
Influence of defects on phonon drag in metals 
Yu. Kagan and V. N. Flerov 

(Submitted June 21, 1974) 
Zh. Eksp. Teor. Fiz. 67, 2001-2008 (November 1974) 

The influence of scattering of electrons and phonons by defects in metals on the phonon drag in the 
electric conductivity of uncompensated metals with a closed Fermi surface is analyzed. It is shown that 
there are two different concepts of a "pure" and "dirty" limit for the phonon and electron subsystems 
respectively. In the phonon dirty limit (the momentum flow from the phonon system to the defects exceeds 
the momentum exchange with the electron system) the resistance has the usual value in absence of drag. In 
the phonon pure but electron dirty limit (the phonon resistance is less than the residual resistance) the low
temperature resistivity of a metal with an anisotropic electron spectrum has a power-law de~ndence on the 
temperature T. The pure and dirty electron limits do not differ for metals with a Fermi surface that is 
almost spherical, and the resistivity is determined by the competition between Umklapp processes in the 
electron and phonon subsystems, and by the scattering of phonons by the defects. At sufficiently low 
temperatures the latter lead to a change from an exponential to a power-law dependence on T. 

1. INTRODUCTION 

The question of the influence of the dragging effect 
on the electric conductivity of metals and the assessment 
of the feasibility in principle of experimentally observing 
manifestations of this effect in real metals remains one 
of the most interesting problems of the physiCS of trans
port phenomena at low temperatures. In spite of the 
lucidity of the physical ideas, which were introduced by 
Peierls back in the 30's (see, e.g.,[l\ an exhaustive 
analysis of the phenomenon for a real situation has 
never been carried through to conclusion. As a result, 
publications appear from time to time, in which the ano
malies in the electric resistivity of metals are unjus
tifiably ascribed to the dragging effect or where it is 
categorically stated that it is impossible, or conversely 
possible, to observe dragging under one condition or 
another. Perhaps the only common point of view is the 
inevitability of the existence of the dragging effect in al
kali metals (the case most closely corresponding to the 
Peierls picture), but even here the fundamental question 
concerning the role of defects remains in fact open. 

We have previously presented[2] a general analysis 
of the possibility of a manifestation of the dragging ef
fect in the electric conductivity for metals with arbi
trary togology of the Fermi surface in the absence of 
defects. It was established as a result that the exponen
tial dependence of the resistance on the temperature, 
which is a characteristic of the dragging effect, should 
not occur in any of the compensated metals (where the 
number of electrons ne is equal to the number of holes 
nh)l), nor in metals having open Fermi surf~ces. (In 
metals with cubic symmetry, the last statement is gen
eral. In noncubic metals, a distinction should be made 
between the resistivity tensory components paa along 
the principal axes. The dragging effects will become 
manifest for components along those axes which are 
perpendicular to the normals to all the boundaries of 
the Brillouin zone that are intersected by the open 
Fermi surface.) In a metal with a closed Fermi surface 
(ne ,; nh), the dragging effect should exist in principle 
at any arbitrary topology of the latter, and particularly 
in the case of a multiply-connected Fermi surface when 
individual pieces of the surface are localized on faces 
of the Brillouin zone. However, an analysis of the exis
ting experimental data have shown (see, e.g., [3]) that 
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apart from the alkali metals one can this group includes 
at the present time only aluminum and indium, and 
possibly thallium (for the resistivity-tensor component 
along the c axis). The overwhelming majority of poly
valent metals have either open Fermi surfaces or equal 
numbers of electrons and holes. 

In those cases when a manifestation of the dragging 
effect is still pOSSible, it is more natural to raise the 
question of the role of defects, which ineVitably produce 
a channel for the outflow of momentum from the elec
tron-phonon system of the metal. This is aU the more 
interesting, since it has become clear recently that at 
low temperatures there exists a peculiar strong "in
terference" between the scattering of electrons by 
phonons and impurities, which leads in particular 
to effects which are strongly nonlinear in the impurity 
concentration (see [4] and also[5]) and which manifest 
themselves extensively in experiments (see, e.g., the 
review[6]). On the other hand, the question of how the 
resistivity is influenced by the irreversible outflow of 
the momentum as a result of phonon scattering by de
fects is. no less interesting. The present article is de
voted to the corresponding analysis. 

2. INFLUENCE OF THE SCATTERING OF ELECTRONS 
AND PHONONS BY DEFECTS 

To analyze the resistance at low temperatures, we 
used the usual linearized system of Boltzmann kinetic 
equations for the electron-phonon system of the metal, 
which can be represented in the following symbolic 
form: 

N=P', "(<p, X)+R(<p), 
o=pp", (x;<p) +i(x) +i}(x). (2.1) 

Here P, £, and R are linear collision operators, which 
describe respectively the interaction of the electrons 
with phonons and with impurities in the first equations, 
and of the phonons with electrons and with one another as 
a result of the anharmonicity, and also with the defects 
(£d) in the second equation; N is the standard field term; 
the functions cp and X are connected with the corrections 
to the electron and phonon distribution functions by the 
relations 

f'tJ(k)=- oj(O)(k) <p(It) g(o)(q)=_ og(O)(q) x(q), 
De(k) , Dffi(q) 
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where k stands for the aggregate of the electron quasi
momentum k and the number of the energy band n, while 
q combines the phonon quasimomentum q and the number 
of the branch a. 

In (2.1) we take the operator for collisions with the 
defects to mean the summary operator, which includes 
scattering by impurities, by the crystal boundaries, 
etc. Thus, we neglect in (2.1) only the electron-electron 
interaction, which is apparently always small in prac
tice, at least in nontransition metals. 

We expand the functions cp and X in the complete 
systems of the functions {cps} and lxa}, and the first of 
these functions we choose in both systems linear func
tions of the quasimomenta 

cp, (k) =ku, Xt (q)=qu, (2.2) 

where u is a unit vector in the direction of the electric 
field. In the case when pieces of the Fermi surface lie 
on the boundary of the Brillouin zone, it is necessary to 
choose the corresponding piecewise-linear quasimomen
tum function k, which conserves periodicity in the recip
rocal-lattice space, for details see[2].) With respect to 
the remaining functions we shall assume that they are 
orthogonal to N. This choice is always possible since 
the scalar product is 

<cp, 1.v>~n.-nh*O. 

Substituting the expansions of the functions cp(k) and 
X(q) in (2.1), multiplying the first equation by CPs(k) and 
the second by Xa (q), and integrating respectively with 
respect to the variables k and q, we arrive at the system 
of equations of the method of moments, which corresponds 
to the usual variational principle. Solving the homogeneous 
subsystem that corresponds to the second equation with 
respect to the expansion coefficients of the phonon distrib
ution function and substituting the resultant values in the 
first subsystem, we arrive at the following system of 
equations for the expansion coefficients as of the function 
cp(k): 

it611 =.E P .. ·a." 

.' (2.3) 

P .. ·=T .. · - .EP:.~(Q-')~~.P: .• , 
~~. 

j,=<cp, IN>. (2.4) 

Here Tss' is the matrix element of the collision operator 
in the equation for the electrons in the absence of the 
dragging effect (X = 0). In this case 

T .. ,=P,u,+Ru ', (2.5) 

where Pss ' is the matrix element of the electron-phonon 
collision operator 

p .. , = : s Sf TV (k, q; k')(cp. (k) -cpo (k'» (cp., (k) -cp.' (k'»dk' dk dq. 

(2.6) 
The matrix elements Qaa', which result from the 

equations for the phonons, are given by 

Qaa.'=P~a.'+La.a.'+L~a." (2.7) 

where Paa' is obtained from Pss ' (2.5) by simply re
placing each function difference CPs(k)-cps(k') by Xa(q). 
In turn, Psa = Pas is obtained from (2.6) by replacing 
one of these differences by Xa (q). 

Solving the system (2.2) with respect to al and recog
nizing that the resistivity is given by 

p= (a,j,)-', 
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we obtain (see the analogous derivation in [5]) 

p= j~2[PU- ~P,,(P-.) ... P •• ,]. 
'.' +, 

~ ~ 

(2.8) 

The matrix P is obtained from the matrix P by crossing 
out the first row and the first column. 

It is important that in a metal without defects, neg
lecting umklapp processes, I.e., under conditions of 
total dragging, the right-hand side of (2.8) vanishes 
both for the exact solution and when the approximation 
of the limited number of moments is used. Indeed, the 
conservation of the momentum in the collision of the 
electrons with the phonons leads to the relations 

(the index N will denote from now on the matrix elements 
of that part of the collision operator which corresponds 
to the normal processes.) Substituting this result in 
(2.4) we obtain directly (at arbitrary s) 

(2.10) 

We note that when umklapp processes are taken into 
account all the matrix elements P1s have the usual ex
ponential smallness. Consequently, at extremely low 
temperatures the second term of (2.8) is negligibly small 
in comparison with the first, and the resistivity is deter
mined completely by the matrix element Pu. 

In the case of polyvalent metals, when pieces of the 
Fermi surface cross the boundary of the Brillouin zone, 
the separation of the normal processes from the um
klapp processes calls for a definite accuracy. However, 
as shown in[2], when the first function is chosen for the 
electrons in a suitable piecewise-linear form, it is al
ways possible to resolve the scattering probability W 
into components WN and WU such that relations (2.9) 
are valid for the normal part, and WU causes the ap
pearance of exponentially small values of the matrix 
elements ~s. It should be noted in this connection that 
the statement contained for example in [7,8], namely that 
in polyvalent metals it is impossible for an exponentially 
small resistivity to exist as a result of the dragging ef
fects, is incorrect. In indirect form, the same statement 
is contained also in a paper by Holstein [9]. 

Let us analyze the problem in the presence of defects, 
confining ourselves to the two-moment approximation 
of the electron distribution function and to the one-mo
ment approximation of the phonon function, and using 
functions of the type (2.2) for the phonon trial function 
and the first of the electron trial functions. As seen in [4] 

(see also [5]), a most basic step in the analysis of electric 
conductivity at low temperatures is to go outside the 
framework of the single-moment approximation, so as to 
be able to take the crystalline anisotropy of the electron 
distribution function into account. It is only in this case 
that a strong interference between the inc.'lastic scat
tering by phonons and elastic scattering by impurities 
can be revealed. To obtain the complete qualitative pic
ture it suffices to have two moments in the expansion of 
the electron function, and inclusion of a larger number 
of moments yields only quantitative corrections. On the 
other hand, as shown by direct analysis, going outside 
the framework of the one-moment approximation for 
the phonon function in the problem of the electric conduc
tivity leads likewise only at quantitative corrections. 

We separate in explicit form the scattering of the 
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electrons by the defects. Then, introducing the nota
tion (see (2.4)) 

(2.11) 

we obtain for the resistivity in the approximation for
mulated above 

(0)2 (0) 

=~(R +p(O)_ P" +2R"P". R,,' ) 
p . , .... R +P'O) R +P'O) . It 22 22 22 2Z 

(2.12) 

Let us consider the region of sufficiently low tem
peratures, when the terms quadratic in the umklapp 
process and the terms of the type P¥s can be neglected 
in comparison with P~s' Then, using (2.4), (2.6), (2.7), 
and (2.9) we obtain 

We note that expression (2.14) reduces directly to (2.6) 
at s = 1 and s' = t, if the difference CPs (k) - CPs (k') is 
replaced by CPs (k) - CPs (k') +Xl (q), confining ourselves 
in this case to integration only over the umklapp pro
cesses. 

The matrix element p~~) does not vanish when ac
count is taken of only the normal processes, and has 
the same power-law temperature dependence as in the 
absence of the dragging effect. From the form of (2.12), 
and (2.13) it follows that in the case of the dragging ef
fect there are two different conceptions of the so-called 
"clean" and "dirty" limits for the electrons and pho
nons, respectively. 

Thus, the relation between the quantities LPl and pIT 
that enter in the denominator of (2.13) (in fact, with 
p{'~ equal to pf'j), actually determines the ratio of the 
momentum outflow from the phonon system as a result 
of the interaction with the defects to the momentum trans· 
fer to the electron system. The dirty limit with respect 
to phonons corresp onds to the condition 

(2.15) 

which leads directly to the result 

(t=1,2). 

Under the condition (2.15), the resistivity therefore 
assumes the same value as in the absence of the drag
ging effect. 

In the opposite clean limit 

(2.16) 

the phonon system turns out to be nonequilibrium as a 
result of the electron-phonon interaction, and the ex
pression for the resistance takes the form 

. (0' 

peratures, where P¥t « pft (several degrees K), the 
condition (2.16) is well satIsfied in ordinary pure crys
tals when account is taken of scattering by defects 
(LPl ~ T8 in the case of point defects). The scattering of 
the phonons by the boundaries can violate the inequality 
(2.16) only in very thin samples or at appreciably lower 
temperatures. 

Thus, (2.17) yields in fact a general expression for 
the resistivity under the conditions of the dragging effect. 
Let us consider first the clean electron limit, Le., the 
case when 

(2.19) 

Then the last term in (2.17) leads to a renormalization 
of the residual resistivity and 

1 (Z u+L U+L d) 1 R12' p-po ~ -:-;: Ii 11 Ii --:-; P(O) , 
Ii It 2~ 

flo=Ru/it'. 

(2.20) 

(2.21) 

The reason for the change of the residual resistivity 
is that in the clean limit the nonequilibrium part of the 
distribution function of the electrons is formed as a 
result of scattering by phonons, and under dragging con
ditions it loses the crystalline anisotropy. This is pre
cisely the cause of the transition from (2.18) to (2.21). 

In the real situation it is very difficult to ensure 
satisfaction of the condition (2.19) for the clean limit 
in the temperature interval typical of the manifestation 
of the dragging effect. As a rule, to the contrary, in this 
interval of tempe,ratures we have a condition inverse 
to (2.19), i.e., we shall operate in the dirty limits with 
respect to electrons. In this case the last term of (2.17) 
becomes equal to 

(2.17') 

and in the case of anisotropy of the electron spectrum 
(in this case R12 '10) the temperature dependence of the 
resistivity is determined preCisely by the term which 
no longer contains the exponential dependence and 
causes the apj!earance of the usual Bloch temperature 
dependence (P~~) ~ T5). A similar result was first ob
tained by Gurzhi[lO]. PhYSically, this nontrivial result 
is connected with the "nondrift" part of the distribution 
function, which appears when the electron are aniso
tropically scattered by the impurities, and has the sym
metry of the crystal and causes the same temperature 
dependence of the resistance as in the absence of drag
ging processes. 

A recent analysis has shown[5] that, for example in 
aluminum, the parameter R12/R22 is far from small. It 
appears that in polyvalent metals in the low-temperature 
limit, corresponding to the "dirty" limit, the exponen
tial dependence of the resistance will always be masked 
by the T 5 law. The only possibility of revealing the 
dragging effect is the use of samples of so high purity 
that the region of the clean limit would become com
patible with the region of the exponential dependence of 1 [z u+L u+L d 2R.. (Z u+L U+L d) R,,'P.. ] P-Po=-:-;-.. .. .. --R +P(O) " .. II + R (R P(O) , 

It, 22 :!4 22 2;2+ 22) 

(2.17) 
I the matrix elements of the collision operator. 

where 
1 ( R"') Po=-:z R lI ---

1, R" (2.18) 

is the usual residual resistivity. 

Direct estimates show that in the region of low tem-
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In the case of alkali metals, whose Fermi surface is 
close to spherical, the role of the anisotropy of the scat
tering by impurities is small, and R12 "" O. There is then 
no difference between the dirty and clean limits with 
respect to electrons, and the resistivity is determined by 
(2.20), from which the last term has been omitted, and 
which is now valid in the general case. It is interesting 
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that the influence of the defects on the temperature
dependent part of the resistivity becomes manifest in 
this case only via the finite damping of the phonons. 

As seen from (2.20), the temperature dependence of 
the resistivity in the considered region is determined by 
the competition between the umklapp processes and pho
non scattering by the defects. With the latter playing a 
rather small role with decreasing temperature, the expo
nential dependence of the resistivity should give way to 
a power-law dependence, the character of which is de
termined by the leading mechanism of phonon scattering. 
We note that in the temperature region where LP1 is rela
tively small, the resistivity can be determined not by 
umklapp processes in electron-phonon interactions, but 
by umklapp processes in the system of the phonons them
selves, owing to the anharmonicity. 

Recent measurements of the resistivity of alkali 
metals [11, 12] have established that at T < 4°K the ex
ponent of the temperature dependence increases con
tinuously with decreasing T, reaches values 7.5 to 9, 
and then begins to decrease. In samples with larger 
residual resistivity, the exponent at the maximum was 
smaller. This behavior can be directly understood on 
the basis of (2.20). Indeed, the presence of the term 
L?1 should inevitably lead to a power-law dependence of 
p at sufficiently low temperatures. If scattering by point 
defects plays the decisive role, then a T8 dependence 
should be observed. If dislocations or crystallite boun
daries are decisive, the exponent becomes smaller. On 
the other hand, the presence of even slight nonspher
icity of the Fermi surface, or in the more general case 
anisotropy of the elastic scattering of the electrons by 
the defects (R12 f. 0), leads at sufficiently low tempera
ture to the T 5 dependence, in accord with (2.17'). We note 
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that at quite low temperatures the Knudsen regime of 
momentum transfer by the phonons to the boundary can 
become decisive. This creates a condition corresponding 
to the dirty limit (2.15) with respect to phonons, and the 
exponent should again be n = 5. 

I)It is interesting that in compensated metals the dragging effect becomes 
manifest in strong magnetic fields, which should lead to an exponential 
temperature dependence of the transverse magnetoresistance_ This case 
will be considered separately. 
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