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It is demonstrated that a static field arises near a localized Langmuir perturbation and that the strength of 
the field decreases only in accordance with a power law (E- 11 x 2) wtih increasing distance from the 
perturbation region. The region in which this field exists is of the order of L 2/ rD , where L is the dimension 
of the Langmuir perturbation and rD is the Debye radius. 

We investigate here the structure of the field of a 
localized Langmuir perturbation in a uniform electron 
plasma. 

In the linear approximation, the electric field of the 
Langmuir perturbation can be represented in the form 

E(x, t) =tif(x, t)e-fop'+ c.c., (1) 

where the function .r(x, t) satisfies the equation (see, 
e.g.,[l]): 

{}tif .3v.' {}'tif (2) 
at = I 400, -;;z 

(vT = (2T/m)1/2 is the thermal velocity of the electron, 
and wp is the electron plasma frequency. 

We consider below perturbations that can be charac
terized by a single spatial scale L and decrease suf
ficiently rapidly (exponentially) at infinity (see the 
figure). The scale L, naturally, is assumed to be large 
in comparison with the Oebye radius: L - vT / wp' 

Owing to the smallness of the group velocity of the 
Langmuir oscillations, the perturbation remains in the 
initial region of space for a long time T - WpL2/V~ (T 

is large not only in comparison with the Langmuir 
period 27r/ wp, but also in comparison with the time of 
flight of the electron through the perturbation L/vT)' 
In other words, in the linear approximation it turns out 
that for a long time the presence of a perturbation 
manifests itself in any way in the region 1 xl» L. 

It will be shown in the paper that when account was 
taken of effects quadratic in the amplitude .r, the situa
tion is radically altered: a quasistatic electric field is 
produced around the perturbation and decreases with 
increasing distance from the perturbation region only 
in power-law fashion. The reason for the appearance of 
this long-range part of the electric field is the follow
ing. In the region where the perturbation is localized, 
the electrons that pass through are acted upon by a high
frequenc y pressure forc e (proportional to a 1 .r 12/ ax ), 
which distorts their distribution function. The resultant 
distortions 1) are transported with thermal velocity over 
larger distances (compared with L) and lead to the ap
pearance in the region 1 xl» L of an electric field 
whose established value becomes such as to ensure 
quasineutrality of the plasma. 

~ x· 
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Principal attention will be paid to finding the field at 
not too large values of 1 xl, 1 x 1 ~ vTT (but 1 xl» L 1). 
In this region, the distortions of the distribution func
tion are quasistatic: the time of flight of the electron 
from the region of localization of the Langmuir pertur
bation to the point x is small in comparison with the 
time T of alteration of the Langmuir perturbation. It is 
precisely this circumstance which enables us to write 
down an expreSSion for the long-range electric field in 
a simple and universal form. 

The initial equations are the kinetic equation for the 
electron distribution function f and the Poisson equa
tion 

af a/ eE at 
at + va; -~Tv = 0, 

:: = 4ne(n.- Sldv), 

where E is the electric field, no is the density of the 
neutralizing ion background, and e and m are the 
charge and mass of the electron. In accordance with 
the foregOing, the problem consists of finding the dis
tribution function in second order in .r. We use the 
method of successive approximation. We put 

E=E.+E,+ ... , 

1=1.+/.+/,+ .. . 

(3 ) 

The unperturbed distribution function fo will be re
garded as Maxwellian 

j,=n(m/2nT) 'I'exp (-mv'/2T); 

El coincides with the function defined by (1). Accord
ingly we have in the linear approximation 

whence 

a/, fi/, e aj. _,. t I 
-+v-=--.-[~(x,t)e P+C.c., at ax m fiv 

/, =~!..!.! Sf ~[x-v(t' -t), t')exp{-iOOpt'}dt'+C.c. 
m av_ oo 

(4) 

(5) 

Recognizing that .r varies slowly in comparison with 
the rapidly oscillating exponential, we can write the 
following iteration series for fl 

e {ji. . [i 1 dtif i d'~ 1 d3~ ] 
j,(x,v,t)=--e-'·p' -tif+--------+ ... +c.c., 

m au ffip tJ>p2 dt (()p3 dt 2 oo/dt3 

where d/dt = a/at + va/ax. It follows from (5), in addi
tion, that fl is exponentially small at large distances 
(I xl» L). 

The second-order quantities satisfy the system of 
equations 
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dE. S ax =-4ne ,. dv. 

When writing down the right-hand side of (6) we have 
retained only terms that vary slowly with time; the 
terms containing the factors exp{±2iwpt} make an 
exponentially small contribution to the function f2 at 
large distances, and can therefore be omitted. 

(7) 

The system (6) and (7) has one common property. If 
the right-hand side of (6) contains a certain function in 
the form of a time derivative2), dF(x, v, t)/dt, with 

S Fdv=O, (8) 

then this system has a solution f2 = F, E2 = 0, Since 
actually the expression in the right-hand side of (6) is 
exponentially small at x » L, this means that these 
terms which are total derivatives with respect to time 
and satisfy the condition (8) make no contribution to the 
perturbation of the distribution function at large x, and 
consequently can be omitted when finding the long
range part of the perturbation. 

Bearing this general property in mind, we can repre
sent Eq. (6) in the form 

dl, _.!...-E,!.!.:...=_e_' _~{al(W _~(~ a$ 
dt m av m'fijp' av ax fijp ox at 

_ a$ ~} __ 1 (v..!:.. O'10I'_3~ I!!!... I')} . 
ax at fij.' dt ax' ax at (9) 

Taking Eq. (2) into account and confining ourselves in 
the curly brackets of the right-hand side of (9) to terms 
of zeroth and first orders 3 ) in the parameter (VT/wpL)2, 
we can reduce this equation to the form 

!!':"+V~_..'!....E,~=_e_'_~{aI0I' +~~I a$I' 
at ax m av m'fijp' OV ox mfij/ ax oX 

_~(0310I'_3~1 001')} ""~ au ~ 
fijP' ox' ax ax m ax av ' (10) 

where U stands for the potential of the high-frequency 
force (which, naturally, differs from zero only in the 
region of the packet). 

As already noted, the long-range part of the pertur
bation is precisely due to the presence of this high
frequency force. It must be recognized, however, that 
in the region of the packet the particle is acted upon 
also by an electric field that is determined from the 
condition of quasineutrality of the plasma and cancels 
out partially the high-frequency force. It is therefore 
necessary to find first the effective potential 

which acts on the particle in the region of the packet. 
To this end we find first cp. When solving this part of 
the problem we can neglect the time derivative in (10), 
after which f2 in the region of the packet can be easily 
determined: 

j.=-T-'j.( U-e!jJ). 

Bearing in mind that the dimension of the packet is 
large in comparison with the Debye radius, we can ob
tain cp from (7) by successive approximations, putting 
in the zeroth approximation 
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!jJ=_l-S Uj.dv, 
ne 

and then substituting the obtained expreSSion in the 
left-hand side of (7). The result is the following expres
sion for the effecti ve potential acting on the particle in 
the region of the packet 

_ e' [Tlm-V'la$I' v' a'101'] , U.II - --- 3--- -- +-----
mOOp2 (J)p ~ ax cu,l! ax'/. ' 

where only the principal terms in the parameter 
VT/wpL have been retained. 

(11) 

The problem reduces now to finding, at large dis
tances I x I » L, the electron-density perturbation on 
due to the action of the potential Ueff on the electrons 
in the region of the Langmuir oscillation. The electric 
field can then be easily determined from the quasi
neutrality condition 

T a 
E,=--6n. 

en ax 
(12) 

The distribution-function change connected with the 
action of the effective potential can be obtained by inte
grating Eq. (10) along the trajectories: 

j,=!l!S'-aa U''1[x+v(t'-t),v,t']dt' ... -~ :1, U.II(x-vt,v,O) 
av, x v "V 

1 a/, S· a ( Y-X) --- -U,II y,v,t+----< dy. 
v'av _oo at v 

For the sake of argument, we conSider the perturbation 
at x > 0, and take into account the exponential small-: 
ness of Ueff in the region x » L of interest to us. 

The first term is connected with allowance for the 
initial conditions. It can be verified that it makes only 
a small contribution to the perturbation of the electric 
field in the region x :s vTt, and will therefore be 
omitted from now on. The density perturbation, accord
ingly, will be 

S m SK dv S~ a ( y-x ) 13n= /,dv=T -;-/,(v) dYTtU'/i y,I),t+-v - . 
(I ;\'_t't 

We have replaced the upper limit in the integral with 
respect to dy by 00, bearing in mind that I x I » L. 

(13 ) 

As is obvious beforehand, and as follows also 
formally from (13), the denSity perturbation at I x I » L 
can be connected only with the non stationary character 
of the effective potential. It is all the more surpriSing 
that the long-range electric field is static. To verify 
this, we interchange the order of integration in (13) and 
change over from the variable v to the variable t' = (y 
- x)/v 

m S- S' dt' (X-Y) a (Y-X ) 13n= -r dy 7 /, -t'- TeU'1I Y'-t'-,t+t'. (14) 
_N _I 

Recognizing that, according to Eq. (2), 

a --S U'II(y,v,t)dy=O, 
at 

we can represent (14) in the form 

m -S SO dt' [ . ( X-Y) a (Y-X ') 13n=-r __ dy _,7 J, -t-'- Bt U•1I Y'-t,-,t+t 

-/, ( ;,) :t U'II (y, ~~ ,t+t')]' 
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i.e., 

e' s· S· dt' { 3T [ (Z-Y)· (X )] a , a~ " lin = -- dy - -- /. -- -f. - --
T6),' _00 _. t' m6).' t' t' at ay 

+_1 [(x-y)' .(X-Y)_~f.(~)] (a'I~I' -31~ I')}. 
6).' t" / t' t" t' ay' • ay 

Bearing in mind that rff differs significantly from 
zero only at y i L «x, and that the function fo is ex
ponentially small at t' < xl vT, we can expand in powers 
of ylt' in the square brackets. As a result we obtain in 
the first non vanishing approximation 

3e'n. ( m )'" 1 a . ,a~,' IIn=--- -- --S y -- dy. 
m'6)p' 2nT x at _00 ay 

Accordingly, the long-range part of the electric field is 

3eT ( m )'" 1 a SOO ,a~,' Q E,=-- -- -- Y - dy==-
m'",.' 2nT x' at _00 ay x' . 

(15) 

The quantity Q, which has the dimension of charge, 
can be called the effective charge of the Langmuir oscil
lation. USing Eq. (2), it is easy to verify that it does not 
depend on the time, i.e., the long-range part of the elec
tric field turns out to be not merely quasi static , but 
completely static. With the aid of (2) we can express 
the effective charge in terms of the characteristics of 
the perturbation at the initial instant of time: 
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9ieT' ( m ) 'I, • (a'~ a'~ . ) 
Q= 2m'6).' 2nT J ~ .. ·ay: -~. ay: dy, 

rffo = rff(y, 0). In the region of large x, x» TVT, formula 
(15) no longer holds. The spatial dependence of the field 
ceases to be universal in this case and depends on the 
details of the change of the form of the perturbation with 
time, but the field here is very weak. 

In conclusion, the author thanks D. D. Ryutov for use
ful discussions. 

I)Within the framework changes exponentially weakly ( L < <v T/ W p ! ) 
of the linear approximation, the distribution function of the electrons 
as they pass through the perturbation region, so that the "long-range" 
part of the perturbation does not appear in the linear approximation. 

iiwe recall that we define the total derivative with respect to time as 
3/3 t + v 3/3 x. 

3)We cannot confine ourselves only to the zeroth-order term since, as 
will be shown below, it is almost completely cancelled out by the 
quasistatic electric field. 

1 V. I. Karpman, Nelineinye volny v dispergiruyushchikh 
sredakh (Nonlinear Waves in Dispersing Media), Nauka 
(1973), p. 125. 

Translated by J. G. Adashko 
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