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The effect of a magnetic field on the heat flow in a free molecular gas (the thermomagnetic effect) is 
considered. An expression for the heat flux is derived under the assumption of an arbitrary dependence of 
the attachment and evaporation coefficients (a) on the directions of the velocity and angular-momentum 
vectors of the molecule and the normal vector to the surface. It is shown that the observed negative sign of 
the increment ~ Q of the heat flux when the field is applied can be accounted for if a is invariant under 
simultaneous change of sign of the normal vector to the surface and the normal component of the velocity 
vector of the molecule. Models are proposed for the interaction between a molecule and the wall and can 
explain the observed ratio of ~ Q for a field parallel to the wall to ~ Q for a field perpendicular to the 
wall. 

1. INTRODUCTION 

The effect of a magnetic field on heat transport in a 
molecular Knudsen gas in the gap between two plates 
(the thermomagnetic effect) was previously predicted[l,3] 
and detected[2,41. This phenomenon is associated with 
the orientation dependence of the interaction of the gas 
molecllies with the surface of the solid walls (plates). 
The change in the heat flux (~Q) when the field H is 
applied depends on the product of the molecular preces
sion frequency w by the molecular mean free flight 
time T from wall to wall. Since w = yH (y is the gyro
magnetic ratio of a molecule) and T = L/v (L is the 
distance between the plates and v is the mean velocity 
of the molecules), ~Q is a function of the product HL. 
As HL increases, ~Q rises to a limiting (saturation) 
value ~Qsat. The heat flux depends on the orientation 
of the magnetic field with respect to the plates. More
over, it has been shown that ~Q can sometimes be an 
oscillating function of HL. These heat flux oscillations, 
which correspond to the molecule precessing about the 
magnetic field vector during its flight from wall to wall 
through one, two, ••• complete revolutions, were ob
served[2] in N2, NF3, and CO atmospheres. 

The orientation dependence of the interaction of the 
molecules with the wall is taken into account theoret
ically by generalizing the well-known Maxwell boundary 
condition[5,Sl, which relates the distribution functions 
for the incident and reflected molecules, to the case in 
which the diffuse-reflection coefficient (a) is a func
tion of the velocity and angular momentum vectors of 
the molecule (v and M) and the normal vector to the 
surface (k). It was assumed that this interaction can be 
described by a model in which only one nonspherical 
term is retained in the expansion of Q. in spherical 
functions of v, M, and k: 

a=cxo (1+J.tk[ v x M]) (1.1 ) 

(J.J. is a small parameter). This model is extremely 
plausible, for according to Eq. (1.1) the most probable 
direction for the angular momentum of a molecule 
leaving the wall is perpendicular to its velocity. 

It has been found[3] that according to this model the 
heat flux should increase when the magnetic field is 
applied and that the ratio of the increment of the heat 
flux on applying a field perpendicular to the normal 
vector k (~Ql) to the corresponding increment when a 
field of the same strength is applied parallel to k 
(~QII) should be independent of the applied field strength 
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and equal to one-half!): 

I'lQ.1.1 I'lQ,;='I,. (1.2) 

Experiments with H2, N2, SFs, and CO2[4], however, 
showed that the heat flux decreases when the magnetic 
field is applied and that the ratio ~Ql / ~QII is constant 
for strong enough fields (Le., at saturation) and lies in 
the interval 1.6-2 for the gases listed above. 

It is accordingly deSirable to base our discussion of 
the effect of a magnetic field on the heat flux in a 
molecular Knudsen gas on more general ideas concern
ing the interaction of the gas molecules with the wall 
surfaces. As before(l,31, we shall assume the walls to 
have different temperatures (To and TL) but to be 
otherwise identical. The problem is to calculate the 
heat flux for an arbitrary dependence of the diffuse
reflection coefficient Q: on v, M, and k. Below we pre
sent the results of a study of the sign and anisotropy of 
the effect (Le., of the sign of ~Q and the magnitUde of 
~~/ ~QIl), USing various model functions to represent 
the dependence of a on v, M, and k. In particular, we 
show that the heat flux should decrease when the field 
is applied provided the nonspherical part of Q: does not 
change when the normal component of the velocity vector 
and the vector normal to the wall are replaced by their 
opposites. 

2. DISTRIBUTION FUNCTION 

We shall use a coordinate system such that one of 
the walls lies in the xy plane, and the other, in the 
plane z = L. The kinetic equation for the problem under 
consideration is 

aj Of 
v'~+l[MXHl OM=O. (2.1) 

The solution to this equation can be written in the 
form[3]: 

f = .E XlmD~!' Y" ( : ) cxp (imrozlv,). (2.2) 

Here D~k(<pH,lm;H' 1/J) is the finite-rotation matrix (8H 

and <PH are the spherical angles defining the direction 
of the field, and 1/J is the angle of rotation about the 
direction of the field). The coefficients Xlm are func
tions of v and M2 and are to be determined from· the 
boundary conditions. 

Following[3], we write the boundary conditions relat
ing the distribution function r for molecules moving in 
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the forward direction to the distribution function r for 
molecules moving in the backward direction in the form 
j+(v, M)=[1-a(v, M, k)l!-(v-2k(kv), M)+a(v, M, k) /o(v', M'), 

.z=O; (2.3) 
/-(v, M)=[1-a(v, M, -k)W(v-2k(kv), M)+a(v, M, -k) 

X h(v', M'), z=L, 

where fo and fL are the Maxwell distribution functions 
for temperatures To and TL, and a represents the at-
tachment of evaporation coefficient. ' 

Further, we shall assume that a does not depend 
strongly on v and M and can be expanded as follows l3]: 

[ '\1 '\1 (I. I, I,) " M .] 
a(v,M,k)=ao 1+8 '-- alllll, ~ m -m 0 Y"mYII-mYhO ; 

Y,,,," = (a!ao)'Y,,,, (a!a), vo=(2To!m)"', Mo=(21To)"', (2.4) 
where € is a small dimensionless parameter charac
terizing the deviation of the angular distribution of the 
molecules evaporated from the wall from the distribu
tion that would obtain in the case of isotropic diffuse 
reflection. The dimensionless expansion coefficients 
al lz l3 are functions of v2 and M2. The fact that k is 
p.trallel to the z axis is taken into account in expansion 
(2.4). 

On substituting the values of the functions F from 
Eq. (2.2) into the boundary-condition equations (2.3), 
multiplying by Tsa( M/M), and integrating over the 
direction of M, we obtain the following equations for the 
boundary conditions: 

x .. += (1-ao)x",--aoe L X'm -B,:,C.a'm'''+ (4n) '''a%B.o+aoe/oB.:, (2.5) 
'1Imlr. 

- _1,,_ (1 ) + la, '\1 + '''''B''C XACJ e - -aD X,8CJ e -aoB ~ XI", ell" .olmb/! 

IJI\'I\l 

+ (4n) "'ao/LB,o+a(e/J1.:'. 

Here we have used the following notation: 

{ v. (vk>O) 
'l=coLl~, ~ = -v. (vk<O)' (2.6) 

B,,'=B,.(v,, v" ~, k), B,k·=B,.(v., v" -~, -k), 

(for Eq. (2.8) see[7], for example). 

We can seek the solution to Eqs. (2.5) as an expan
sion in powers of €: 

f±- '\1f ± f ±~en x± ~en - £...J. n I " , 1ua • (2.9) 

Only the difference X;oo - x200 will be required for the 
subsequent calculations. Solving Eqs. (2.5) by the 
method mentioned above, we obtain 

+ - _ ao'e' (fo-h) '\1 (_1),,+ml'; _I. 

x,oo-x", - (2-ao)' (4n)'" ~ m 

',m 

I';m=e-'m,- (1-ao)'e'm,. 

Equation (2.10) can be Simplified. We note that some 
of the terms in expansion (2.4) and sum (2.7) (those for 
which L + m + l3 is even) do not change under the 
simultaneous substitution Vz - -vz, k - -k, while the 
other ones (those for which 11 + m + 13 is odd) change 
sign under that substitution. Let us denote terms of the 
first type by a, and terms of the second type by b. 
Then 
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(2.11) 

Substituting (2.11) into (2.10), we obtain 

+ - ao'e' (fo-h) '\1 ( i)' +m[ m b b '" I 
X200-X200 = -.----_-~ - I a/amah_m"'r m- lJm la-mWm , 

(2-a,)' 1'n ',m (2.12) 
in which 

(2.13) 

3. HEAT FLUX 

The heat flux in the gas between the two plates is 
gi ven by the equation 

mv' M' 
Q= S v,E(j+-f-)dvdM, E=-2-+U' (3.1) 

vk>O 

Now taking (2.2) and (2.9) into account, we have 

Q= LQ,,, Qn~en, (3.2) 

Q,,=(4n)'I. S v.E(x:'o-x.:'o)M'dMdv. 
vk>o 

It can be shown that the dependence of the heat flux 
on the strength and direction of the magnetic field is a 
second order effect in €. Using Eqs. (3.2) and (2.12), 
we obtain 

2ao'e' J '\1 
Q,(I1)= (2-ao)' v.E(f,-h) ~ (_1)'·+m (3.3) 

vlr.>O 11m 

The dependence of Q2 on the field strength (on the 
parameter HL) is determined by the functions '.lim and 
wm (see Eqs. (2.13)), and its dependence on the field 
orientation angle eH, by the functions D~)k(!PH' eH' lji) 

that occur in the expressions for the al2m and b12m' We 
note that according to Eqs. (3.3), (2.11), and (2.7), the 
flux Q2 is independent of the angles !PH and lji, in ac
cordance with the symmetry of the problem. 

4. GAS-WAll INTERACTION MODELS 

It is not desirable to use a great many terms in ex
pansion (2.4) to describe the effect under consideration, 
since in that case the number of unknown coefficients 
Ct1 112 13 in the expression for the heat flux in the field 
may exceed the number of parameters that can be un
ambiguously evaluated by comparison with experiment. 
In the following we shall therefore conSider only a few 
terms in expansion (2.4). A description of the gas-wall 
interaction obtained in this way we shall call a model 
description. 

For simplicity, the parameters o.l1l2l3 can be treated 
as constants, since the sign of ~Q (Le., the sign of the 
change in the heat flux on applying the magnetic field) 
and the quantity ~Ql / ~QII are determined by the de
pendence of the diffuse-reflection coefficient a on the 
directions (but not the magnitudes) of the vectors v, M, 
and k. Further, we shall assume that I To - TL I « To. 

Let us first consider a model description of the gas
wall interaction in which the dependence of the fraction 
Ct of diffusely reflected molecules on the directions of 
the vectors v, M, and k is determined by just one of the 
terms in expansion (2.4) with definite values of 11, l2, 
and l3: 

(4.1) 

Here 0.0 and € are parameters to be determined by 
comparison with experiment. The model dependence of 
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(lll~lJ) !Sign Of/ Sign of 1(~QjJ';'Q II )<- Sign of 1 Sign of I (-'Q.L1 
-'QII ~Q.L lfor. 0 < ao< 1 1112la ';'QII ~Q.L I~Q II )<~OO 

for 0<110<1 

(011) + 00 ( 122) 1 
(110) + (-oo.-'/') (221) + ± (-'I., 5;.) 
(111) + + 'I, (222) + ± (-00. 1) 
(211) + (-00, -'I.) (Oil), 

l even 
(112) + (-00. _7;') (011), + 

I odd 
(212) + + 'I, (1ll) . 

I even 
(022) (1ll) . + + (0.,1) 

I odd 
(220) + + (51 •. 1) (Ill) . + + 'I, 
(121) + + (0, I) 1=3.4 ... 

a on v, M, and k described by Eq. (4.1) we shall call 
the (l,l2l3) model, 

Below we shall consider various terms in expansion 
(2.4) up to the term with l, = l2 = l3 = 2, the terms with 
l,=O or l,=1 and l2=l3=3,4,.,.,andtheterms 
with l2 = 1 and l, = l3 = 3,4, .••• These terms are 
listed in the table. The terms with l2 = 0 (i.e., that do 
not depend on M) are not discussed below since for 
these terms the dependence on the magnitude and direc
tion of the magnetic field drops out of Eq. (3.3). 

Let us investigate the sign of AQ as given by various 
models of the type of (4.1). The simplest of these models 
are those for which A contains only terms with one 
specific value of the modulus m: 

A = ( t - -} /) ... 0 ) [ ( ~ ~~ ~) Y1:mY,;:". + (~~ ~ ~) .y,,'-mY;::,,] Y,:o. 
(4.2) 

These are the models (Ott), (Ill), and (til) with l = 1, 
2, ... ; all the other models contain two or more terms 
of the type of (4.2). The sign of AQ as predicted by the 
models of the type of (4.2) can be determined for all 
allowable values of lI' l2, l3, and m. As the calculations 
Showed, AQ is negative (the heat flux decreases when 
the magnetic field is applied) for models of the type of 
(4.2) having even values of l, + m +l3, when a is in
variant under the substitution Vz - -vz, k - -k 
{terms of type a in Eq. (3.3», and AQ is positive for 
models of the type of (4.2) with odd values of l1 + m 
+ l3, when A changes sign under that substitution {terms 
of type b in Eq. (3.3». 

These results have a simple physical meaning. First 
let us consider the models (4.2) with even l, + m + l3. 
From the fact that a is invariant under the substitution 
Vz - -vz , k - -k it follows that the probability that a 
(v, M) molecule (Le., a molecule having velocity v and 
angular momentum M) will stick to the wall is equal to 
the probability that a (v - 2kk· v, M) molecule will 
stick to the other wall (see the figure). In accordance 
with the boundary conditions (2.3), the probability that 
a (v, M) molecule will evaporate from a wall is equal 
to the probability that a (v - 2kk· v, M) molecule will 
stick to that same wall. Thus, the probability that a 
( v, M) molecule will evaporate from one wall is equal 
to the probability that a (v, M) molecule will stick to 
the other wall. In the absence of a magnetic field, the 
molecule travels from wall to wall without any change 
in its orientation (in the direction of M). Hence a mole
cule leaving one wall with the most probable velocity 
and orientation will have the highest probability of 
sticking to the other wall. In the presence ofa magnetic 
field the molecule will precess during its flight between 
the walls and will therefore arrive at the second wall 
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with an orientation that differs in general from that with 
which it left the first wall, so that the correspondence 
between the maximum probabilities for sticking and 
evaporating is violated. Hence the heat flux, which will 
obviously be greatest when the maximum probabilities 
for evaporation and sticking of the molecules correspond 
to one another, will decrease when the magnetic field is 
applied. 

The signs of AQl and AQ11 were determined for all 
the models listed in the table. In the general case Eq. 
(4.1), the model equation for the gas-wall interaction, 
contains terms that give positive contributions to AQ, 
as well as terms that give negative contributions to it. 
On the whole, such models lead to complicated relation
ships between the flux and the field. Hence, models 
(110), (211), and (112) lead to a decrease in the heat 
flux on applying the field for the case H II k, and to an 
increase for the case H 1 k, while the sign of AQl for 
models (221) and (222) depends on the value of Oto. 

Now let us determine the dependence of the heat flux 
on the field vector H and the anisotropy of the effect, 
as predicted by various of the models described by Eq. 
(4.1), and let us first consider model (122). USing Eq. 
(3.3), (2.11), and (2.7), we obtain 

Q(I22) (H)- 15 ao'e' S ( ) 'M' 
2 - 1?8 'I, 2M' (2 )2 E to-tL V (4.3) 

.... Jl Va 0 -CXo vlr.>O 

From this equation we can obtain the following expres
sions for the changes in the heat flux incident to the ap
plication of fields parallel and perpendicular, respec
ti vely, to the vector k: 

.1QII"'" = Q:I: 22 ) _ Q:t22) (0) =_1;"') + 1,<''') , 

1Qi122 )= Q,(~"l_ Q;"') (0)=-/0(122) t '1,1,(12') + 'I,li"') , 

Q/"') (0)=1,<'22), 

where 

(4.4) 

, <''')- S~( '+5 - ) -x' (1-ao)'+ao(2-ao)cos(kVx)-(1-ao)cos(2kslx) 
k - x ,.JX e dx, 

o 1-2(t-a,)'cos(2kslx)+(1-ao)' 

(4.5) 
s=yHLho=(jJT. 

The ~ dependence of the integrals J{ 122) (k = 1, 2) is 
similar to the previously inveStigated[~ dependence of 
Jk'll). In the absence of a field, we have Jk22) = J~'22). As 

the field strength increases (; ~ H), J~22) decreases, 
and as ; increases further, it oscillates with decreaSing 
amplitude. In the limit ~ - 00, we have I J~22) I 
- 0 (k = 1, 2), so it follows from (4.4) that: 

(4.6) 

Now let us conSider the (022) model. Using Eq. (3.3) 
to calculate the change in the heat flux when the field is 
applied leads to the follOwing result: 

tlQ10 Z2 )=_/o(02') +/2(022), tlQ):022) =0, (4.7) 
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in which the integrals Ik2) (k = 0, 2) are analogous to 
integrals (4.5). We note that according to any of the 
models (Oil) with 1 = 1, 2, 3, ... the heat flux remains 
unchanged when a field is applied parallel to the tem
perature gradient. This result has a simple physical 
meaning. For these models a is independent of the 
azimuthal angle cP M whic h, together with the polar 
angle () M, specifies the direction of the angular mo
mentum of the molecule. When H II k, the angle ()M is 
not altered by the precession of the molecule about the 
direction of the magnetic field, so that the distribution 
of the molecules with respect to () M also remains un
changed. Hence the application of magnetic field in this 
direction does not change the heat flux. 

Now let us consider the results obtained by using 
other models to calculate the anisotropy of the effect. 
For models (111) and (212), ~Q.d ~QII is constant and 
equal to one-half, regardless of the strength of the 
field. For the models (110), (211), (112), (220), (121), 
(221), and (222), the quantity A (see Eqs. (4.1» contains 
terms that are invariant under the substitution vz 
- -vz, k - -k, as well as terms that change sign un
der that substitution. Since the corresponding type-a 
and type-b terms in Eq. (3.3) for the heat flux depend 
differently on the quantity ao (see Eq. (2.13)), the quan
tity (~Ql / ~QII) ~_ 00 will depend on ao for these 
models. The range throughout which this ratio varies 
for 0 < ao < 1 is given in the table for each of these 
models. 

The anisotropy for the (1ll) models can be deter
mined for arbitrary values of 1 (l > 2). The following 
results are obtained for the change in the heat flux on 
applying the field: 

(4.8) 

where 

c,=[dOl(l) (n/2) J'. (4.9) 
The coefficients ci (i = 1, •.. ,l ) are easily calculated 
for each specific case. It can be shown that the inte
grals I~1l2l3 in the expression for ~Q for any of the 
models (l1l2ls) of (4.1) and, in particular, the integrals 

I&lll), differ from I~22) (see Eq. (4.5» only in a numeri
cal factor, in the form of the polynomial, and in the 
sign of the second term in the numerator of the inte
grand. It is therefore clear that as functions of ~, the 

I~1l213) will behave in qualitatively the same way as the 

Ik22). In particular, they will tend to zero as ~ - "" 

(k;: 0), so that from Eqs. (4.8) and (4.9) we obtain 

(~Q~tII)/~QI~tII) h_oo=1-[d::) (n/2) J'. (4.10) 

It follows from this equation that for even 1 we have 

(~Q ~tII) / ~QI:tII) h_~=1, (4.11) 

while for odd 1 this ratio lies between 0 and 1. 

It is not difficult to show that the (lll) models for 
arbitrary values of 1 (l > 2) lead to the value ~Ql/ ~Q'I 
= Yz regardless of the strength H of the magnetic field. 

We have now considered the behavior of the heat flux 
in a magnetic field for the (l112ls) models of (4.1) with 
11, l2, ls!S 2, and for the models (OU), (1ll), and (lll) 
with 1 > 2. These models are obtained by retaining only 
one term with definite values of l1> l2' and ls in the 
expansion (2.4) of the diffuse-reflection coefficient a 
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in spherical functions of the vectors v, M, and k. The 
examination of these models has revealed some for 
which ~Q is negative. Thus, the sign of ~Q observed 
for H2, N2, CO2, and SFe can be accounted for provided 
we make the additional assumption that a depends in 
the same way on the directions of v and M for both of 
the surfaces (copper and gold) used in[41. 

However, none of the simple models for the gas-wall 
interaction discussed above leads to the observed[4] 
valtles of (~Ql/ ~QII) ~_ "'" which lie between 1.6 and 2 
for the investigated gases. Such values of 
(~Ql/~QII)~-"" can be obtained by retaining two non
spherical terms of expansion (2.4) in the model expres
sion for a and chOOSing the expansion coefficients 
a1 112l3 appropriately. In this case the model expres-

sion for a will involve three parameters. 

For example let us conSider the model equation 

a=a,{1+e[Y,,'Y,,"Y20'+l (Yu'y,"'.,-Y,'_,YuM) Y20'j), (4.12) 

which is obtained from expansion (2.4) by retaining the 
terms II = 0, l2 = ls = 2, and II = 1, l2 = ls = 2. In this 
case the expressions for ~Ql and ~QII will be linear 
combinations of expressions (4.4) and (4.7). For 
y = 0.21, we obtain, for example, 

(~Q J) ~QII) 1_00 =2. (4.13) 

We note that all the simple models for the gas-wall 
interaction that we have investigated lead to damped 
oscillations of the heat flux as a function of the field 
strength H. These oscillations correspond to the mole
cule executing one, two, .•• complete revolutions as it 
precesses about the magnetic field vector during its 
flight from one wall to the other, and their amplitude 
amounts to ~3~ of the saturation value of ~Ql. No 
oscillations were observed in[41, although the experi
mental errors were only ~5%. The plates used in these 
experiments were made of various materials, but the 
hot plate was coated with gold, and the cold plate, with 
copper. Recent experiments in which the cold plate was 
of glass revealed oscillations of the heat flux in nitro
gen with an amplitude of ~1~ of the saturation value 
of ~Ql (private communication from V. S. Laz'ko et 
al.). Thus, the observed amplitude of the oscillations is 
lower than the predicted amplitude. We have generalized 
the problem treated above to the case of different 
plates and have found that the amplitude of the heat-flux 
oscillations in the magnetic field can be small provided 
the values of ao (see Eq. (2.4» for the two plates differ 
considerably or a has different angular dependences on 
v, M, and k for the two plates. 

We also note that the amplitude of the oscillations 
can be small even in the case of identical plates pro
vided the diffuse-reflection coefficient a has a compli
cated angular dependence on v, M, and k described by 
several (more than two) terms in expansion (2.4). In 
this case the expressions for ~Ql and ~QII will con
tain a number of integrals analogous to J k22), which de
pend on WT (i.e., on HL). These integrals reach their 
maxima at different values of WT, and it is natural to 
suppose that the oscillations of ~Ql and ~QII will be 
small. 

The authors are grateful to L. A. Maksimov for a 
useful discussion of the results and for valuable re
marks. 

I)There is a misprint in [3]: the subscripts 1 and II on t.Ql and t.QII 
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should be understood as referring to the normal vector k, and not to 
the plane of the surface. 
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