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It is shown that localization of thermal and impurity excitations on a vortex filament in helium leads to an 
experimentally observable dependence of the effective radius b *( c, T) of the vortex filament core on the 
temperature and the solution concentration. General formulas are derived which relate b*(c, T) with the 
value of the thermodynamic potential a( c, T) per unit filament length for excitations localized on the 
filament. Calculations of a(c, T) for a vortex filament in pure He' and for a vortex in a weak He3-He4 

solution are presented for extremely low temperatures. In the first case the explicit form of the dispersion 
law for flexural vibrations of the vortex filament is employed in the calculations. In the second case a 
phenomenological calculation of a(c. T) is found to be possible (with an accuracy to two constants) and is 
independent of the details of the spectrum of the impurity excitations localized on the filament. The results 
of the theory for weak solutions are compared with the available experimental data. Qualitative agreement 
between theory and experiment is noted. The problem of motion of vortex rings along the vapor-liquid 
interface in liquid helium is formulated in the Appendix and solved for some limiting cases. It is shown 
that the proximity of the boundary leads to a number of observable effects. It is suggested, in particular, 
that under ceratin conditions the formation of vortex semi-rings whose ends emerge to the free surface of 
helium should be possible. 

INTRODUCTION 

It is well known (Atkins [11, Andreev[2]) that the pre
sence in liquid helium of surface thermal excitations 
leads to the appearance of an experimentally observable 
temperature dependence of the surface-tension coeffi
cient on the flat liquid-vapor surface, and to other 
thermodynamic effects. Similar phenomena also should 
accompany the adsorption of thermal excitations on 
vortex filaments. Until recently, however, this question 
was not discussed seriously, in view of the lack of really 
observable effects of thermodynamic origin due to vor
tex motion. 

The use of helium ions has greatly extended the ex
perimental capabilities for the study of different local
ized thermal excitations in liquid helium. In particular, 
a definite scheme was developed for the observation of 
thermodynamic phenomena on a vortex filament, which 
makes it possible to extract the necessary quantitative 
information on the value of the adsorption on the fila
ment from the experimental data on the motion of the 
charged vortex rings in superfluid helium and its weak 
solutions. The first concrete results in this direction 
were obtained experimentally by Kuchnir, Ketterson, 
and Roach [a], who have shown that the effective size of 
the "core" of the vortex filament in weak solutions of 
helium is a function of the solution concentration and of 
the temperature, They presented a variant of the expla
nation of their experimental data. This explanation is 
based on the assumption that the excess concentration 
of the impurity excitations in the vicinity of the vortex 
filament leads to a local stratification of the solution. 
The position of the stratification boundary, which dependE 
on the temperature and concentration of the solution, de
termines the value of the new effective radius b* of the 
vortex-filament core, which reaches a value b* ~ 4 A at 
low temperatures (we recall that in pure helium at low 
temperatures the radius of the vortex-filament core is 
bo = 1.2 A [4]). 
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In spite of the phYSical nature of this interpretation, 
it must be recognized that the introduction of the con
cept of the stratification boundary under sharply inho
mogeneous conditiOns, when the linear dimensions of the 
phase enriched with the Hea atoms have a scale compar
able with the thickness of the boundary itself, is some
what artificial. Another possibility for the interpretation 
of the experimental data1a ] and related phenomena on 
vortices was indicated by the author earlier[S]. It stems 
from the deep analogy between the adsorption phenomena 
on the flat surface of helium and vortex filaments, makes 
it possible to take into account in similar fashion the 
contribution made to the adsorption phenomena on the 
filament by the phonons, rotons, impurity excitations, 
and, quite importantly, is free of the model assumptions 
used in[3] 

In this paper we present a systematic exposition of 
the theory of thermodynamic phenomena on vortex fila
ments in pure He4 and its weak solutions in the low
temperature limit. 

BASIC DEFINITIONS 

1. We consider a vortex ring of radius R in liquid 
helium. The production of such rings with the aid of 
helium ions entails no difficulty at present[4]. The to
tal energy of the ring and its momentum are expressed 
in the form [6,7] 

1 2 ( 8R 3 ) w,=-p.rR In---, P,=np.rR', 
2 b, 2 

(1) 

where r is the circulation of the vortex filament making 
up the ring, bo is the rad!us of its core (r = 21T1i/m4 
= lO-a cm2/sec, bo = 1.2 A), and Ps is the density of the 
superfluid component of the helium, 

The form of expressions (1) is known from classical 
hydrodynamics [6], apart from the constant C which en
ters in the definition of Woo The numerical value of this 
constant, C = 3/2, was obtained by Roberts and Donelly[7]. 
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It is shown in their paper that the velocity V of the vor
tex ring can be expressed in terms of W 0 and Po in the 
usual manner: V = aWo/apo. As a result we have 

V=~(ln 8R _~). 
4nR b, 2 

(2) 

We note now that under real conditions the total ring 
energy W should include also the thermal component of 
the energy, which is connected with the presence on the 
vortex filament of adsorbed excitations: 

W=W,+WT, WT=~2nRa(c, T), (3) 

where a (c, T) is the energy of adsorption of a given 
sort of thermal or impurity excitations, calculated per 
unit length of the vortex filament. It is assumed in (3) 
that R » a, where a is the radius of the ion localized 
on the vortex filament. 

The total momentum of the ring also changes in 
prinCiple as a result of the contribution of the excita
tions adsorbed on the ring. This contribution, however, 
just as WT, is proportional to the radius of the ring, 
whereas the hydrodynamic momentum Po in (1) is pro
portional to the square of the radius. As aresult, for 
large vortex rings with R » a, which will be discussed 
later on, the change of the momentum as a result of the 
adsorption of the excitations can be neglected. 

Taking (3) into account, the vortex velocity determined 
from the equation V = aw lapo turns out to be 

V = 4~R (In ~~ -}) , b'=b, exp ( :;'2 a). (2a) 

This expression is equivalent in its structure to (2). 
However, the radius of the core of the filament, b*, 
turns out to be effectively dependent on the tempera
ture and on the concentration of the impurity excita
tions to the same extent that a (c, T) f O. It should be 
noted that the definition of b* in (2a) is general in form 
and does not depend on any model assumptions. This 
definition was obtained earlier in somewhat different 
form[S]. 

The task of the theory reduces now to the calcula
tion of the adsorption energy a (c, T) in accordance 
with the known general rules [8]. Before we proceed to 
solve this problem, however, it is meaningful to dis
cuss the correctness of the determination of b* from 
the experimental data on the motion of vortex rings 
in helium. 

2. The most lucid situation, from all points of view, 
is the one in which a charged ring moves through the 
superfluid helium in a stationary regime, i.e., under 
conditions when the external force eE applied to the 
charge is fully balanced by the friction force exerted 
on the ring by the normal component of the helium 

eE=Frr =2nRT] V, R>a, (4) 

T/ is a dissipative coefficient calculated per unit fila
ment length. At a given temperature and external field 
intensity E, relation (4) determines the equilibrium 
radius of the ring as a function of E and V. Substituting 
R from (4) in the definition of the velocity (2a), we 
easily obtain the expliCit dependence of V on E: 

(5) 

which was observed experimentally. If we now choose 
some pair of experimental points Em and V m (corres-

1138 Sov. Phys.·JETP, Vol. 40, No.6 

ponding, for example, to the maximum electric field 
used in a given experiment), denoting the remaining 
pairs of pOints by E and V, and assuming that the experi
mental data on the mobility of the charged vortex rings 
are described by expression (5), then we obtain for the 
connection between E, V, and Em, Vm the following re
sult: 

V Em 2e 
In--=-(Em-E). (5a) 

E Vm fT] 

It follows from (5a) that In(VEm/EV m) is a linear func
tion of the electric field, and the slope of this line de
termines directly the coefficient T/ independently of b *. 
By determining the numerical value of 11 from the ex
perimental data, we can then easily calculate b* from 
any of the E, V pairs. This was precisely the method 
used to determine the radius of the core of a filament 
in pure He4 [4) and in its weak solution[3). In both cases 
the experimental data on the mobility of the charged 
vortex rings can be fitted with good accuracy to straight 
lines plotted in the coordinates 

In~~ Em-E· 
E Vm ' 

It should be noted, however, that the definitions (4) 
and (5) are perfectly rigorous only so long as we are 
dealing with a ring uniformly charged along its peri
meter. Actually, however, the charge is localized on 
the ring practically in ii-function manner. As a result, 
the pOints where the force eE is applied no longer coin
cide with the total friction force, which is applied to the 
center of the ring, and a force couple I KI = eER begins 
to act on the ion-ring complex. The question is: how 
is the action of this couple to be neutralized? And what 
is the justification for writing down Eq. (4)? 

If we disregard the local deformation of the ring in 
the vicinity of the localized ion, then the answer is the 
following. Under the influence of the force couple K, the 
total velocity of the ring V ceases to be perpendicular 
to the ring plane (Fig. 1). At a given radius R, the velo
city Vi retains, of course, its value (2). But together 
with Vi there appears a velocity component V II corres
ponding to the motion of the ring in its own plane. To the 
extent that VII f 0, additional Magnus forces G 
= - psr x V appear, directed in this case in such a way 
as to produce a couple that is negative relative to K. 
The condition that these two couples be equal, together 
with the other obviOUS relations, enables us to write 
down a closed system of equations for the quantities 
VII, Vi, Ell, and El. The explicit form of this system 
is given in the Appendix. It turns out that the ratios 
EII/El and VII/Vi, which characterize the tilting of the 
ring plane by the couple K and the need for its can-

FIG. 1 
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cellation, are determined by the equalities 

E"IE.!.. =21],,/p.r, v,,/v.!.. =2l]L/p.r. 

Here 1111 and 111 are the friction coefficients that arise 
when the ring moves in its plane and perpendicular to 

(6) 

it, calculated per unit length of the vortex filament. 
These coefficients seem to have the same order of mag
nitude, but can differ numerically from each other. Ex
pressing 111 in terms of E and R, we rewrite the expres
sion for V II IV 1 in a different form: 

Vu 8R 
- '" 4eE/p.r' In-, p.~p. (6a) 

v.!.. b' 

For all reasonable values of E encountered in experi
ments (E 'S 10-102 cgs esu) and the quantities R that 
are uniquely related to them. the ratio VII IV 1 given by 
(6a) turns out to be very small. Thus, at E ~ 10 cgs esu, 
r ~ lO-a cm2/sec, and p = 0.146 g/cm 2 we have VII/V 1 
~ 10-2_10-4 « 1. The smallness of this ratio justifies 
the use of the definitions (4) and (5) to describe the 
motion of real ion-ring complexes under the influence 
of an external field in a medium with finite viscosity. 

CALCULATION OF edT) IN PURE He4 

According to[S], and also [1, 2], the starting point for 
the calculation of the adsorption energy on the surface 
of helium or of a vortex filament is the determination 
of the spectra of the corresponding localized thermal 
or impurity excitations. Once this problem is solved, 
we can use the general formulas of statistical physics 
to calculate cr(c, T). 

1. The most thoroughly investigated of the Bose exci
tations localized on a vortex filament in pure He4 are 
the flexural oscillations of the filament core. The dis
persion of oscillations of this type was known already to 
Kelvin 

",=~q'(In~-C), 
4n qb, 

(7) 

where q is the wave number of the excitation along the 
vortex-filament axis, w is its frequency, and C ::::l 1. 

Having the definition (7), we calculate (cf. [1]) the 
contribution of the flexural oscillations to the thermo
dynamic potential n, and by the same token also to 
cr(T) 

LTf 
a (T) = QIL, ~~ = <!:t ~ In (1 - e-~"T) dq, (8) 

.. 
L is the total length of the vortex filament. In the expres
sion for n, the chemical potential of the flexural oscil
lations is, as usual, equal to zero. Substituting (7) in 
(8), we get, with logarithmic accuracy, 

a (1') =T'I,~ ( ~ ) /2 (nhr In q
T

2bJ 'I, , (9) 

where ?;(x) is the Riemann function. 

The combination 

~a(T)=2n"·T'I.~ (~) / pr'(hrln~)'I', (9a) 
pr 2 qTb, 

which determines the renormalization of the radius of 
the core of the vortex filament b* from (2a) at tempera
tures T S 10 K turns out to be smaller than or of the 
order of unity, i.e., the effect of the renormalization of 
b* as a result of the flexural oscillations of the vortex
filament core is quite readily observable. 
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2. The flexural oscillations of the vortex-filament 
core make the main contribution to the temperature de
pendence of cr(T) only at low temperatures. With in
creasing T, it becomes necessary to take into account 
other Bose excitations localized on the vortex filaments, 
namely phonons and rotons. A consistent calculation of 
the spectra of these excitations calls for the use of nu
merical methods and have not yet been performed, 
although certain approximate results are available in 
this direction[9 1• We confine ourselves therefore to 
the remark that the presence of such excitations, to
gether with the perturbation of the distribution function 
of the volume phonons and rotons by the field of the 
vortex filament, leads to the appearance of additional 
terms proportional to T.\ (.\ > 3/2) and exp(- ~/T) in the 
temperature dependence cr (T). In other words, with 
increasing temperature the function cr (T) in pure He4 

becomes extremely more complicated in comparison 
with the low-temperature limit, when cr (T) ex: T3/2. 

VALUE OF a(c, T) IN WEAK He3-He4 SOLUTIONS 

Let us proceed to calculate cr (c, T) in weak He3_He4 
solutions. A solution is regarded as weak if it satisfies 
the Boltzmann condition T» TF, or 

A( T) - 2m. (m"T) '/, e, ------, -- ~1, 
cp 2nh' (10) 

where p is the density of the solvent, c is the relative 
volume concentration of the solutions, and mt and m4 
are the effective masses of the Hea and He4 atoms in 
the solution. The chemical potential of the dissolved 
particles under similar conditions is 

J.L= -TInA(c, T)<t:o. (11) 

The localization of the impurities in the vicinity of 
the vortex filaments (such impurities will be called 
later on l- impurities) is due to the action exerted on 
the impurity excitation by the attracting potential V(r), 
which behaves like v(r) ex: r- 2 at large distances r. In 
the problem of the spectrum of particles with a poten
tial of this type, the particle should fall on the axis of 
the vortex filament. For this reason, to obtain finite 
results it is necessary to have a model of the potential 
V(r) at short distances. Choosing V(r) in the form 10] 

j=0,1,2 ... 

(12) 

(m is the mass of the l-impurity, rna is the mass of the 
bare He3 atom, b3 is the characteristic cutoff radius of 
the attraction potential at short distances, j is the 
orbital quantum number, the plus and minus signs in 
(12) correspond to different signs in the scalar product 
p . v s' where vs (r) is the vortex-filament velOCity field 
and p is the momentum of the [-impurity), and solving 
the problem of the spectrum of the l-impurities in the 
quasiclassical approximation, we obtain 

,,-,=ml/2n'1t'-j'/ (2n)', P"P" . 0<;;p'<;;2m.6.." 
n=n" n,+1, ... , no>1, ",>0, e.,(p) <;;0. 

(13) 

The z axis is directed along the vortex filament, and 
n is the radial quantum number. According to (13), the 
numerical values of n can be arbitrarily large. In other 
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----------------------------------------------------------

words, the l-impurity spectrum has a condensation point 
at the boundary of the continuous spectrum. The limits 
of integration with respect to p in (13) follow from the 
condition Enj(P) !S 0, and the limits of the variation of 
the quantum number j are determined by the require
ment Aj > O. As to the deep levels that do not lend them
selves to the quasiclassical description, their explicit 
position will not be needed in what follows. 

The presence of a condensation point in the l-impur
ity spectrum greatly complicates the analysis of the 
temperature dependence of 0l(c, T) for the vortex fila
ment in comparison with the analogous problem for the 
plane surface. The point is that the degeneracy tempera
ture ~ of the impurity excitations on the surface levels 
is a finite quantity. Therefore, in the region T « T~, 
the following expansion of the thermodynamic potential 
is valid [111: 

(Os(J.Lo, 0) and aOs/aJ.L = -N~ are the maximum adsorp
tion energy and the maximum number of impurity exci
tations localize d on a flat surface), which solves- the 
problem of the concentration and temperature depen
dences of the surface tension in the low-temperature 
region, accurate to terms (T/T~)2 « l. 

A similar expansion of 0i(J.L, T) for 1 impurities, 
owing to the presence of a large number of shallow 
levels and the ensuing absense of a clear-cut defini
tion of the Fermi temperature, should contain, in com
parison with (14), an additional last term in 

aQ, aQ, 
Q, (fl, T) ""0, (fl" 0) + - Ofl + - oT, (14a) afl aT 

the smallness of which relative to the first two terms 
cannot be established from general considerations. 
Nonetheless, the main result of a more detailed analy
sis, which takes into account the concrete structure of 
the quasiclassical part of the l-impurity spectrum, re
duces to the fact that at low temperatures the third term 
of (14a) is small in comparison with the second. Conse
quantly, as in the surface problem, the temperature de
pendence of OZ(c, T) is determined in the low-tempera
ture limit mainly by the variation of the chemical poten
tial J.L with temperature: 

a(e, T) =OiL=a,-z,T In A. (15) 

The constants (lIo and zo, which have the meaning of 
maximum values of the adsorption energy and the num
ber of impurity excitations localized on the unit length 
of the vortex, remain parameters of the theory in the 
phenomenological analysis and should be determined 
experimentally. 

2. We present a comparative estimate of the last 
term of (14a). To this end, we express Oz in terms of 
Enj(p) 

Q,= - ~~ .E J dp(2j+l)In[ Hexp(xn;(P» J. 
n; 

(16) 

where J.LZ is the chemical potential of the Z- impurities. 
The value of the latter, according to the general pre
mises[8, 2], should coincide with the value of the chemi
cal potential J.L of the impurity excitations in the volume 
of the liquid, Le., in the particular case of Boltzmann 
statistics, with the value of fJ. from (11). 
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Furthermore, we have 

ao, L n J [. K] -= --, dp(2j+1) In(t+ek)---

aT nh""'-l l+e--
(17) 

It! 

(where K == Knj(P)). We see therefore that the square 
bracket, and with it also aOZ/aT, differ noticeably from 
zero, on account of states located in the vicinity of 

-l"';K nJ(p)"';1. (17a) 

Neither the deep states with K» 1, nor the shallow ones 
with K «-1 (in particular, also the condensation point 
near the boundary of the continuous spectrum) contrib
ute to aOZ/aT. 

At the same time, the quantity 

N,= - ao, = ~ .E J dp 2;+1 (18) 
afl nh nJ e--+l 

contains contributions from all states: deep, intermedi
ate, and shallow. For this reason, we can conclude 
on the basis of (17), (17a), and (18) that the relation 
between NZ and aOZ/aT should take the form Nl 
> aOz/aT. IT we now recognize that IJ.LI » T in accor
dance with (11), then the following inequality becomes 
obvious 

N,I fll ==N,TlnA>TaQ.laT, (19) 

q.e.d. 

Of course, the foregoing arguments do not make it 
possible to determine distinctly the actual order of 
smallness of the ratio (80/aT)/Nzln A, as was done 
for the case of adsorption of impurity excitations on 
a flat surface. However, the arguments presented are 
apparently sufficient to establish the very fact that 
the inequality (19) exists. 

3. Let us discuss the content of the limiting asymp
totic form (15) for a(c, T). By definition, the limiting 
value of the adsorption energy ao and the number Zo 
= NZ/L do not depend on the concentration of the solution. 
This result should not be surprising, since we are deal
ing with filling of all possible states in the vicinity of 
the vortex vilament with Z-impurities in the limit as 
T _ O. The number of such states is determined only 
by the character of the interaction of the impurity exci
tations with the velocity field of the vortex filament, 
and does not depend on the concentration of the solution. 

Another characteristic feature of formula (15) is 
that the concentration dependence of a(c, T) has a log
arithmic character. This circumstance allows us to 
disregard the contribution made to a (c, T) by volume 
impurity concentrations, which also interact with the 
velocity field of the vortex filament. The inhomogeneous 
Boltzmann distribution of volume impurity excitations 
was investigated at one time by Reut and Fisher 112 ]. 
The magnitude of this inhomogeneity, which makes a 
contribution to the total number of impurities adsorbed 
on the filament, turns out to be a linear function of the 
volume concentration, so that it plays no noticeable 
role in the low-temperature limit in comparison with 
the logarithmic contribution made by the Z-impurities 
to a. 

4. It is of interest to note the analogy between prob
lems concerning thl:i thermodynamic properties of a 
system of l-impurities, on the one hand, and a gas of 
free electrons in a strong magnetic field, on the other. 
In both cases we are dealing with Fermi particles that 
contain in the spectrum discrete quantum numbers and 
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one continuous quantum number. In either problem, when 
the external parameters are changed, the chemical po
tential is shifted relative to the levels of the spectrum. 
In the magnetic problem this shift is due to the fact that 
the position of the chemical potential is fixed while the 
Landau levels are shifted with changing magnetic field. 
In the l-impurity problem, the position of the l-levels 
is fixed, but the chemical potential shifts with changing 
temperature. At a given concentration of the solution, 
the potential JJ. drops monotonically "downward" with 
increasing temperature (see (11», and intersects deeper 
and deeper l- levels. Consequently, just as in the mag
netic problem, the thermodynamic potential of the 
l-impurities should contain both a monotonic part and 
an increment that oscillates with the temperature. The 
separation of these oscillations lies beyond the limits 
of the accuracy of the approximations used in the pre
sent paper to analyze the derivative anl/aT. We have 
therefore obtained no concrete information on the os
cillations, with the exception of the fact that their scale 
(unlike in the magnetic problem) is small in comparison 
with the monotonic part of 0' (c, T). 

COMPARISON OF THEORY WITH EXPERIMENT 

As noted in the Introduction the discussed effects 
were experimentally observei3] for weak solutions of 
helium. In accordance with the results of the theory, 
the experiment offers evidence of the existence of a 
limiting value, as T -0, of the effective vortex-fila
ment core radius bit, the value of which does not depend 
on the concentration of the solution and noticeably ex
ceeds the limiting value of bo in pure He4• The numeri
cal value is bit "'" 3.8-4 A. The observed temperature 
dependence of b*(c, T) also agrees qualitatively with 
the theory. This is a power-law dependence and responds 
weakly to the concentration of the solution. However, the 
number of experimental points is too small for a reliable 
verification of the theory. 

An exception is the estimate of the constant 0'0. Taking 
into account the definition (2a) of the radius b* and the 
numerical value of b~ which follows from the experimen
tal data, we readily obtain 

p.r' b," 
cto=--ln-, 

4n bo 

b' _0_"" 3.25. 
bo 

(20) 

An estimate of the parameters zo, based on the data 
of[3 J, and using the relation 

p,r' b," 
Zo =--In--/ TlnA(c, T), 

4" b' (c, T) 
(21) 

derived on the basis of (2a) and (15), yields the results 
gathered in the table. The calculation was performed 
for all the suitable experimental points. We see from 
the table that if we confine ourselves to pOints with 
A > 20 (we recall that the parameter A must satisfy 
the requirement In A» 1), then we get Zo "'" (0.7-1.0) 
X lOB cm-1• The approximate constancy of zo, which 
takes place when the impurity concentration and the 
temperature are varied by a factor of almost 5, is 
evidence that the definition (21) of Zo is reasonable. 

103 C lb' I·~K I A (e, TJ 
10-8 Za. 

103 C A' cm-J I b;: I·~K I A (e, TJ I 
0.5 { 

3.7 18 2.34 2.N 
3.6 28 4.55 1.69 0.17 
3J)5 85 24.0 0.75 { 

3.5 28 13.6 
3.3 43 25..1 
3.0 78 6,2.0 

0.106 2.8 85 11'3 
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1.30 
1.0 
0.71 

0.70 

As to the small tendency of Zo to decrease at a given 
concentration with rising temperature, it is due to 
the next higher terms of the expansion in (15), the 
explicit of which cannot be established in a phenomeno
logical treatment. 

CONCLUSION 

Let us present some summaries. The feasibility of 
observing of the localization of the thermal and impur
ity excitations on the vortex filaments allows us to 
speak of an entire class of phenomena in which excita
tions are localized in liquid helium. These include the 
rather well investigated process of localization of ex
citations on a free flat surface of helium and its solu
tions!)' 2], the adsorption of excitations on small-radius 
spherical surfaces [3, 13, 14], and finally, localization of 
excitations on a vortex filament. All these problems 
have much in common, but differ in a large number of 
details. 

We have derived in this paper general formulas that 
enable us to connect the observed dependence of the ef
fective radius of the vortex-filament core on the tem
perature and concentration of the solution with the 
dynamic characteristics of the thermal and impurity 
concentrations localized on the vortex. We investigated 
the asymptotic properties of the quantitative charac
teristics of adsorption on a vortex filament in the low
temperature limit, both in pure He4 and in its weak 
solutions. Rather simple formulas were obtained for 
the energy adsorption on a filament (see formulas (9), 
(15», which admit of compa.rison with the experimental 
data. We have discussed the degree of correspondence 
between the theory and the available experimental data 
on the adsorption of impurity excitations on filaments 
in weak solutions of helium. The theory describes 
qualitatively correctly the presence in weak solutions 
of a limiting effective radius bit of the core of the vortex 
filament, with a value that does not depend on the solu
tion concentration. The theory explains the power-law 
dependence of b*(c, T) on the temperature in the region 
of low temperatures and the weak (logarithmic) depen
dence on the solution concentration. For a more reliable 
determination of the constants contained in the low-tem
perature limit of the theory, however, further experi
mental study of the problem is needed. 

In the Appendix we investigate the singularities of 
the motion of vortex rings along the vapor-liquid sur
face of liquid helium. This situation can be easily 
realized in experiment if it is recalled that the helium 
ions can be fixed at a definite depth Xo near the free 
surface of the helium [15]. The value of the parameter 
Ii = R/xo can vary in a wide range 0 < Ii S 1. In partic
ular, it is suggested that if Ii > 1 then stable vortex 
half-rings can be produced, the ends of which emerge to 
the surface of the helium. We discuss the possibility 
of observing similar half-rings in practice. 

The author is grateful to A. F. Andreev for a ,diSCUS
sion of the results. 

APPENDIX 

1. The stationary motion of an ion-ring complex in 
a field E, in the presence of friction forces and neglect
ing the small deformation of the ring in the vicinity of 
the ion localized on the filamene), can be determined by 
assuming that the vectors of the total field intensity E 
and of the velocity V of the ring cease to be collinear. 
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Using the symbols II and 1 to designate the com
ponents of the vectors V and E in the plane of the ring 
and in a direction normal to it (Fig. 1), we write down 
in analogy with (2) and (4) the following definitions: 

VL=~(ln~-.!...) eEL=2nR'I]LVL, 
4nR bo 2' (A.1) 

eEII=2nR'I]IIVII' E'=EII'+EL'. 

Here 1711 and 171 are the effective friction coefficients 
per unit length of the ring. The coefficient 17 from (4) 
is identically equal to 171. It is obvious that the coef
ficients 171 and 1111 need not exactly equal each other, 
although they seem to be of the same order of magnitude. 

The definitions (A. 1) contain four relations between 
the five quantities R, VII, VI, Ell, and EI. One more con
nection between them, which closes the system of equa
tions, can be obtained by stipulating that the moment of 
the forces K1 , which arises in the ion-ring system as a 
result of the fact that the points at which the electric 
force eE and the total friction force Ftr are applied 
do not coincide, 

(A.2) 

is offset by the Magnus moment of the forces K2 , which 
differs from zero to the extent that V I- 0, and which is 
directed opposite to K1• The numerical value of K2 is 

"I' 
iK,i= Sk,dl=4R f k,(<p)d<p=nR'prvlI , 

o 

k,=[rxG], G=p[rxv lI ], (A.3) 
r=R sin <p, I k,l =prRVII sin' 11'. 

The meaning of the dimension r and of the angle rp be
tween the vectors r and V in (A.3) is clear from Fig. 2. 

Putting K1 = K2 or 

(A.4) 

and solving (A. 1) and (A.4) simultaneously, we obtain 
relations (6) and 

E r(8R 1) 
(1+y') 'I, = 'l]L 2"" Inb;-2"" ' 

which were used in the main text. 

2'1]11 
,,(=-, 

pr 
(A.5) 

2. The stability of the ion-ring system against the 
action of various moments of forces, which tend to up
set the orthogonality of the leading electric field to 
the plane of the ring, gives grounds for hoping to be 
able to observe the following effect. 

Consider a positive ion that is pressed against the 
surface of helium by an external field E1. In such a 
situation, the position of the ion is fixed at a definite 
depth Xo from the surface of the helium [15]: 

[ e e-1 ]'" 
Xo= ELo 4(e+1) , (A.6) 

where E is the dielectric constant of the helium, 

FIG. 2 
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E -1 = 0.06. It follows from (A.6) that at E1 ~ 100--1000 
V/cm we have Xo ~ 10-5_10-s cm (the orthogonal ions 
near the surface cannot be in the stationary state, since 
the electron has the ability of tunneling into the gaseous 
phase). 

If we now accelerate the prepared ion along the sur
face of the helium in such a way as to produce an ion
ring complex, then, owing to the quasimacroscopic di
mensions of the ring (typical ring dimensions are 
R = 10- 5_10-s cm), it should start to interact with the 
vapor-liquid boundary. A quantitative analysis of this 
interaction can be carried out in two limiting cases, 
o = R/xo« 1 and 0 > 1. 

A. The presence of a boundary is equivalent to intro
ducing into the ring-motion problem an additional vor
tex ring, which is the mirror image of the initial ring 
in the vapor-liquid plane (Fig. 3). The auxiliary ring 
induces around itself, meaning also in the vicinity of 
the initial ring, a definite velocity field vs(r), which 
falls off with distance in power-law fashion. It is al
lowance for the influence of this perturbing factor 
which leads to a dependence of the dynamic character
istics of the initial ring on the distance to the liquid
vapor surface. 

In the limiting case /j « 1, that part of the field 
vs(r) which is subtended by the area of the initial ring 
varies little within the limits of this area. For this rea
son, it is convenient to represent the total velocity in 
the vicinity of the ring in the form 

v, (r) =v.+ (v.-v.), (A.7) 

where Vs is the value of Vs (r) averaged over the area 
of the initial ring. The components vs and vs - Vs 
play qualitatively different roles in the problem. 

The appearance of Vs is equivalent to a uniform 
liquid stream in which the initial ring must move. Un
der such conditions, the usual definition of the ring ve
locity (see (2)) is valid in a coordinate system moving 
with the liquid. Consequently, in the laboratory frame, 
the ring moves with a velocity 

V (R, x.) = Vo (R) --;;:, r ( 8R 1) Vo(R)=- In--- . 
4nR bo 2 

(A.S) 

This is indeed the observable effect, since the V(R, xo) 
relation becomes complicated by the addition of vs, 
which can be expressed in terms of r, R, and Xo. Using 
the explicit form of vs(r)[Sj and the smallness of the 
parameter /j « 1, we obtain approximately 

v, =...!....[HO(o')]. (A.9) 
2xo 

As a result, expression (A.S) can be recast in a form 
similar to the definition (2a): 

v = ~(In 8R -~) b'=bo exp (2xnoR). 
4nR b' 2' 

(A.Sa) 

In other words, the proximity to the surface of a ring 
moving along the surface leads in the limit /j « 1 to 
an effective renormalization of the core of the vortex 
filament forming the ring. 

As to the odd increment vs - vs , its presence, as 
can be readily established, causes the appearance of 
Magnus forces acting on the ring in a direction per
pendicular to the surface of the helium. The analysis 
of the cancellation of these forces is carried out in 
analogy with Sec. 1 of the present Appendix. As a re-
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suit it can be shown that the action of these forces 
leads to a negligible change in the equilibrium coor
dinate Xo and to a certain additional inclination of the 
plane of the ring compared with the three-dimensional 
case. 

B. In the region 6 ~ 1, the perturbing velocity field 
is comparable in intensity with the initial field of the 
ring, and the problem of the motion of the ring under 
such conditions is greatly complicated. An exception is 
the situation /) > 1, for which a rather simple analysis 
is again possible. As noted above, the presence of an 
image or more accurately of that part of the perturbing 
field vs(r) that enters in the form Vs - vs, leads to 
attraction of the ring to the free surface and to rotation 
of its plane from a position perpendicular to the sur
face to a position parallel to it. As a result, of the two 
possible variants of the ring position near the surface 
in the limit /» 1 (Fig. 4), only variant b can be stable, 
if it is assumed in addition that exactly half the ring 
is situated in the liquid, and the other half is closed by 
its hydrodynamic image. Then all th~ moments of hydro
dynamic origin vanish, and the problem becomes essen
tiallya volume problem. The coordinate Xo drops out 
from the answer in this case, as is perfectly obvious 
from Fig. 4b. All that is important is the satisfaction 
of the requirement II > 1, which enables the ion to be 
located somewhere on the perimeter of the ring. 

Even though the definition of the velOCity V(R) for 
the half-ring coincides with the volume definition, the 
situations in the volume and near the surface are never
theless different. The point is that in the case of a half
ring a vortex filament with dimensions half as small as 
in the volume of the liquid actually moves through the 
helium. For this reason, the condition for the station
arity of the motion of the ring in the medium with fi
nite viscosity, which takes in the volume the form 
eE = 27TR'1V 0 [Eq. (4)] (E is the intensity of the driving 
field and "1 is the viscosity coefficient per unit length 
of the filament), should take in the case of a half-ring 
the somewhat different form 

eE=nRT) v •. (A.10) 

Consequently; relation (5), which relates the intensity 
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E with the ring V velocity, is somewhat modified for a 
half-ring: 

v. = BeE exp (_ 4eE _~). (A. 11) 
nb,T) rT) 2 

In other words, given the temperature and the electric 
field, the stationary velocities Vo and VI of the ring 
and of the half-ring are different: 

V.IV.=2 exp (-2eElrf). (A.12) 
This difference can be observed experimentally. 

l)The scale of this deformation was estimated by Slyusarev and 
Strzhemechnyi [16). In principle, a self-consistent approach to the de
scription of the action of external forces on the ion-ring complex, as 
proposed in this paper, should answer all the questions concerning 
the character of motion of the ring in the external field. However, the 
concrete problem of the motion of the ion-ring complex in a stationary 
field was not investigated to a full extent in [16). 
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