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Nonlinear effects in the electric conductivity of thin plates and wires of thickness d much smaller than the 
conductivity mean free path I are investigated. It is shown that in anisotropic conductors there is a 
nonlinear effect not due to heating, which can be ascribed to bending of the gliding-electron trajectory by 
the electric field. This effect should be particularly pronounced in semimetals and result in a logarithmic or 
square-root dependence of the electric conductivity of the plate on the electric field strength. It is shown 
that the variation of the current-voltage characteristic of the conductor following reversal of electric 
current direction can significantly depend on the state of the surface of the anisotropic plate. The influence 
of an external magnetic field H on the nonlinear effects in the electric conductivity of a thin conductor is 
investigated. The role of the current's magnetic field Hi' which can lead to a static skin effect in metallic 
plates and conductors even at H = 0, is analyzed. The criterion for the observation of the nonlinear effects, 
the shape of the current-voltage characteristic, and the magnitude of the deviation from Ohm's law are all 
extremely sensitive to the state of the sample surface. This permits one to use the nonlinear effects for a 
detailed study of the interaction between the carriers and the conductor surface. 

Heating of conduction electrons by electric current is 
one of the causes of violation of Ohm's law[1J. In semi­
conductors, even at relatively low current densities j, 
the electric field can impart to the carriers, over the 
mean free path l, an energy comparable with their aver­
age energy 12J. In metals, owing to the high carrier den­
sity n, the average energy of the conduction electrons is 
high enough and the heating by the current is a weak per­
turbation of the electron system, and is capable of chang­
ing noticeably the current-voltage characteristic of the 
conductor only in the case when the electron does not 
have time to transfer to the lattice the energy acquired 
in the electric field [3, 4J. When an electron collides with 
the lattice, it loses a small fraction of its energy ~E 
= SEo/vo, but nevertheless to observe nonlinear effects 
connected with electron heating it is necessary to have 
sufficiently high current densities f, at which the drift 
velocity of the electrons v = j/ne is comparable with the 
sound propagation velocity in the crystal s. Here e is the 
electron charge and Vo is its velocity on the Fermi sur­
face E(p) = Eo. 

The heating of the conduction electrons by current is 
apparently easiest to observe in semimetals, in which 
the carrier density is low. Borovik [5J observed a devia­
tion from Ohm's law in bismuth at current densities 
j "" 105 A/cm2• In metals with about one electron per 
atom, where nes "" 1011_1012 A/cm 2, much larger currents 
are necessary to observe nonlinear heating effects. Even 
under the most favorable conditions, when the resistance 
of the metallic conductor is determined mainly by the 
interelectron collisions [6J , or when the resistance of 
the conductor increases significantly when a weak mag­
netic field is turned on [7J, the electron heating can lead 
to violation of Ohm's law in samples of thickness d "" 1 
"" 9.1-1 cm only at current densities j "" 107-108 A/cm 2 • 

Such large current densities are attainable only in thin 
conductors1); the criterion for the observation of the 
nonlinear heating effect is quite sensitive to the form of 
the boundary conditions for the conduction-electron dis­
tribution function [8, 9J. That is to say, an important role 
is played by the state of the sample surface, which de­
termines the character of the carrier reflection. 

No less important in the investigation of nonlinear 
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effects in electric conductivity of metallic conductors is 
allowance for the self-magnetic field of the current H· 
"" 41Tjd/c. At current densities J 

c' c'n 
j';i>nes-""--n'" 

sad el./ld 
(1) 

the curvature radius of the electron trajectory in the 
field Hj is comparable with the effective mean free path 
leff' and the current-voltage characteristic of the con­
ductor differs significantly from a straight line. This 
nonlinear effect is not connected with the electron heat­
ing, since the magnetic field does not change the carrier 
energy. For good conductors such as copper and gold, at 
low temperatures, c 2/ads is quite small and Ohm's law 
in metallic conductors may not hold even in the Knudsen 
case (d « l) at current densities at which the electron 
heating is still negligibly smaIl2). 

In the electric conductivity of thin conductors with 
anisotropic carrier dispersion, nonlinear effects are 
possible and become more significant with decreasing 
conductor thickness. The reason is that the velocity V 
and the momentum p of such electrons are noncollinear 
and even an electric field along the current direction 
influences the motion of the charge in the plane of the 
sample cross section. If the plate surfaces do not 
respect the conduction electrons specularly, then its 
electric conductivity is determined mainly by the car­
riers that glance over the surface of the plate. The 
effective mean free path of such electrons changes 
noticeably under the influence of the electric field, if 
during the free path time the angle through which their 
trajectory bends becomes comparable with d/l, i.e., 
Ohm's law does not hold in conductors with anisotropic 
Fermi surface an electric field in which EEllEo 2 d/l. 
This nonlinear effect, which takes place at current 
densities 

-L;;:~dl'f! 
nes I' 

(2) 

is also quite sensitive to the character of the carrier 
reflection from the sample boundary. The foregoing 
estimate (2) is valid for plates whose surfaces reflect 
the carriers almost diffusely, and the angle between the 
velocity and quasimomentum vectors of the "glancing" 
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electrons is of the order of unity. If the surfaces of the 
plate coincide with the symmetry planes of the crystal, 
then the last condition, generally speaking, does not hold 
and the criterion for observing such a nonlinear effect 
turns out to be more stringent than condition (2). On the 
other hand, the deviation from Ohm's law in wires also 
sets in at larger current densities than given in condi­
tion (2), since the "glancing" electrons whose velocity V 
makes an angle J :s: d/Z with the conductor surface con­
tribute less to the electric conductivity in wires than in 
plates. The non-heating nonlinear effect connected with 
the change of the effective free path of the "glancing" 
electrons under the influence of the electric field should 
apparently be most strongly pronounced in thin plates of 
bismuth and antimony, in which the electron luminosity 
on the Fermi surface does not greatly exceed the sound 
propagation velocity in the crystal. Only in very thin 
metallic films (d/Z < (C2/avZeff)1I2 can this nonlinear 
effect compete with the deviation from Ohm's law as a 
result of the influence of the self-magnetic field of the 
current on the dynamics of the conduction electrons, and 
sets in at current densities such that the heating of the 
carriers is negligibly smalL 

There is no doubt at present that it is possible to ob­
tain in experiment current densities needed to observe 
nonlinear effects in the electric conductivity of thin con­
ductors, and a theoretical investigation of these effects, 
which are extremely sensitive to the shape and surface 
state of the sample, seems quite timely to us. 

1. COMPLETE SYSTEM OF EQUATIONS OF THE 
PROBLEM 

To determine the connection between the density of 
the constant electric current 

2e S j(r)= (2nIi)' vn(r,p)dp 
(3) 

and the electric field intensity E it is necessary to solve 
the Boltzmann kinetic equation 

an ( e ) an -v---+ eE+-[vXH] -=W{no-n(r,p)}, 
8r c up 

(4) 

where 21Tti is Planck's constant and W is the collision 
integral describing the scattering of the carriers inside 
the volume. 

The reflection of the electrons by the sample boundary 
will be taken into account with the aid of a boundary con­
dition for the conduction-electron distribution function 
n(r, p): 

n(r" p')=q(p)n(r" p)+x(r" E(p')). (5 ) 

We assume that the scattering of the electrons by the 
conductor surface 2'(rs ) = 0 can be described by intro­
ducing a specularity parameter q(p), which is the proba­
bility that an electron with momentum p incident on the 
sample boundary will be specularly reflected. The mo­
menta p and p' of the incident and specularly-reflected 
electrons are connected by the relation 

E(p)=E(p'), [pxn]=[p'x n1. (6) 

where n is the inward normal to the conductor surface. 

The function X can be determined with the aid of the 
macroscopic boundary condition for the electric current­
the condition for the continuity of the current on the sur­
face of the conductor. If the conductor takes the form of 
either a plane-parallel plate or a wire with current con­
tacts located on the ends, then on the entire conductor 
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surface the normal component of the electric current is 
equal to zero: 

/.'=0. (7) 

In the nonlinear theory, the kinetic equation should be 
supplemented by Maxwell's equation 

4n . 
rotH=-J, 

c 
(8) 

which takes into account the change of the magnetic field 
H under the influence of the electric current. Equations 
(8) and (4) with boundary conditions (5) and (7), together 
with the electroneutrality condition for the conductor 

p'=o, (9) 

where p' is the density of the uncompensated charge of 
the electrons, constitute the complete system of equa­
tions with which we can determine the inhomogeneous 
electric field produced as a result of the presence of 
sample boundaries, the self-magnetic field of the cur­
rent, and in final analysis the resistance of the conduc­
tor. 

It is convenient to seek the solution of (4) in the form 
an, . 

n(r, p) =no(e) - a;: e",(r, p), 

where no(E) is the Fermi distribution function of the car­
riers, but the temperature of the electrons does not equal 
the lattice temperature if account is taken of the heating 
of the electrons by the current. In this case it is neces­
sary to specify the boundary condition for the energy 
flux density, or else the temperature distribution on the 
conductor boundary, while the temperature of the elec­
tron gas can be determined from the heat balance equa­
tion, which takes into account the transfer of energy from 
the electrons to the lattice and to the medium surround­
ing the conductor [3,4, 9J. 

The collision integral W, generally speaking, is a 
nonlinear integral operator. However, the essential non­
linearity is connected mainly with the interelectron 
collisions. If the interelectron scattering is not accom­
panied by a reversal of the quasimomentum of the elec­
trons, then this scattering mechanism exerts no influence 
on the conductor resistance and leads only to a Fermi 
distribution of the electron gas. The operator for scat­
tering by impurities is linear at any statistics of the 
conduction electrons. At low temperatures, this mech­
anism of the momentum flux dissipation is fundamental, 
and if we disregard the weak nonlinearity of W, due to 
the electron-phonon scattering, then the collision integral 
can be regarded as a linear operator. Then, given the 
electric and magnetic fields, the kinetic equation is 
linear with respect to the carrier distribution function 

v~+~+-"'-=Ev. (10) 
or at to (p) 

We note that only for the sake of convenience in fur­
ther calculations do we regard the collisi('n integral as 
an operator for the multiplication of the function n(r, p) 
- no(E) by the frequency t~l of the electron collisions 
inside the volume. As the variables in momentum space 
we choose the electron time of motion t along the trajec­
tory in the electric and magnetic fields, as well as two 
quantities that are conserved along the characteristics 
of Eq. (10). The choice of the last two quantities does 
not playa major role. 

The solution of Eq. (10) , 

'i'(r, p) =cW (p., t) F(r-r(t» + J~ (t', t)v(t')E (r+r(t') -r(t) )dt', 
, 
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8(t, t')-exp {(t-t')/t,}, (11) 

contains an arbitrary function F, which must be deter­
mined from the boundary condition (5) and (7). Here A 
is the instant of reflection of the electrons by the sample 
boundary at the pOint r s' i.e., the closest-to-t root of 
the equation , 

r-r, = S v(t)dt; A.;;t, v(A)n(r.) >0. (12) 
• 

Along the electron trajectory in the electric and mag­
netic fields, the equation of which is a characteristic of 
the kinetic equation (10), the function F maintains con­
stant value: 

F(r-r(t» =F(r •• -r(A,» =F" (13) 

where Ai is the instant of reflection of the electron by 
the sample surface at the point ris' Equation (5) enables 
us to establish a recurrence relation with which to de­
termine the change of the function F when an electron 
collides with the surface of the sample, i.e., to find the 
connection of Fi with the value of the function Fi + 1 at 
an area instant Ai + 1 of the collision of the electron with 
the sample boundary 

F - fff(A ')F + «1-q,)vn(1-9(vn»F'+tfff (iH "I..,» . 
. -q. HI,,,", HI <vn(1-9(vn»> 

't 
+q, S fff(t', 1..,)v(t')E(r.+r(t')-r(I..,» dt' 

..... 
Ie 

+( (1-q,)vn(1-9(vn» S fff(t',I..,)v(t')E(r,+r(t')-r(I..,»dt'). 
',., (14) 

'[<vn(1-9(vn»>]-', 1..,,,,,1.., 

where the angle brackets denote integration over the 
Fermi surface with a weight factor 2e/(21l1i)3, and e(x) 
= %(1 + sign x) is the Heaviside function. 

Similarly, just as in [11], we can obtain an explicit ex­
pression for the function F(r - r(t)), by applying re­
peatedly the recurrence relation (14). It will take the 
same form as expressions (18)-(20) of [11], but the in­
stants Ai of reflection of the electrons from the sample 
boundary will be functions of the electric field. There­
fore the summation of the resultant series in the expres­
sion for F(r - r(t)) turns out to be more difficult than in 
the linear theory. The asymptotic expression for 
F(r - r(t)) at d « 1 is extremely cumbersome, and we 
present below the results only for particular cases, when 
the reflection of the carriers by the sample boundary is 
either close to specular, (1 - q) « 1, or close to diffuse, 
q « 1. It is to these cases that we must confine oneself 
in general, since it is hardly correct to use the param­
eter q(p) to describe the electron reflection that is close 
to neither specular nor diffuse. 

Calculating the electric current at a specified mag­
netic field H, we determine with the aid of (8) 

~otH(r)= ~n {( v (F(r-r(t»[ff(A,t)+j fff(t',t)v(t')E(r')dt')} (8a) 

the self-magnetic field of the current and take into ac­
count in the determination of the resistance of the con­
ductor. 

2. ELECTRIC CONDUCTIVITY OF THIN PLATES AND 
WIRES 

We consider first the case when there is no external 
magnetic field, and the thickness of the conductor, a 
plane-parallel plate or else a cylindrical wire with arbi-
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trary cross section, is so small that in the calculation 
of their electric conductivity we can disregard the mag­
netic field due to the current. At H = 0, the momentum 
of the electron during the time between two collisions 
with the sample boundary remains practically unchanged: 

I dp/ p I <;;;eElle,«:1, 

and the curvature of the Fermi surface can be regarded 
as constant on the entire section of the electron path, 
i.e., its acceleration 

v. = aa'8a p.=a,.p.=ea..,.E. (15) 
p. FA 

is constant, and the connection between the velocity and 
the momentum of the electron is linear. This makes it 
possible to solve our problem under the most general 
assumptions concerning the carrier dispersion. 

If the current contacts lie on the ends of the conductor 
and the distance between them greatly exceeds the mean 
free path of the electron, then for Single-crystal sam­
pIes, at least in one direction, (along the wire-the IJ. 
axis), the electric field is homogeneous and the electro­
static potential cp should be sought in the form 

(16) 

The inhomogeneous electric field E~ = -Ocpl/O~ and 
E1/ = -Ocpl/01/ in the plane of the conductor cross section 
can be determined from the electroneutrality condition 
(9), which is the integral equation 

1 ' ) -<P, (~, '1']) <1>+ < t, Jfff (t', t)<p, (~+~ (t'\ -6(t), 'I'] (t') +'1']-'1'] (t» dt' 
, 

+<v.t, (1-fff (1.., t» )E.+<fff (A, t) {F(~-W), '1']-'1'] (t» +<P, (~., 'I'].)} >=0. 

(17) 
The coordinates ~ and 1/ are chosen such that the coor­
dinate surface ~ = ~ s is the surface of the conductor, 
and the ~ axis coincides with the normal to surface at 
r = rs' In single-crystal plates, the function cpla, 1/) 
depends linearly on 1/: 

<PI (~, 'I'])=ID m -'I']E" (16a) 

since the electric field is homogeneous in the entire 1/ IJ. 
plane. 

It is easy to show that the asymptotic expression for 
the electric current in the wires 

i. (s, '1']) = ( v.(t) { fff (A, t)F(~-~ (t), '1']-'1'] (t» 

+ j fff(t', t)v(t')E(s+W')-s(t), '1']+'1'] (t')-TJ(t»dt'}) I , 
the maximum diameter of which is much less than 1, is 
determined mainly by the homogeneous electric field and 
by the value of the potential cp 1 on the surface of the con­
ductor, Consequently, to determine the sample resis­
tance it is not so important to know the distribution of 
the inhomogeneous electric field over the sample cross 
section. If we assume that this field is homogeneous, 
then Eq. (12) for A becomes elementary, since the veloc­
ity of the electrons under these assumptions depends 
linear lyon the time: 

v.(t) =a",(p')p. (t) =a",(pO) [p.'+eE.t] 

=v. (A) +eE.a .. (t-A). 

In thin plates, the equation for t - A assumes the 
form: 

(t-A) , . 
-ea"E.-2-+ v,(t) (t-A)=S-S .. (18) 

where E~ = [4>(0) - 4>(d)]/d, and ~s = (0, d). Substituting 
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the solution of (18) in the expression for the electric 
field in the plate: 

. 2e' S dv, dv, dv. 
]'(6)= (21th)' det{a,.}. 6(e(p)-e,)· 

. [8(1., t)F(s-W»+ f 8(1', t)v(t')E(s+6(t')-6(t) )dt'] V" (19) . . 

and eliminating with the aid of (17) the field E~, we ob­
tain the connection between the current density and the 
electric field intensity in the plane of the plate. 

In diffuse scattering of the carriers by the plate sur­
faces, the electric current in the plate is determined 
mainly by the "glancing" electrons, i.e., an important 
role is played in the components of the electric conduc­
tivity tensor 

2e' S dv, dv. (20) 
!.,(v,)"" (21th)' det{a,,} vev,t,6(8(p)-e,), a, ~=t], fL 

by integration over the region of small values of v~ 0 

Since fa{3(v~) is a slowly varying function, then we can 
replace it with sufficient accuracy by the quantity fa {3(O). 
In further calculation of (J a{3' it is advantageous to in­
troduce in place of v~ a new integration variable 
z = (t - A)/tO, where t - A is the root of Eq. (18). The 
symmetric tensor fa{3(O) can be diagonalized and, if we 
are not interested in the anisotropy of (J a{3 in the plane 
of the plate, we obtain for the electric conductivity the 
expression 

d L e'-1. 
0=0, - S - dz+o' (E), 

l djl Z 

(21) 

where (Jo is the electric conductivity of a bulky plate. 
The first term in (21) depends logarithmically on the 
electric field at eE l/Eo »d /1, and the second term does 
not exceed (Jod/l in order of magnitude, and can be ex­
panded in powers of E at eEl/Eo « d/l or else in powers 
of Eod/eEl 2 at eEl/Eo» d/l. 

It is easy to note that the nonlinear effects in the 
electric conductivity, which are connected with the heat­
ing of the electrons and with the change of the effective 
mean free path of the glancing electrons, are fully separ­
ated at d «I. The last mechanism of Ohm's-law viola­
tion is due to the influence of the electric field on the 
solution of the equation of the characteristics, while the 
influence of the heating of the electrons corresponds to 
inclusion in the integrand of (19) of the change of the 
electron velocity v(t) in the electric field, which leads to 
a dependence of the smooth function f a{3(v~) on E. In 
formula (21), this dependence was not taken into account, 
and the expression presented for the electric conductiv­
ity of the plate is valid, strictly speaking, only if d /1 
« (S/v)1/2. When account is taken of the heating of the 
electrons, naturally, the electric conductivity of the 
plates remains logarithmically dependent on the electric 
field at eEl/Eo> d/l, and only the factor in front of the 
logarithm changes: 

d 80 
o=oo(E)-ln-. 

I eEd 
(22) 

Here (Jo(E) is the electric conductivity of a bulky plate 
with allowance for the heating of the electrons by the 
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current, which in the case of weak heating takes the form 

{ ( eElv )'} 0, (E) ""'0, 1- -;;;;- . (23) 

In the electric conductivity of wires, the role of the 
glanCing electrons is less significant than in plates (the 
solid angle of the directions of motion of the carriers 
gliding along the surface of the conductor is of the order 
of (d/l)2). Therefore the logarithmic dependence on E 
arises only in the next higher terms of the expansion of 
the electric conductivity in powers of d/l. Simple calcu­
lations enable us to obtain at q = 0 and eEl/Eo> d/l the 
following expression for the electric conductivity of a 
wire with an anisotropic carrier dispersion law: 

d { d 80 } 
a=o'i 1 +T 1n eEd . 

(24) 

At an arbitrary character of the carrier reflection by 
the sample boundary, the expressions for the electric 
conductivity of the plate and wires are quite cumber­
some. For example, even assuming that the specularity 
parameter q does not depend on the angle of incidence of 
the carriers, the expression for the electric conductivity 
of wires takes at eEl/Eo «d/l the form 

eEL ,dl' l-q r-d'/4 0=(-) S rdrScos'ftsin8d8S d'l'{1---[1+--
eod (I {} 0 1_qe- 2CL 212 sin2 e 

+ (l+a 1 +qe-'" ) (rSin 'l' +a l+qe-,e)] exp [_ rsin 'l' _ a]} +o(E=O), 
l-qe-" Ism 8 l-qe-'" Ism 8 

(25) 

where a = (d2/4 - r2 COS2 cp)112/1 sin e, and d is the wire 
diameter. We have left out throughout inessential numer­
ical factors of the order of unity. 

However, a simple analYSis shows that the electric 
conductivity of plates and of wires is of the same order 
as the electric conductivity of bulky conductors if the 
reflection of the carriers by the boundary is close to 
specular. It is easy to show that at (l-q) ~ d/l, when 
after lid collisions with the boundary of the sample 
there is still some degree of correlation between the 
momenta of the initial and final states of the electron, 
the electric conductivity of such conductors coincides 
with O'o(E), apart from a numerical factor on the order 
of unity. At 1 -q »d/l, the electric conductivity of the 
plate and of the wire in the principal approximation in 
d/l is described by formulas (20)- (24), and only the 
corrections, particularly a' (E), depend significantly on 
the specularity parameter of the carrier reflection by 
the sample boundary. At near-diffuse reflection (q « 1), 
the electric conductivity of anisotropic plates is given by 

{ d (e,) 'I, 8'} 
0=0, -In -- +q-. 

I eFd eEd 
(26) 

The dependence of the electric conductivity of plates 
on the electric field turns out to be quite peculiar if the 
states of the conductor surfaces are essentially differ­
ent. Let one of the plate surfaces, say ~ = 0, reflect the 
carriers diffusely, and the other speculariy. If 
E' = eaakEk > 0, i.e., the electric field that bends the 
electron trajectory tends to bring it closer to the specu­
lar surface ~ = d, then the main contribution to the elec­
tric conductivity of the plate is made by electrons that 
do not collide with the surface ~ = O. The mean free path 
of such electrons is the same as in bulky samples, i.e., 
equal to I, and their number can be determined from 
simple considerations. From the equation of motion of 
the charge it follows that the electron, starting with th\;! 
surface ~ = d with velocity v~ < vv'eEd/Eo, will never 
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reach the opposite surface of the plate. From this we 
easily obtain that the number of electrons glancing along 
the specular surface of the plate is proportional to 
,jeEd/E:o, and their contribution to the electric conductiv­
ity of the plate at eEd/Eo > (d/Z)2 turns out to be funda­
mental, Le., 

(27) 

To calculate the electric-conductivity tensor we can 
use in this case formulas (18) and (19), replacing in them 
the time of motion of the charge from the surface ~ = 0 
to a given point inside the conductor (~, T}, Jl) by the 
following expression: 

t-le=~- ['(~)'_ 2~]'/' -E' E' E' , vt>1'2E'~, 

t-le=oo, I vd <1'2E'~, (28) 

t-Ie =~+2 [(~)'_ 2(d-~) ]'1. _ [(~)' _~]'I' v.<-1'2E". 
E' E' E' E' E' ,. ~ 

After elementary calculations it is easy to verify that 
the components of the matrix a 0I{3 have a square-root 
dependence on the electric field. The exact expression 
for a OI{3 differs from (27) only in numerical factors of 
order unity, which depend on the concrete form of the car­
rier dispersion law. 

When the direction of the electric field is reversed, 
the roles of the plate surfaces are interchanged, and the 
electric field now tends to bring the electron closer to 
the rough surface. The effective mean free path of the 
carriers colliding with only one surface of the plate is 

l'lI=min{d(~)'I' I} . eEd ' , 

and their contribution to the electric conductivity of the 
conductor is at any rate not larger than aod/l. In this 
case a more important role is played by the logarithmic 
dependence of the electric conductivity of the plate on 
the electric field, and formulas (20)-(24) hold for a. 

Thus, differences between the states of the plate sur­
face can cause a significant difference between the cur­
rent-voltage characteristics of thin anisotropic conduc­
tors when the electric -current direction is reversed. 

3. NONLINEAR EFFECTS IN AN EXTERNAL 
MAGNETIC FIELD AND ROLE OF THE SELF­
MAGNETIC FIELD OF THE CURRENT 

In a strong magnetic field (electron trajectory curva­
ture radius r smaller than the conductor thickness), the 
criterion for observing nonlinear effects depends essen­
tially on the orientation of the magnetic field relative to 
the surface of the sample and the direction of the elec­
tric current. If the magnetic field is inclined to the sur­
face of the sample, then there are no glancing electrons 
and consequently the nonlinear effects described in the 
preceding section do not appear. In a longitudinal field 
H II j, all the electrons with closed orbits in momentum 
space move along the surface of the sample and in the 
Ohm's-law approximation their effective mean free path 
is equal to Z. By virtue of the anisotropy of the carrier 
dispersion, the carriers can drift in the cross section 
plane of the conductor with velocity cE/H, which can 
lead with increasing electric field to a decrease of the 
effective electron mean free path, if their reflection by 
the sample boundary is nonspecular. For example, in 
diffuse reflection we have Zeff = min{Z, vHd/cE} and at 
cElli > vd /Z the density of the electric current on the 
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current-voltage characteristic of the conductor tends to 
saturation. However, this nonlinear effect can be ob­
served only in very thin conductors, with thickness 
d < Zs/v, for at cE/H > s generation of coherent phonons 
by electrons takes place. At s/v < d/Z < (S/V)1/2, the 
main mechanism that leads to violation of Ohm's law is 
heating of the electrons. 

In metals whose resistance increases without limit 
with increasing strong magnetic field H, the criterion for 
observing nonlinear effects connected with electron heat­
ing becomes less stringent with increasing H, and de­
pends essentially on the character of the reflection of the 
carriers by the sample boundary, although in the Ohm's­
law approximation the longitudinal resistance is indiffer­
ent to the state of the conductor surface. For example, 
Ohm's law does not hold if j/nes :G n/r for specular re­
flection of the electrons, and if j/nes :<: d/r for diffuse 
reflection. 

In conductors that are not too thin, when d /Z > (S/v)1/2, 
one can no longer ignore in the investigation of the non­
linear effects the self-magnetic field of the current, the 
appearance of which is the main cause of the deviation 
from Ohm's law. The self-magnetic field, as follows 
from Maxwell's equations, is always perpendicular to the 
current propagation direction, and in plates it is directed 
along the plate surface. Allowance for the self-magnetic 
field of the current reduces to a solution of the problem 
of the resistance of the conductor in an inhomogeneous 
magnetic field. The kinetic equation is in this case an 
integro-differential equation, even when the collision 
integral can be regarded as an operator for the multipli­
cation of the nonequilibrium increment to the electron 
distribution function by the frequency of the elastic colli­
sions. Naturally, the solution of the kinetic equation can 
be constructed properly only in the limiting cases of 
weak and strong fields Hj • If the drift velocity v of the 
electrons satisfies the inequality v « vo/na~Z2, where 
ao = e 2/mc2 is the radius of the electron, then the distri­
bution function can be represented in the form of an ex­
pansion in the reciprocal of the electron-trajectory 
curvature radius (we assume that there is no external 
magnetic field), and we can solve the kinetic equation by 
successive approximations. The solution of (8a), which 
can be rewritten for a plate in the form 

+ J cll(~/)exp{ ~'-S}d~' -Tcll(~')exp{ 2~'-d}d~'})' (29) 
~8 Vf.tO~. Vr.to 

The arbitrary function of the characteristics F and the 
distribution of the electric potential <1>( ~) are deter­
mined from (5), (7), and (9). 

In the considered region of currents, the principal role 
in the electric conductivity of the plate is played by 
glancing electrons, the self-magnetic field bends slightly 
the trajectory of motion of these electrons, and the 
effective mean free path increases with increasing j 
(the scattering by the plate surface is assumed diffuse): 
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{ I ( eEd )'} lell""d lnd+(naol') -e- . (30) 

For a sample in the form of a wire, the role of the 
glancing electrons is not so significant. The successive­
approximation method makes it possible to determine the 
effective mean free path for an arbitrary character of 
the carrier scattering. At near-specular electron reflec­
tion (l-q) ~ d/Z, it is the collisions inside the volume 
that are predominant, and the boundary effects are weak. 
At (1 - q) »d/Z, the electron distribution function de­
pends little on the collision integral (for an isotropic 
quadratic carrier dispersion in a thin wire, the linear­
approximation distribution function is entirely independ­
ent of the relaxation time), so that the actual expression 
for Vi in (4) is immaterial. The change of the effective 
mean free path of the electrons in the wire is propor­
tional to the square of the electric field E, and in the case 
of near-diffuse scattering, q « d/Z, is given by 

(31) 

If the self-magnetic field of the current bends the 
charge trajectory significantly, so that the curvature 
radius rj is much smaller than d, then the distribution 
function must be expanded in powers of rj' In metals 
whose Fermi surface is open or in which the number of 
electrons n1 and holes n2 is compensated, the electric 
current flows at r. «d near the surface of the conduc-

J . 
tor, and the character of the electron reflectlOn plays an 
important role. Simple calculations show that at 
v »Vo/na~d2 the potential difference is proportional to 
j2 in specular reflection of the carriers by the sample 
boundary and is proportional to j3 in diffuse reflection. 

Thus, the criterion for observing nonlinear effects, 
the form of the current-voltage characteristics, and the 
magnitude of the deviation from Ohm's law, all depend 
significantly on the state of the conductor surface, on its 
thickness, and on the orientation of the external magnetic 
field. An investigation of the nonlinear effects in the 
electric conductivity of thin conductors makes possible 
a detailed analysis of the mechanism whereby the con­
duction electrons interact with the surface of the sample, 
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and by reversing the direction of the current one can de­
tect even a slight difference in the surface finish of the 
plate, and determine in final analysis the state of the 
conductor surface. 

tlYanson and Bogatina have succeeded in producing a current density 
j "" nes in thin lead channels and observed generation of phonons by 
hot electrons [10]. 

2)Por example, in conductors of thickness d "" I mm, the electric con· 
ductivity of which is a "" I 022 sec-I, putting s = 105 em/sec and a speed 
of light c '" 1010 em/sec, we obtain e2 /sad "" 10-5 , i.e., the self-magnetic 
field of the current can lead to nonlinear effects already at j "" 106 A/cm2. 
It was precisely at these current densities that Borovik observed a devia­
tion from Ohm's law in copper [5]. 
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