with 
slightly different assumptions, by Young[7]. 

In region V the situation becomes more complicated. 
We note that the diffusional displacement 1>(t) 
~ PF(t/TF)1/2, and, therefore, for sufficiently short 
times t the rate of displacement of the electron (6 a: t-1/2 ) 
exceeds the rate PFO of its motion along the orbit in 
the magnetiC field. The corresponding critical distance 
1>0 ~ PF(OTFf1(1>0 == 1>(to); 5(to) = PFO), if it is greater 
than ro, plays the role of the size of the lune. Precisely 
this situation arises in region V; the result CTXX 
a: (02TF r1 follows from the corresponding expression 
for region IV after ro is replaced by 1>0. 
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I)Strictly speaking, normal collisions within a lune can be treated in the 
diffusion approximation under the condition that ro :> ilp, where ilp 
is the minimum distance between the isolated Fermi surfaces [5 J. How
ever, as a detailed analysis shows, this restriction is unimportant, since 
for ro ::S ilp the variation of the distribution function within the lune 
can be neglected. 

2)In the general case of a multiply-connected Fermi surface Eq. (6) must 
be replaced by a system of equations, in each of which the averaging is 
performed within one given electron or hole group. (In particular, the 
diffusion coefficients in these equations are different.) The quantities 
sought in this case will be the functions I/Im(Pz) (m is the label of the 
group) and the velocity uc' 

3)As shown in [5], the ratio Tp/To falls as the parameter PF/ilp increases, 
but even in the case of Na and K, when PF/ilp '" 3, Tp/To '" I /I O. 

4)The extent to which the Umklapp processes are nonlocal is characterized 
by the size of that region on the Fermi surface to which transitions from 
the given joint p are possible (r* '" qT + ilp). For r* ~ ro the nonlocal 
character leads to additional diffusion in the lune, with diffusion coeffi
cient D* '" (r*)2/rUvF. However, as one can easily convince oneself, in 
a strong magnetic field the ordinary diffusion associated with normal 
collisions plays a more important role. In the opposite limiting case 
r* :> ro, the variation of the function X within the lune can be neglected 
and therefore the nonlocal character of the Umklapp processes is unim
portant. 

S)The condition bk/gky = const means that in being displaced to infinity 
along the py-axis (in the extended p-space) as a result of Umklapp 
processes and motion in the magnetic field, an electron is also inevi-
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tably displaced to infinity along the pz-axis, i.e., goes outside the lune. 
But if the ratio bk/gky is not the same for different lunes, then, as is 
not difficult to show, the electron can always move away to infinity 
along Py while remaining within the limits of the lune layer (for bk 
~ro)· 
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