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It is shown that in metals having flattened sections of Fermi surface the electron drag of dislocations of 
selected orientations contains a relaxation component which is proportional to the electron mean free path. 
This effect may be responsible for the low-temperature anomalies of the dislocation dynamic mobility 
observed in certain experiments. 

Dynamic dragging of dislocations in metals at low 
temperatures, when the phonons are frozen-out, is 
limited by the interaction with the conduction elec­
trons[l]. It is customarily assumed[ 2-5] that the principal 
role is played in this case by electron scattering from 
the deformation potential of the mOving dislocations. 
The corresponding energy dissipation has a viscous 
character and does not depend on the temperature. At­
tempts[8,7] to separate the contribution of the relaxation 
processes that lead to a damping proportional to the 
electron relaxation time T turned out to be incorrect, 
as was pointed out in[2,4,8,9]. The previously discussed 
relaxation increments are usually negligibly small, and 
it might appear that electron dragging of the disloca­
tions should not reveal a temperature dependence. 

There is, however, an entire body of experimental 
evidence(1()-15] contradicting the concept of the tempera­
ture-independent electron dragging of dislocations. 
With decreasing metal temperature, in the low tempera­
ture region, a growth of dislocation friction is some­
times observed (for example, in aluminum and in lead). 
A reduction of individual curves by those performing 
the measurements (seel12]) has shown that the increase 
in the dragging correlates with the temperature varia­
tion of T( T). 

It appears that this situation calls for an additional 
experimental and theoretical study of the problem. We 
show in this paper that allowance for certain singulari­
ties of the Fermi surfaces of real metals can lead to a 
relaxation increment proportional to T in the dragging 
of dislocations having selected orientations. 

It is known from the theory of electronic ultrasound 
absorption[ 18] that the principal role in dissipation is 
played by electrons moving perpendicular to the wave 
vector of the ultrasound. On the Fermi surface, these 
electrons usually correspond to a line whose vicinity 
the contribution of to the damping is independent of the 
relaxation time T. The Situation, however, changes if 
the "active" electrons occupy a region of finite area on 
the Fermi surface. According to[17], in this case the 
ultrasound absorption coefficient contains a term pro­
portional to T. We shall show that a Similar term 
should appear also in the dragging force of a disloca­
tion oriented perpendicular to the flattened section of 
the Fermi surface/) 

Following the work by Indenbom and the author[5], it 
is easy to write down in the relaxation-time approxima­
tion an expression for the energy dissipation per unit 
time in the electrOnic subsystem for a dislocation mov­
ing with velocity v: 

_ ~ v , __ 1 _ S!!!...IA' ,,'1' 111; 
D - '-' (q ) (21th)' v, "e., (Ek+q-Ek) '+111;' (1) 
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Here A~ is the renormalized tensor of the deformation 

Potential2) €9-. is the Fourier transform of the elastic , lJ 
deformations for a dislocation at rest, Ek is the energy 
of an electron with momentum p = lik, ve = aEk/ap is 
the electron velocity, and Ii is Planck's constant. The 
integration is carried out over the Fermi surface, and 
the crystal volume is assumed equal to unity. 

The main contribution to the diSSipation, as can be 
readily verified, is due to the large q ~ 1/ r 0 (r 0 is the 
radius of the dislocation core, and is of the order of 
several lattice parameters a). Therefore in an important 
role is played the integral of (1) by the parameter 
VeT/roo The electron mean free path l = VeT is as a 
rule quite large in comparison with ro, and the resonant 
term in the curly brackets of (1) is usually replaced by 
the O-function 1TO( Ek;.q - Ek), which traces on the 
Fermi surface a contour C obtained by intersection of 
two Fermi surfaces Ek = EF and Ek;.q = EF displaced 
relative to each other by the vector liq. Thus, T drops 
out from (1) and the drag turns out to be independent of 
the temperature. 

We assume now that the contour C passes through a 
plane or quasiplane area with Gaussian curvature 

1 {fI'} IKj ¢: --, max ro',-
0,1 0. 

(2) 

(O'p is the area of the flattened section). Since the vec­
tors q are perpendicular to the dislocation line, it is 
easy to verify that for a straight-line dislocation ortho­
gonal to the area O'p we should have Ek;.q = Ek in the 
entire flattened section, so long as hq does not exceed 
O'p. Therefore in the region of O'p, at not too large q, 
the expreSSion in the curly brackets in (1) is identically 
equal to T. As a result, the integral in (1) can be 
represented in the form of the sum 

S do , 111; 
J = ~ IA;;'B;;'I (EkH-E.) '+111;' 

= 1t S :~ IA,;"e'i"I' 5 (E'+q-E.) + 't S d:, IA'i'e'i" I'. 

(3) 

'p 

The first term in (3) is determined by the scattering 
of the electrons (this is the only term taken into ac­
count in the preceding calculations). The second term 
is due to relaxation of the electrons in the region of O'p 
and differs from zero only for fiq values inside the area 
O'p. It is easy to estimate the relative contribution of 
these terms: 

21t'm' (0,) J""--IA;;B;;"I' l+a-ql . 
qh 0, 

(4) 

Here Aij is a certain mean value of the tensor A~ (it 

is customary to assume that Aij ~ €F), 0'0 = 41TPF is the 

Copyright © 1975 American Institute of Physics 1099 



area of the "equivalent" spherical Fermi surface (PF 
= (2m€F)I/2), and a is a numerical coefficient of the 
order of unity and decreases rapidly at q > 0'~2/ti.. 

Substitution of (4) in (1) yields an estimate of the 
dislocation drag coefficient B = D/ v2 in the form 

where 

(5 ) 

(6) 

Bo is the drag coefficient and was estimated many times 
earlier[2-Sj: 

(7) 

Here b is the length of the Burgers vector of the dislo­
cation (b ~ a), N is the density of the number of con­
duction electrons, and vF = PF/m is the Fermi velocity. 
It is seen from (5) that the contribution made to the 
dissipation by the electron relaxation is appreciable 
against the scattering background if the flattening area 
is O'p ~ roO'o/l at ro ;:.. ti.O'p1/2 or O'p ~ (ti.20'o/rol)lI2 at 
ro ;S ti.O'pl/2. These conditions do not seem too stringent, 
and can apparently be realized in certain metals. For 
example, in aluminum the flattened sections constitute 
a noticeable fraction of the Fermi-surface area. 

The existing experimental material on the tempera­
ture anomalies of the dynamic dragging of dislocations 
from metals was obtained mainly from macroscopic 
experiments, in which the energy dissipation was deter­
mined by the total contribution of dislocations having 
all possible orientations. II the anomalies are due to 
the mechanism considered above, then a strong aniso­
tropy of the effect should take place, and can be investi­
gated in experiments on the mobility of individual dis­
locations. A temperature dependence of B at low tem­
peratures should then be observed only for selected 
dislocation orientations. 

When comparing formula (5) with experiment, the 
mean free path l can be estimated from the resistivityS) 
p: 

l=mvF/Ne'p (8) 

(e is the electron charge). The corresponding estimate 
of the contribution of the electron relaxation on the 
flattened section to the dislocation dragging, correspond­
ing to the second term in (5), is 

1 (b)' cr. 
B - (Vt)' ~ -;;po 

We note in conclusion that the relaxation of the elec­
trons on the flat sections of the Fermi surface should 
become manifest in similar fashion in the anomalous 
skin effect for definite orientations of the metal sur­
face, leading to a renormalization of the type (5) in the 
usual expreSSion for the surface impedance. 

The author is deeply grateful to Y. L. Indenbom and 
M. I. Kaganov for constructive critiCism, advice, and 
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remarks, and also to A. M. Kosevich and Y. Ya. Krav­
chenko for a useful discussion of the results. 

l)The possible existence of this effect was pointed out to the author 
by M. I. Kaganov. 

2) Akhiezer, Kaganov, and Lyubarskil [16] ,have reduced the renorma­
lization to subtracting from the deformation potential A~ its mean 
value on the Fermi surface, namely A~ = A~ - A~. The data concer­
ning the tensor A P. are as yet con tradictory. Thus, according to 
Ziman [18], in cuMic crystals the interaction of the conduction elec­
trons with shear deformation is determined by a deformation poten­
tial in the form A~ = PiPj 12m *, where m * is of the order of the elec­
tron massm. 

3)1t should be borne in mind, however, that the quantity Q in (5) is 
actually the mean free path of the electron on the flattened section, 
which can differ from the average mean free path that determines 
the electric conductivity of the metal. Therefore the estimate (8) 
is good only for metals with small dispersion of the electron mean 
free path. 
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