
Attenuation of transverse sound in superconductors 
Yu. M. Gal'perin 

A. F. loffe Physico-technical Institute. USSR Academy of Sciences 
(Submitted May 30, 1974) 
Zh. Eksp. Teor. Fiz. 67, 2195-2203 (December 1974) 

The temperature and frequency dependences of transverse ultrasonic attenuation in superconductors are 
studied. Two mechanisms are responsible for the attenuation of transverse sound: Joule losses due to the 
presence of alternating electromagnetic fields, and a mechanism associated with incomplete dragging of 
electrons by the moving lattice. It is shown that at temperatures near the transition point the 
electromagnetic contribution may be dominant. By studying this contribution one can direct information on 
the dispersion of the current response function in a superconductor. 

It is well known (see, e.g.,[1]) that the attenuation 
of transverse sound in superconductors can differ 
significantly from that of longitudinal sound. Thus, in 
many cases the attenuation coefficient of transverse 
sound waves experiences a sharp drop just below the 
transition temperature of the superconductor, whereas 
further lowering of the temperature causes a more 
gradual decrease in attenuation, proportional to 
exp[-6.(T)/T), where T is the temperature and 6.(T) 
is the superconductor gap. A qualitative explanation 
adduced in[1] attributes this phenomenon to the fact 
that in the superconducting state the Meissner effect 
screens the electromagnetic fields. Therefore; in con­
trast to the normal state where the electromagnetic 
fields provide an important contribution to the sound 
attenuation, these fields are screened out on going to 
the superconducting state, and the sound attenuation 
coefficient decreases. 

Even though the transverse sound attenuation has 
been studied in a large number of works, both theoret­
ical and experimental, the role of electromagnetic fields 
in this process has not been fully elucidated. The point 
is that all the existing theoretical works were merely 
based on certain models and limiting cases. For ex­
ample, in[2-5] the problem was treated in the free-elec­
tron approximation, ignoring the strain effects on the 
sound attenuation; these effects were taken into account 
in[6], but the analysis was restricted to the low-tem­
perature case where the attenuation coefficient ap­
proaches zero exponentially. Some of these works [2,4, 6] 
moreover, overlooked the sound attenuation associated 
with incomplete dragging of electrons by the lattice[7] 
which, as we shall see, is appreciable in superconduc­
torso. Other works [3, 5] which allow for this mechanism 
of attenuation, contain, in our view, a number of inac­
curacies connected with the use of an incorrect kinetic 
equation. 

Thus, a number of questions remain unresolved in 
the problem of transverse sound attenuation in super­
conductors. The most interesting of them, in our view, 
is the question of a possibility of observing the contri­
bution of electromagnetic fields. Indeed, from the fre­
quency dependence of the latter one would be able to 
directly assess the dispersion of the diamagnetic res­
ponse of the superconductor. At the same time, the ex­
pression for the surface impedance, which serves as the 
usual source of information on the response function, 
contains the integral of this function over all wave vec­
tors q, Moreover, the expression for the surface im­
pedance depends, in general, on the features of electron 
scattering by the sample surface. 
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The purpose of this work is to find out in which 
region the contribution of electromagnetic fields is 
Significant, and when it can be observed and isolated 
from other mechanisms of sound attenuation. 

We begin with the case of sufficiently pure semicon­
ductors and the ultrasound of a moderately low frequency 
w, so that the following conditions are satisfied: 

h(iJ¢:.I:J.(T), (1) 

(2) 

(3) 

Here q is the sound wave vector, l is the electron mean 
free path in the normal state, ~o = tlvF/6.(O) is the co­
herence distance, and vF is the electron Fermi velo­
city. In this case, one can use the kinetic equation for 
quasiparticle excitations to describe kinetic processes 
in the superconductor.2) 

In the approximation linear in the strain tensor uik, 
a conduction electron moving in a self-consistent per­
iodic field (with a potential Vo(r)) due to the lattice and 
other electrons, in the reference frame connected with 
the distorted lattice, is described by a Hamiltonian in 
the form [8-10]: 

.... 2 "" ... 

:16' =-p_ + Vo(r)+V • .'ll,,+V(r)- 11 "P,P. - up. (4) 
2mo mo 

Here p is the electron momentum operator, mo is the 
free electron mass, u is the lattice displacement vec­
tor, and Vikuik is the strain-induced variation of the 
periodic potential. 

To determine the energy spectrum in the supercon­
ducting state one has to solve the Bogolyubov-de Gennes 
system of equations [ll] with the Hamiltonian (4). Pro­
ceeding as in [12], one easily obtains the following ex­
pression for the energy spectrum £'(p', r') see also[6]): 

il' (p'.r') =e' (p', r') +p,v' -meV'n, 

e' (p',r') = ([Eo (p') +i. .. (p') u""-fLl'+I:J.'} 'I>, 

(5) 

(6) 

Here Eo{P') is the unperturbed electron energy in the 
normal state, v' is the electron velocity, Ps =- (e/c)A, 
where A is the vector potential of the electromagnetic 
field3 ), and Aik is the tensor of the deformation poten­
tial: 

Au.=<np' I-p~p./mo+ V .. ' I np'), (7) 

where Inp') denotes the Bloch states of the conduction­
band electron. 

The sound attenuation coefficient and the electric 
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current density are determined by the quasiparticle 
distribution function n'(p',J r'), which can be calculated 
from the kinetic equationL12,13 1: 

on' ot on' Of' on' - (8) 
-+-----+I(n')=O 
ot op' or' or' op' . 

The explicit form of the collision operator f(n') was 
given in[12, 131. Here, it should be emphasized that all 
the arguments of the o-functions in the conservation 
laws in f depend on the energies E'. Therefore, the 
Fermi function no[E"(p', r')] makes the collision opera­
tor vanish. 

The energy gap t::. is determined in terms of the 
quasiparticle distribution function by the self-consis­
tency equation 

1=-C rde S d'p Fi[e-e' (p', r') )1-:n;:-~~p. (9) 
• e (p ,r ) 

where C is the effective interaction constant. Inasmuch 
as, according to (9), the equation for the energy gap con­
tains the distribution function averaged over a surface 
of constant energy, no corrections to the gap width arise 
in the approximation linear in uik and Ps to which we 
have confined ourselves. Therefore, we can assume 
that t::. coincides with the thermodynamic equilibrium 
value t::.(T). 

The electric current density j' , according tor 12, 13], 
is related to the quasiparticle distribution function by 

j'=e L v'n~+eN,v(p.-m,u), (10) 
p' 

where No is the total electron concentration, and V(P) 
== vp = (np!p/mo!np). 

For SimpliCity we confine ourselves to the case of 
an isotropic energy spectrum. We can then set 

vp=p/m, Au.=A,p'B .. /2m+Ap;p'/m, 

where only the second term makes a contribution in the 
case of transverse sound waves. 

Inasmuch as the collision operator vanishes for the 
function no(~'), it is natural to seek the solution of (8) 
in the form 

Il'(p', r')=n,[t(p', r'»)+n(l). 

If we introduce the operator 

B=i(q8f'/iJp' -(0) +1, 

then the formal solution of (8) can be written in the form 

n(')=[A(p'u)+eE"'B-'v'-AB-'j(p'u») (-8n,/8e'), 

1 8A'" em ( m) E'"=---;;-at, A·II=A+-e- A+ m' U. (11) 

Substituting (11) in (10), we obtain the following ex­
pression for the electric current density: 

c • ( o,,[(q) ) j=--K(q)A·II+AeN.u 1--- ; 
4n o. 

(12) 

q == (q, w). Here K(q) is the diamagnetic response func­
tion of the superconductor (cf. (11). If the conditions 
(1}-(3) are fulfilled, K(q) can be represented in the form 

1 N. 4nioo 
K(q)=6,! N. +-e2-0",,(q), (13) 

where 0L = (41Te~0/mc2rl/2 is London's penetration 
depth at T = 0, Ns is the so-called concentration of 
superconducting electrons[141, 
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N.(1") =l-~S- dXCh-2 [x2+(A(T})']'" 
N. 2 _00 2T' 

(14) 

(15) 

S - ~ ( on.) 0 .. [ (q) =e'-r d'fp(v"B-'lv.) --a;: (16) 

v l1 is the projection of the electron velocity on the 
sound polarization vector, T is the transport relaxation 
time in the normal state averaged over the Fermi sur­
face, 0"0 = Noe2T /m is the static conductivity in the nor­
mal state, and dyp is the volume element in p-space, 

The first term in (12) has the form of the current 
response to an electromagnetic field with the vector po­
tential A eff. The second term can be interpreted as a 
current associated with incomplete dragging of elec­
trons by the moving periodic potential of the lattice. 
Indeed, in the case of frequent collisions with impuri­
ties moving along with the lattice, the average velocity 
of the electrons relative to the lattice must be equal to 
zero. It is evident from (16) that the second term in 
(12) satisfies this condition. In the collisionless case[61, 
electrons are not dragged along by the lattice, and the 
second term equals XeNoIi. 

The electric fields in the superconductor can be 
determined by substituting the expression for the total 
(electron and lattice) current in the laboratory frame 
into the equation 

q'E=(4niCll/c')j, 

which follows from the Maxwell equations. It is readily 
seen that the total current in the laboratory frame coin­
cides with the electron current in the moving frame. We 
can hence use the expression (12) for the current. Taking 
this into account, we have 

E'!'=_.!!'!..·U{(A+~)+_A_( 1- o",,[(q) )][ 1+~K(q)]-: 
e m (q{)L) 2 0, q' 

(17) 

The power absorbed by the system can be evaluated 
as the rate of the entropy production TEl. By using 
Stephen's expression for the entropy[151, one easily 
obtains the following expression for the absorbed power 
P: 

1 S -P=TS=-Re d'fp.e, (p', r'}n·(tl. 
2 

(18) 

P can be easily evaluated by substituting (11) in (18). 
We shall consider the case of scattering by impurities 
with a short-range potential. Such a scattering mech­
anism is typical of metals at low temperatures. In this 
case the collision operator can be rep resented in the 
form n(O! ~p! /TEp, where ~p = Eo(P)-IJ., the transport 
time being in this case identical to the leaving time. 
Under these assumptions we have 

1 { m'o lui' } P=2 IE·"12Reo.,(q)+~2Il,(~)[1-g(ql)) , (19) 

g(x) ='1.[ (x-'+x-'}arctg x-x-'). (20) 

As x _ 0 we set g(x) = 1 _x2/5; as x _00 we have g(x) 
= 31T/4x. 

The first term in the braces in (19) describes the 
Joule losses connected with the presence of varying 
electromagnetic fields. The second term vanishes in 
the limit of frequent collisions. This term .stems from 
the incomplete dragging of electrons by the lattice. In­
deed, in the case of incomplete dragging, the average 
electron velocity prior to an event of scattering by an 
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impurity is different from the lattice velocity. After 
the scattering, the electron velocity coincides on the 
average with that of the lattice. Therefore, the scat­
tering of electrons by impurities moving with the lat­
tice is inelastic and the energy transferred in such 
scattering contributes to the sound attenuation. 

To evaluate the absorbed power, the quantity Eeff 
(Eq. (17» determined from the Maxwell equations should 
be substituted in (19). By using the definition (16) it is 
easy to show that 

IJ""'/IJ.=g(ql)N./N,, N.=N.-N •. (21) 

As a consequence, we have 

p= N.mlul'{[(H~)+_. A._. (1- No g )]' 
2-.: m (q6L )' N. 

X (O-.:6.'ImK(q) +2A.' (<1)(1-)} (22) 
IHq 'K(q)!' 110 g. 

When ~ -0, Eq. (22) goes over to the expression for 
power absorbed in the normal metal (cf.[a]): 

N.m!ul' { . [.( m.) A. ( ]' P.=-2--.:- «(O~)-g A.+-;- + (q6
L
)' 1-g) 

x 11+ (:~:)' g 1-+A.Z (1-g) }. (23) 

The ratio rs/rn of the superconducting and normal 
attenuation coefficients equals P /Pn. Thus, as ~ - 0, 
the ratio rs/rn -1 and no jump in the attenuation coef­
ficient occurs at the transition point TC.4 ) In the low 
temperature region, the first term in the braces in (22) 
goes over as T _00 to the expression derived by Belo­
zorov and Kaner[6]. A Simple estimate shows that in 
order that the second term in (22), associated with the 
effect of incomplete dragging of electrons, be small 
compared with the first one, the condition 

(24) 

must be fulfilled (w is the sound velocity). This condition 
furnishes the criterion for applicability of the results 
of[6]. We shall see that in the temperature region near 
Tc the contribution of the electromagnetic fields can be 
observed under much less rigid conditions that (24). 

Our purpose is to find out when the first term in (22) 
prevails. To do this, we have to evaluate the quantity 
O'1f11(g) in the expression for the imaginary part of the 
response function K(q). It is easy to see that the angular 
part of the integral in (15) is practically the same as the 
corresponding integral in the normal state, and is pro­
portional to g(ql). As to the integral with respect to ~p, 
it diverges logarithmically if one neglects small terms 
either of order w /vF or of order iiw /~. In the region of 
temperatures close to T c the calculation yields 

IJ",(q)/IJ.=g( ql) f. (T), 

where for s) ~« T and W « ~/fl we have 

! ( VFT) <1 (0) 
In a- for q;.--< 1, a-1 

w~ ~(T) 
. 1 ~ 

fq(T) =2no(;).)-t---
2 T 8<1 <1 (0) 

In- for q;.--> 1 
eh(O ~(T) . 

(25) 

(26) 

The second of the expressiOns (26) cannot be derived 
from the kinetic equation which works in a lower order 
in the parameteriiw/~. It was obtained by Cullen and 
Ferrell [4] from a quantum -mechanical expression for 
the response function. 

In the case of low temperatures an expression for 
fq(T) can again be easily derived from the definition. 
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At ~ » T the function fg (T) decreases exponentially 
with temperature. We sl1all not give here the formulae 
that are valid in the low-temperature region, since in 
this region the sound attenuation coefficient is exponen­
tially small. 

Two characteristic frequencies enter in the expres­
sions (22) and (23), namely WI = w /oL '" 10lD _1011 
sec- I and W 2 which is the frequency at which the second 
term in the denominator of (23) is equal to one. The 
frequency W 2 satisfies the equation 

(0,= (il , [(O,-.:g (6l,l!w) 1"'. (27) 

At W I T(vF/w)1I2» 1, the frequency w~ =w l (31TW/4vF)1/2 
reaches apprOXimately 5 x 10-2 Wlo In the opposite limit­
ing case we have 

',£1 z, 0 0 [ ( ~" )'('] 6l, =(0, T=6l, 6l,T 3nw < (0, • 

Since we require (3) to be fulfilled, which is equivalent 
to the condition T <. 10-11 sec, the parameter 
WIT(VF/W)1I2 '" w~l/w greatly exceeds unity. Therefore, 
the requirement ql « 1 implies automatically the con­
dition W « w~, and in this case one can neglect the uni­
ties in the denominators of (22) and (23). Direct esti­
mates show that, apart from a small neighborhood of 
Tc where Ns;No '" WT, the prevailing mechanism in (22) 
is the one connected with incomplete dragging of elec­
trons, whereas the contribution due to the electromag­
netic fields is immaterial. Neglecting the latter we ob­
tain the well-lmown expression [3] 

r./r.=2n.(<1)g(ql) , (28) 

according to which, as ql _ 0, the attenuation coefficient 
behaves in the same way as in the case of longitudinal 
sound. If this formula is applied to the case of finite 
values of ql, as is done in a number of works, it then 
turns out that the attenuation coefficient suffers a dis­
continuity on going to the superconducting state. At 
ql <. 1 this jump is of the order of the attenuation in 
the normal state. In reality, as we have seen, no jump 
in the attenuation coefficient occurs in the supercon­
ducting transition, since in the vicinity of Tc the contri­
bution from electromagnetic fields becomes important, 
thus ensuring the continuity of the attenuation coefficient. 

Now let us investigate the case ql» 1 which offers 
more favorable conditions for observing the contribu­
tion of the electromagnetic fields. At W « w~ Eqs. (22) 
and (23), in view of (24), yield the following expression 
for the ratio of the attenuation coefficients in the super­
conducting and normal states: 

r. 1 {[ IN. 4v, \ '] -, 3n 2n.(M } (29) r: = lo(r)" 1 + No 3nwlo(T)I} + 4ql lo(T) . 

Inasmuch as in the viCinity of T c we have 2no(~) "'fq (T) 
"'1, and Ns;No '" 29, where (J = (Tc-T)/Tc« 1, it is 
apparent that the contribution of electromagnetic fields 
can dominate in a certain region of values of (J. It fol­
lows from (29) that the width of this region is of the 
order of 

emu_w (ql) '''Iv,. (30) 

In a sufficiently pure metal this quantity can reach 
(5-10) x 10-2 • . 

For frequencies W <. WI the screening of electromag­
netic fields is insignificant. In this region there are two 
possibilities. If (W/VF)WT« 1, then the dominant mech­
anism is the one connected with the incomplete dragging 
of electrons. In this case 
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r./rn=2no(~). (31) 

On the other hand, if (w IVF )WT» 1, the electromagnetic 
attenuation mechanism prevails in both the normal and 
the superconducting states. In this case 

r./r n=/q(T). (32) 

Relation (32) is the ratio of the electric conductivities 
in the superconducting and normal states. 

Thus, by working in the frequency region determined 
by the conditions W ~ WI and (W/VF)wT» 1, one can 
directly measure the imaginary part of the response 
function (more precisely, its ratio to the conductivity 
in the normal state). Let us emphasize one important 
point. According to (22) and (23), the electromagnetic 
contribution to attenuation in the indicated region is 
proportional to the square of A + mo/m. On the other 
hand, from the definition (7) of the tensor Aik it follows 
that the sum A + mo/m vanishes in the free-electron 
limit. Therefore, the electromagnetic contribution to 
attenuation in the high-frequency region is entirely 
due to the presence of the periodic lattice potential, 
and vanishes in the free-electron limit. 

In the intermediate frequency region w~« w« WI 

the imaginary part of the response function in (22) and 
the second term in the denominator of (23) are small 
compared to unity. Neglecting these quantities in the 
denominators of (22) and (23), we obtain the following 
expression for the electromagnetic contribution to the 
absorption coefficient in the temperature region defined 
by estimate (30): 

.!.:....=f.(T) (1+~~)'. rn N. (J) 

(33) 

The contribution due to the incomplete electron-drag­
ging mechanism in this region can be easily seen to be 
of the order of 

(34) 
and when this quantity is small, the contribution of elec­
tromagnetic fields can be observed. 

Thus, we have conSidered the case of a sufficiently 
pure superconductor (1)> ~o) and a moderate sound fre­
quency (q~o« 1). 

When conditions (1}-(3) are not complied with, the 
interaction between electrons and sound waves cannot be 
described by the kinetic equation and a quantum mech­
anical calculation is required. The part of the attenu­
ation associated with the incomplete dragging of elec­
trons can be easily expressed through the imaginary 
part of the polarization operator. The latter was cal­
culated in[16] for superconductors with nonmagnetic 
impurities. As a result, it turns out that if condition 
(1) remains fulfilled, then, at q~» 1, the contribution 
due to the incomplete electron dragging effect is des­
cribed by the same expression as in the case q~o« 1. 
However, it is well known (see[l]) that at q~o» 1, the 
expressions for both the imaginary and real parts of 
the response function undergo substantial modification. 
It is important that at ql» 1 the parameter ql does 
not enter in these expressions at all, and they can be 
evaluated in the collisionless approximation. In this 
case one can use (25) and the second of formulae (26) 
for the conductivity u1)1)(q) near the transition point. 
Far from the transition point the following formula [17] 
should be used: 

(J,,(q). 21i{J) 4T 
--= g(ql)n.(~)[1-n.(~) )-In-
~ T ~(J) (35) 
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(Ilw « T « ~; y = eC = 1.78'). In doing so, the quantity 
Ns/No should be replaced by the expression[17] 

(36) 

We can thus use expression (20) for the absorbed 
power by substituting the quantum-mechanical expres­
sions for both the imaginary and the real parts of the 
response function. It is apparent that near T c the real 
part decreases by a factor of the order of q~o, while 
the imaginary part remains of the same order as in the 
case q~o« 1. Therefore, the region where the electro­
magnetic contribution prevails isq~o times wider than 
that given by the estimate (30). 

Thus, the frequency and temperature dependence of 
transverse sound attenuation can provide information 
on the dispersion of the superconductor response func­
tion in a rather wide frequency region. 

Unfortunately, despite the large number of experi­
mental works on attenuation of transverse sound waves 
in superconductors, it is difficult to check quantitatively 
our results against experiment. The problem is that the 
neighborhood of the transition point, where the predic­
ted dependences should be important, was not specially 
studied in most of the experimental works. Those works, 
where this neighborhood was investigated, contain no 
data on the mean free paths, which is necessary for a 
quantitative correlation with the theory. The obtained 
dependences agree with experiment qualitatively (see[s}). 

The author is grateful to V. L. Gurevich and V. I. 
Kozub for reviewing the manuscript and for a discussion • 

OSuch an attenuation is due to the fact that the electron mean velocity 
differs from that of the lattice motion. Therefore, electron scattering 
by impurities that move along with the lattice results in energy trans­
fer from the lattice to electrons. 

2)To be more precise, the criterion of validity of the kinetic equation 
requires that the parameters fl/e T and fx\vF Ie be small, where T is 
the typical electron relaxation time and e is the typical quasiparticle 
excitation energy. In most cases one can assume that e - max 
[T,Ll(T)] and we then arrive at the estimates (2) and (3). If, how­
ever, the integrals for the quantities we are interested in depend on 
small excitation energies, then the conditions (2) and (3) must be 
modified. We shall discuss this question later on. 

3)As was shown in (13), the expressions (5) and (6) should contain the 
gauge invariant combinations 

p. ~-.!!... (.,,, -~A), J..,u., + e<p-li~, 
2 lie at 

where <p is the scalar potential of the electromagnetic field and X is 
the phase of the order parameter. However, in the case of transverse 
sound and an isotropic electron spectrum, one can always choose a 
gauge where <p = 0, X = fJ, and div A = fJ. 

4)The narrow neighborhood of T, where condition (1) does not hold, 
is not considered here. 

S)The condition q~o Ll(O)1 Ll(T)« I appears here in place of (2) 
since only small values of ~p are important in the integral. 
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