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The flow of an anisotropic liquid along a cylindrical capillary is considered, and it is shown that laminar 
flow of the nematic fluid with a certain anisotropic viscosity becomes unstable with respect to 
infinitesimal perturbations at Reynolds numbers exceeding a certain critical value. 

1. Recently, [1] the turbulization of laminar flow of 
a nematic liquid between parallel plates has been ob
served experimentally for certain sufficiently small 
values of the Reynolds number R. As is known, the 
analogous flow of an isotropic liquid is absolutely 
stable to infinitesimally small perturbations. It has 
been shown in the work of one of the authors [2] that 
the instability of Couette flow of an anisotropic liquid 
is connected with the presence of an additional degree 
of freedom in the mesophase-the angle of orientation 
of the director. The instability in the flow of an incom
pressible nematic arises because of the violation of 
the equilibrium orientation of the director under the 
action of the moments of forces existing in the meso
phase; the increasing departures of the director from 
the equilibrium position leads to a disruption of the 
stationary flow and the development of turbulence. The 
existence and low value of the turbulence threshold in a 
nematic liquid depends on the degree of anisotropy of 
the viscosity of the material. It is of interest to inves
tigate the effect of the symmetry of laminar flow on the 
development of the instability. The flow of a nematic 
along a cylindrical capillary is considered in the pre
sent research. 

The problem of the development, in flow along a 
tube of a true instability to infiniteSimally small per
turbations is very complicated. The experimental stud
ies of the flows of isotropic liquids in tubes show that 
there is no instability leading to an increase in pertur
bations in time at a given point of space at any value of 
the number R. [3] In the case of a nematic liquid, a theo
retical study can be carried out, in which significant use 
is made of the specific features of the mesophase and, 
in particular, the smallness of the parameter E =-01 3/01 2 , 

which represents the ratio of the shear viscosities of the 
nematic. In the present paper, the critical number Rc , 
which characterizes the appearance of a true instability 
in the nematic, is found as a function of E and RC(E). 

2. We consider the flow of a nematic along the z axis 
(along the tube). The unperturbed distribution of the ve
locities Vo and the angle of deviation of the director eo 
from the z axis do not depend on the cylindrical coor
dinates z and cpo This distribution, which depends on the 
coordinate r, can be determined from the solution of the 
equations which describe the nematic mesophaseY] 

The corresponding stationary equations, written ac
curate to e~, take the form 

d (1 d ) 1 dv, , 
K" dr -;: dr (re,) =2"dr""("!.+"(,(1-29, », 

_ -.!. dp, +-.!.~ [r dv, ( 0;,+0;,+0;, ,,(,9,')] =0 (1) 
pdz rdr dr 2 

with the boundary conditions eo(ro) = 0 and vo(ro) = 0, 
where ro is the radius of the tube, Kjj is the modulus of 
elasticity of the nematic, p the density, 011 the viscosity 
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coefficient; Y1 = 01 3 -01 2; Y2 = 01 6 -01 5 = 01 2 + 01 3• The first 
of Eqs. (1) represent the equation of equilibrium of the 
director, and the second represents the Navier-Stokes 
equation for the velocity of Poiseuille flow, where 
dpo/dz is the pressure gradient along the z axis. 

For 1 EI « 1, we can neglect the quantity eo in the 
second of Eqs. (1) and write Vo in the form 

. 1 dp, r,' 
v = - p dz 2(0;,+0;.)' 

Substituting Vo in the first of Eqs. (1) and introducing 
the dimensionless parameters R = prOV*/Y1 and Ajj 
= .oKjj/Y~ and the variable x = r2 /2r~, we find that the 
stationary distribution of the director uo(x) = (r /ro)9 0 

is described by the equation 

with the boundary condition uo(1/2) = o. 
If lEI « (Au/R)2« 1, then it follows from (2) that 

the solution has the apprOXimate form 

eR (1 ) u,(x)""-x --x. 
Au 2 

(2) 

(3) 

For Id ~ 1, we have leol ~ 1 and the distribution of 
the director is described by the equation 

d'9, 1 R 
-= -sin29, --=-r,y!2[1-(1-2e)cos20,I, (4) 
dy' 8 l'2Au 

where y = -In (r2/2r~), In 2 s y < 00, with the boundary 
condition 80 (Y = In 2) = O. 

The following nonstationary small perturbations are 
added to the stationary solutions of Eq. (2) under study; 

"/ (r, z, t), ": (r, z, t), S' (r, z, t), p' (r, z, t). 

The onset of the instability is characterized by the ap
pearance, in the set of equations describing the meso
phase, of solutions 

'I' (r, z, t) ~¢ (r) e,(··-ot) 

with complex frequency W = W' + iW ", w" > O. 

By linearizing the equations [4] relative to v~, v~ 
and 8', and neglecting the quantity 80 ~ E in the Navier
Stokes equations in comparison with the characteristic 
values (rok)2 ~ rga2 /az2, we obtain the following set of 
equations for vr' v~ and 8': 

1 a ( ')+ av: -0 7-a,: rv, -a;- - , 
av,' a v,' 1 {}p' 1 ({}'V,' a'v:) 
--+v'--=---a +-(0;,+0;,+0;,) -a' +-a a 

at az p r 2 z r z 

1 a ( 0 v: ) ( 0'0' Gi'O' ) 1 0 ( dv, ') +0;,-- r-- +0;, v'---<--o ~ +o;'--a' r-d e , r ar ar oz' t vZ r r r 
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The boundary conditions for the set of Eqs. (5) are of 
the form 

v/=v/=8'=O 

at r = roo 

(5) 

(6) 

The dispersion equation, which determines the W(k) 
dependence, is obtained by substituting in (6) functions 
vi, v~,and 8', which are coro,binatiQns of the linearly 
independent solutions 1/J j(r) l~kz-wt} of the set (5). The 
form of the functions 1/J j (r) depends on the relation be
tween the dimensionless parameters ;\jj, E, R, rok, and 
n = w/v*k. For fixed Ajj « 1 and lEI « 1 it is of interest 
to consider the region of values 1» rok» IEI 1/2,R, in 
which the imaginary part U" of the reduced frequency 
n = nt + in" is small. A rather cumbersome analysis 
shows that in such a region of values of rok and R(E < 0) 
an asymptotic expansion is possible in terms of the large 
parameter rokR, if R» A11 IEI- 1/2, or (rokR/All ) if 
R < AulEl-1/2. The expansion in the parameter rokR is 
equivalent to a situation in which, in the given approxi
mation, the principal contribution to the dispersion equa
tion is made by velocity perturbations determined from 
the Navier-Stokes equations. In this case, the perturba
tion 8' makes a small contribution to the Navier-Stokes 
equation and is expressed in terms of v~ and Vz with the 
help of the last equation of the set (5). The correspond
ing solution of the dispersion equation shows that 
n" < 0, i.e., infinitesimally small perturbations in the 
given region (R » A111 Er1/2) are damped in time. 

3. We now consider the range of values 1» kro 
» I £1 1/ 2 and R « Aul Er1/2 in which the expansion in 
A = rokR/Au is valid. In this case, a Significant role 
is played by the elasticity of the liquid crystal in the 
layer and 80 is a smooth function of r. Here the basic 
contribution to the dispersion equation is made by the 
perturbations 8', while v~ and Vz are small corrections 
expressed in terms of 8' with the help of the Navier
Stokes equations. Here the equation of motion of the di
rector takes the form 

x d'u -(a+bX)"+~x(x-~) 11=0' 
dx' (rok) , 2' (7) 

i 
a = 2A(1-Q) +1." (kro)'/2AIt, b=-ill.. 

The solution u = (r/ro)8' of Eq. (7) should vanish at the 
point r = O. This solution, which depends exponentially 
on quantities that are large in value and proportional 
to A, is given by the expression 

u"'Z-'I'(x)sh S(x), 

S ( 'I, [ . eA ( 3a )] a [ . ell. ( 3a )] x)=xZ 1-1-- 1+- --= 1+1-- 1+-
8(rok)' b 2l'b 4(rok)' 2b 

(8) 
Z'I'-b'''. Z'I'-b'l, x [In I-.I+iarg(-)] Z'I'+b'<> Z''''+b'I,' 

Z(x) = (a+bx) lx, 
Z"'-b'" 

lim arg (-,-, -'I ) =0. 
HO Z'+b' 

The boundary conditions (6) reduce in this case to the 
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condition 8' = 0 for r = ro, and the dispersion equation, 
in accord with (8), takes the form 

S(1I2)=inn, n=1, 2, ... (9) 

At n = 0, Eq. (9) loses meaning: in this case, it is neces
sary to seek a solution 'P j in the form of an expansion 
in powers of a small parameter A. However, as can be 
seen, such A correspond to values of rok and R for which 
there is no instability. In the zeroth approximation, neg
lecting the equantities E and (rok)2 in S(x), we obtain the 
equation 

. 1 &)'/'-1 . (.1'1'-1 
Q'I,+ 2 (1-Q) [Inl Q'I'+11 +iarg (Q',,+1)] =g(1-i), (10) 

g=2nnIA'I,. 

Equation (10) has a nontrivial solution a(g) for g2: g*, 
while the only real solution n = n* corresponds to the 
value g = g* ~ 0.472: 

Q'=Q(g') ",o.699. 

In the region of existence of the solution, the relative 
complex frequency is given by the expression 

It follows from (11) that n"< 0, i.e., infinitesimally 
small perturbations are damped out. 

(11) 

We take into account the small corrections to S(x), 
which have the order of magnitude of the quantities E 
and (rok)2. In the region of existence of the solutions 
of Eq. (9), the inequality 

Q" + A33kro/ R -0.076eR/f.llr,k,,;;0 

should be satisfied in place of the inequality n" :::; 0, 
while (12) turns into an equality at g = g*. 

(12) 

If E > 0, then it is seen from (12) that at g = g* the 
imaginary part of the frequency can vanish for definite 
values of the quantities R = Rn and k = kn' which are 
connected by the relation 

(13) 

From (12) and (13) we find the numbers Rn and kn as 
functions of the parameters of the material and the 
number of the branch of the excitations: 

R,,"'8.06:1IlAII (A"/AIIE),,., r,k,,"'2.22nll (Aile/A,,) '/'. (14) 

Thus, for each branch n there is a perturbation with 
wave number kn and frequency wn, which begin to in
crease when the number R exceeds a value Rn that is 
characteristic for the given branch. The branch with 
n = 1 is most unstable and here the critical Reynolds 
number Rc is the number R1, which is the smallest of 
all the numbers Rn with n 2: 1. 

For R numbers larger than the threshold number 
Rc = RlJ the increasing nonstationary perturbations are 
characterized by the complex frequency 

W(k)=w'(k)+iW"(k)"'V'{ 0,7k+ik'[ 0.55 ( A~'l: ftJ.: ,+0.165 ~~]) ; 

tJ.k=k-k', tJ.R=R-R" k'=k,R,IR, 
(15) 

( A33E ) 'f, tJ.R tJ.k 
-3.34 - -";;-";;0. (16) 

All R, k' 

As is seen from (16), the interval of wave numbers k 
in which W"(k) > 0 broadens with increase of ~. 

Thus the origin of the true instability is connected 
mathematically with the existence of a Singular point 
g = g* for the dispersion equation that determines the 
dependence a(g), The imaginary part of the frequency 
W"(k) has a maximum at the value k = k*(R ~ Rc) 
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which corresponds to such a point. However, in the 
vicinity of the maximum, the W "(k) dependence is linear 
and not parabolic, and the dispersion dependence w(k) 
exists only for k:S k* at R > Rc. Therefore, the packet 
of perturbations near R = Rc does not have a real propa
gation velocity aw/ak and does not experience a drift 
along the current. Perturbations; once they have been 
produced at a given point in space, increase with time 
at this pOint. 

4. In conclusion, we note some peculiar features of 
the onset of a hydrodynamic instability in the flow of 
an anisotropic liquid. The previously considered[2] Poi
seuille flow and the Couette flow of a nematic experience 
a true instability in contrast with the corresponding 
flows of an isotropic liquid. In essence, the mesophase, 
at a definite critical velocity distribution of the laminar 
flow, becomes unstable to that degree of freedom which 
characterizes the anisotropy of an incompressible medi
um (the orientation of the director). The growth of the 
perturbations of the flow velOCity is a consequence of 
such an orientational instability. 

The existence of a critical number Rc depends radi
cally on the anisotropic characteristics of the medium. 
For example, Couette and Poiseuille flows become un
stable only at E > O. Upon vanishing of the shear viscos
ity a 3 (e = 0), which characterizes the anisotropy of the 
"viscous" stress tensor in the medium, the number Rc 
becomes infinite. 

For different types of laminar flOW, the dependence 
of RC(E > 0) takes the form Rc = AE- 1/4, where the con
stant A ~ ~jj is determined by the geometry of the flow; 
the constant A for Poiseuille flow is about twice that 
for Couette flow. If, as experiment shows ,[1] the quantity 
e vanishes at some temperature To, then in the vicinity 
of the point To, where E ~ (To-T), there should be a 
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dependence of the turbulence threshold on the tempera
ture, in the form Rc ~ (To-Tf1/\ We note that such a 
dependence is valid only in a narrow range of tempera
tures close to To, where E < (~11/RC)2 ~(~11/A)4. For 
E > (~11/A)4 the stationary regime has a different char
acter, which can be seen from analysis of the solutions 
of Eq. (4), the stability of which calls for a special study. 

At R > Rc , a "secondary flow" is established. The 
square of the amplitude 19'1 2 in this new regime can be 
estimated, in accord with[3]: 

1e'1'~ (j)"(k') _ (R-R')e"', 
v'k' R. 

Since the departure of the director from the flow axis 
in the stationary regime becomes a quantity of the order 
of 1901 ~ eR/.\l1' the stationary distribution is appre
ciably distorted at a very small excess above the thre
shold Rc: 18'1 ~ 1901 for (R -RC>/Rc ~ E« 1. Therefore, 
the onset of regimes corresponding to the n branches of 
the perturbations of the stationary state R ~Rn -nRc 
is of low probability. 

In conclusion, we express our gratitude to V. L. 
Indenbom for useful discussions. 
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