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Instability induced in smectic A by a stress is considered. Formulas are presented for the threshold and 
period of the instability. 

Recent papers rl,2J have dealt with the instability that 
appears in smectic A liquid crystals under the influence 
of tension. This instability appears when the smectic A 
is stretched (but not compressed), when the distance 
between the plates bounding the smectic A increases by 
a certain critical amount 6. The smectic layers are 
then set in a motion that is characterized by a spatial 
period, after which the liquid crystal relaxes to its 
initial, i.e., unstretched state. This phenomenon, and in 
particular the presence of an instability period, can be 
observed by optical methods (see, e.g., [2 J). In this 
paper we describe instability in the smectic; we shall 
also show that when the smectic is stretched no unstable 
periodic structure is produced, so that the instability is 
of the relaxation type. 

The smectic A liquid crystal in its unperturbed state 
is a layered one-dimensional system consisting of 
parallel equidistant planes on which are located the 
molecule centers, with the long axes of the molecules 
perpendicular to the planes. The smectic A has, with 
respect to tension and compression in a direction per
pendicular to the planes, elastic properties that are 
analogous to crystalline elasticity, while inside the 
layers its properties are analogous to those of a nematic 
liquid crystal. Thus, the smectic A is a one-dimensional 
crystal in the sense indicated above. The free energy of 
such a system in the lowest order in the gradients of the 
displacements is described in r 3, 4J. To investigate the 
considered effect it is necessary to consider terms of 
higher order than are customarily included (see [2,4J). 

We denote by (xy) the plane parallel the smectic 
layers, and by u(x, z) the local displacement of the 
smectic layers perpendicular to their unperturbed posi
tion. Then the procedure for separating the correspond
ing terms leads to the following expression for the free 
energy[2J : 

F--B --- - +-K - . _ 1 [I} u 1 ( I}u ) ']' 1 (I}'U ) , 
2 I}z 2 I}x 2 I}x' ' (1) 

we are conSidering a situation that is one-dimensional 
in the (xy) plane, so that there are no derivatives with 
respect to yo 

It is seen from (1) that for a stretched smectic, when 
aula z = 0/ d > 0 (d is the distance between planes and 0 
is the change of this distance), the corresponding term 
in the free energy can be decreased if e = au/ax F 0, 
corresponding to deformation of the smectic layers. At 
the same time, however, the second term of (1) in
creases and it is therefore necessary to find the ex
ternal function e corresponding to the minimum value of 
the free energy. We note here that deformation is not 
favored when the smectic is compressed (au/az < 0), 
i.e., instability can occur only in tension. 

The test of the functional 
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J Fdx (2) 

for a minimum is relatively simple; it leads to the 
following results: the solutions of the Euler equation that 
can be easily obtained from (1) and satisfy the boundary 
conditions of our problem can be subdivided into three 
types. 

Solutions for which the boundary conditions call for 
introduction of disclinations. Such solutions were in
vestigated in detail by Parodi esJ in a study of the rota
tion of the layers of smectic A under the influence of a 
magnetic field; the energy of these structures is quite 
high (for details see [sJ, and are of no interest to us here. 

When considering solutions in which e is not bounded, 
we go outside the framework of the selected approxima
tion of small gradients; in addition, difficulties arise 
with the boundary conditions, analogous to the difficulties 
considered above, i.e., attempts to investigate a struc
ture of this kind lead inevitably to the appearance of 
disclinations, and consequently the statements made 
above concerning structures with disclinations remain 
equally in force for them. 

Finally, we have solutions with bounded e. An inves
tigations of these solutions, with allowance for the 
boundary conditions, leads to the following result. Their 
energy exceeds the energy of a homogeneously stretched 
smectic, i.e., states with the displacement field 

u=uo=az, (3) 
where O! = old. Consequently, such structures are not 
energywise favored. On the other hand, it is easy to note 
that the structure (3) is dynamically unstable (see below). 

In fact, let us consider the Lagrangian 

9:=F-'/,p (l}u!l}t) " (4) 

for which the Euler equations are the equations of 
motion of the smectic A, and investigate the stability of 
the state (3), i.e., seek solutions in the form 

where k and w, as usual, are the wave vector and the 
perturbation frequency. 

We linearize further the Euler equations obtained 
from (4) with respect to u1 and consider a situation in 
which W becomes complex for real k, which indeed rep
resents stability. Elementary calculations lead to the 
following equation for w: 

pUl'=B[ (').,k,'-a/').,) '+k,'- (a!').,) '), (6) 

where AC = (K/B)ll2 is the penetration depth introduced 
by de Gennes see [6J. The boundary conditions yield 
kz ~ lTd. Using this circumstance, we can easily obtain 
from (6) the threshold conditions for the onset of the 
instability 
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(7) 

The wave vector kx' which describes the periodicity of 
the instability in the direction of x, is determined from 
the expression 

k/"A,.d=n. (8) 

Thus, the described instability leads to an increase in 
the amplitude of the perturbation, which in turn involves 
production of disclinations. A relaxing disclination in
creases the number of layers of smectic A until the 
tension 0/ d becomes less than critical. 

We note in conclusion that the described instability 
arises only when the smectic A is stretched, and does 
not occur under compression. The instability begins to 
develop when the change in the distance between the 
plates exceeds ocr (see (7)), the spatial periodicity of 
the instability is then described by formula (8). We 
emphasize further that the instability has a dynamic 
character and does not lead to the formation of the 
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stable structure, i.e., the growth of the perturbation 
amplitude leads to the production of the disclinations 
with the aid of which the system relaxes to the state 

° < ocr' 
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