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It is shown that a nonlinear theory of parametric excitation of waves, using the approximation of an 
interaction Hamiltonian that is diagonal in pairs of waves [11.12] and taking account of the scattering 
of waves by random inhomogeneities [20] (the S theory), gives a good description of the real situation 
beyond the threshold of the parametric instability of spin waves (SW) in antiferromagnets with 
anisotropy of the easy-plane type (EP AFM). In pure crystals the anomalously large dipole-dipole 
contribution to the interaction of the SW leads to sharp anisotropy of their stationary distribution in 
k space. Two-magnon scattering by random defects in the AFM sample makes the SW distribution 
function isotropic and weakens the pair correlations, and this makes it possible to explain the 
experimentally observed magnitude temperature dependence of the threshold field. The calculated 
dependences of the nonlinear susceptibilities X' and X" of the SW system on the supercriticality and 
on the external field are in qualitative agreement with the experimental dependences from [5,6]. 

The phenomenon of parametric excitation of spin 
waves (SW) in antiferromagnets with anisotropy of the 
easy-plane type (EP AFM) (CsMnF3[1-3] and MnC03[4-7]) 

has recently been discovered and investigated. The pa­
pers [a-10] are devoted to the linear theory of this pheno­
menon, and the threshold amplitude h, of the pumping 
field was correctly calculated in [a, 9]. 

A nonlinear theory of parametric excitation of waves, 
permitting one to describe in detail the phenomena aris­
ing in a system of interacting waves when h > h" was 
develoRed in the papers of Zakharov, L'vov and Staro­
binets ll, 12]. This theory (called the S-theory) was con­
structed for media that can be described in the frame­
work of the classical Hamiltonian formalism, and is 
based on simplifying the Hamiltonian of the system of 
waves to the form 

de= .E [00.+ .E T •• 'a.,a.,·]a.a" 

k .' ++ .E[(hV.+ .ES •• ,a.,a_.,)a .. a_.-+c.c· i]. 

(1) 

. .' 
Here wk is the disper~ion law of the waves, ak are their 
complex amplitudes, Vk is the effective coefficient of the 
coupling with the uniform pumping field h(t) = hexp(-iwpt), 
the coefficients Tkk' describe the nonlinear frequency 
shift, and the coefficients Skk' are the nonlinear paramet­
ric interaction of the waves with each other. Such a choice 
of Hamiltonian corresponds to replacing the exact prob­
lem of the interaction of the waves by the problem of the 
self-consistent interaction of pairs of waves with equal 
and opposite wave vectors. the justification for this is 
provided by the "pairing"-the phase correlation of waves 
in pairs that arises under the action of the pumping. 

In this paper we study the concrete problem of the 
behavior of a system of interacting SW beyond the thre­
shold of their parametric excitation in the EP AFM. In 
Sec. 1 we discuss the Hamiltonian (2) of this problem and 
show that in the final analysis it can be brought to the 
standard form (1) of the S-theory. Here also we give the 
expressions for the coefficients Vk (12), Skk' (5) and 
Tkk,(6) for an EP AFM, which we have obtained taking 
into account the exchange, dipole-dipole and Zeeman 
interactions, the Dzyaloshinskil interaction, the field of 
the uniaxial crystalline anisotropy, and the interaction 
of the electron spins with the nuclear spins. 
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In the next section, the stationary amplitudes and 
phases of the parametrically-excited SW are found. It 
is shown, in particular, that in the framework of the 
S-theory the SW should be concentrated on two (or four) 
lines in k- space, lying close to the resonance surface, 

Next, in Sec. 3, we investigate the important question 
of the influence of random magnetic inhomogeneities 
(impurities, defects) on the threshold of parametric ex­
citation of SW in an EP AFM, and the behavior of the 
SW beyond the threshold. When there are so many im­
purities that the damping j\mp of the SW by them ex­
ceeds the damping Yk(T) of the SW in the pure AFM, 
the distribution of the SW over the resonance surface 
becomes isotropic and the width in Ikl of the excited 
region is found to be of the order of Yimp/(awk/ak). 
Scattering by random inhomogeneities reduces the 
phase correlations in the SW pairs; this leads to weak­
ening of their parametric interaction with each other and 

I with the pumping, As a result, the threshold pumping 
amplitude h, and the integral amplitude of the SW are 
increased by a factor of [Yimp/Yk(T)Y2 by comparison 
with the pure AFM. In particular, h,V = {(Yk> [(Yk> 
+ Yimp]}1I2, where (Yk> is the value of the intrinsic damp­
ing averaged over the angles. 

With the appropriate choice of Yimp, this formula cor­
rectly describes the absolute value and the temperature 
dependence of hi (T) that are observed in experiment[S]. 
This confirms the theoretically predicted phenomenon 
of weakening of the phase correlations in a system of 
parametric waves in a medium with random inhomogen­
eities. 

The results obtained in Secs. 2 and 3 are used in 
Sec. 4 to calculate the nonlinear susceptibility 
X = X· + iX n of an EP AFM. It is shown that the theoret­
ical dependences of X' and X" on the supercriticality, 
the external field and the temperature are in qualitative 
accord with experiment. However, the absolute values of 
(X - Xo) and X n in the theory are found to be somewhat too 
high. Moreover, in experiment the excitation of the SW 
is observed to be "hard" in character[61. In r,31 we at­
tribute both circumstances to the positive and negative 
contributions that arise in the damping of parametric 
SW owing to their interaction with thermal SW. 

Thus, the results of the present work show that an 
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S-theory taking into account the interaction of paramet­
rically excited pairs of SW with each other and their 
scattering by random inhomogeneities describes the 
real situation beyond the threshold of the parametric 
instability of SW in the EP AFM. In our opinion, the 
S-theory and further improvements of it, associated, 
e.g" with allowance for the interaction of parametric 
SW with thermal SW, non-pair interaction of paramet­
ric SW, etc., can and should serve as the basis for the 
interpretation and formulation of new "parametric" 
experiments in the study of antiferromagnets, 

1. THE BASIC EQUATIONS 

We shall write out the Hamiltonian of the spin sys­
tem of an AFM placed in an external magnetic field 
h(t) = h cos wpt polarized parallel to a constant field 
Ho lying in the easy plane: 

~= 1:, (roka.a"+Q.b.b .. )+2hU(b.+bo)cos ropt 

• 
+~ 1:, [h(Vke-iOp'a'a_')+c, c,l+~in'. 

• 

(2) 

Here the canonical variables ak and bk are the complex 
amplitudes of the traveling SW belonging to the "quasi­
ferromagnetic' , and "antiferromagnetic" branches of 
spectrum, respectively; wk and nk are the frequencies 
of these waves, With neglect of the dipole-dipole inter­
action, 

rok'=g'[H.(H.+HD) +ct/Tl+ (sk)', 
Q.'=g'[H D (H.+H D) +2HA H .. 1 + (sk)', 

where g is the gyromagnetic ratio, HD is the Dzyaloshin­
skit field, and Hex and HA are the exchange field and the 
uniaxial-anisotropy field. The constant O! describes the 
interaction with the nuclear spins, T is their tempera­
ture, and the velocity s characterizes the nonuniform 
exchange interaction: the characteristic length l == s/gHex 
is equal to the lattice constant in order of magnitude. 

The most important terms for us in the three-wave 
interaction Hamiltonian have the form 

(3) \""l {1 (I) •• (') •• } ~ = ~ 2"" VI,,,b,a, a, + V""a,b, a3 +c, e. 
k.+k3=k, 

(3) 

Recognizing that all the parametric SW have similar 
frequencies, we keep only the following terms in the 
four-wave Hamiltonian: 

~")=~ 1:, T 12,,,a,'a,a,a,, 
1t1+1t1_1t.+II:, 

It must be said that a contribution to the interaction 
of four waves with the conservation law 

!Okt+COkl=COkl+(()k, 

is made not only by the Hamiltonian Jt"(4 1 , but also by the 
HamiltonianJt" (3) in second order of perturbationtheory. 
It can be shown that the most important contribution in the 
parameter (wp /Wex )2« 1 will be that of the processes, 
written out explicitly in (3), in which a virtual wave from 
the upper branch participates. Thus, the effective Hamil­
tonian of the interaction of the parametric waves amongst 
themselves has the form 

(4) 

We have given complete expressions for the coeffi-
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cients in the Hamiltonians (2), (3) and (4) in l13 ]. In the 
follOwing we shall need only the coefficients of the Ham­
iltonian (4) that are diagonal in pairs of waves ± k, viz, 
Tk-k,k'-k'= Skk' and Tkk' ,kk' = Tkk': 

kk' , 
s •• ·=S.+iS, (x.-x •. ) +S,x.Xt'+S'x.x.' ( __ ) (5) 

kk' 
2 

Ttt.=T.+T,{X.+.' + (Xk+X •. ),} (6) 
2 8 ' 

where xk = 2kykz/k2 in the coordinate frame in which z 
is the "difficult" axis and x is the direction of Ho; 

S T g'B { '+( ,,3g.2+ro.")} 
0::::::1 0 = - --2 <001 gHo) --, --, ' 8ro. Q. -rop 

(7) 
S-T- 'B(ngMo)'(ro .. )' ,- ,--g ~ Q,' 

S,=4S,(ro"lkIQo)" B~H,JM •• 

where Mo is the sublattice magnetization. We note that 
if the dipole-dipole interaction is disregarded, Tkk, 
= Skk' = So. Incidentally, S2 > S) > So. We now write the 
canonical equations of motion for ak with allowance for 
the intrinsic damping: 

da. 6~ 
at + 1·a.= -i 6a. ' 

Using the Hamiltonian (2) and keeping, in accordance 
with the S-theory, the terms diagonal in the pairs in 
Jt"fut (4), we obtain the equation 

(8) 

where 

G'it=ro.+2L, Ttk·lak,I', (9) .. 
P.=hV.e-i·p'+[V.(~'-.b.+Uo._.b"l+ 1:,Stk,a.,a_ •. , (10) 

.' 
The fact that in a typical experimental situation [1-7] 

the oscillations of the uniform precession (UP) occur at 
a frequency wp far from the resonance frequency no is 
of fundamental importance_ Therefore, the amplitude 
bo is small and this enables us to confine ourselves in 
the canonical equations of motion 

db.ldt=-i~/6b.· 

to the linear approximation in bo, and, having solved 
them, to eliminate bo from (10), As a result we obtain 

P.=hV.e-i•p'+ 1:,Stt.a •. a-k" (11) 

.' 
where 

UV (1) 'UU 2 n 2 

v.=v.-~-~=£[HD+2H -"-'-1, 
g.-ro~ O.+ro. 4ro. Q,'-ro.' ' 

. (1)- -il) • 
.. _So .1 .{ V •• -tV • • '-t· +' U •• _.U. "-t'} 
,,:)kll:'- kit' - ---: • 

2 g.-rop Q.+ro. 

(12) 

We see that the uniform precession in the upper 
branch plays a double role: first, it leads to an additional 
"indirect" coupling of the SW with the external field, 
i.e" to the renormalization (12) of the coefficient Vk, 
and, secondly, it leads to an additional interaction be­
tween the SW. It is not difficult to see that this interac­
tion arises because of the forced motion of the UP (not 
at resonance!) under the influence of the SW. A similar 
interaction also arises via other nonresonance beats 
(with k ., 0), We have already taken all these contribu­
tions to the interaction of the SW into account in formu-
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las (5)-(7). Naturally, we must not take the same effect 
into account twice, and therefore in the formula for 
Pk the coefficient Skk' must be left unremornalized: 

Pk=hi' k + L, S .. 'ak'a_'k', (13) 
k' 

Thus, we have obtained closed equations of motion «8), 
(9) and (13» for the parametric SW in the lower branch 
in an EP AFM. These equations no longer contain anti­
ferromagnetic characteristics, and are universal in the 
sense that they describe the nonlinear stage of the para­
metric instability of waves of any type, e.g., SW in fer­
romagnets(14), Langmuir waves in a nonisothermal ~las­
ma (in the "un dissociated" part of the spectrum)(15 , 
etc, The equations obtained correspond to the S-theory 
Hamiltonian (1). The general properties of their solu­
tions have been studied in detail in (12,16-18). Below we 
shall write out the stationary solutions of these equa­
tions, using explicit "antiferromagnetic" expressions 
for the coefficients Vk, Yk and Skk" 

2. DISTRIBUTION AND LEVEL OF CONTAINMENT 
OF PARAMETRICALLY EXCITED SW 

We shall study the stationary solutions of the equa­
tions of motion (8), (9) and [13) for parametric SW. It 
is known from the S-theory 12] that such a distribution 
is singular: ak of 0 only on the resonance surface 

The distribution NO of waves over this surface is 
normalized such that 

N= L,lakl'= SNodQ, 
• 

(14) 

and is determined most conveniently using a geometrical 
interpretation of the external- stability condition (12 Lthe 
self-consistent pumping surface IPol should lie entirely 
inside the surface YO: IPal ::0 YO, the pair-amplitudes 
NO being nonzero only in those directions a in which 
these surfaces touch!) . 

A specific feature of the antiferromagnetic situation 
is the fact that the kernel SO~, is degenerate (cf. (5», 
and therefore the character of the dependence IP(oW is 
completely determined for any distribution NO' For not 
too large k (sk ( wo) we can neglect the term proportional 
to S32\ and then IPnl2 depends only on x = 2kykz/k2: 

IPol'= 1 hf'+ L,S=iNie-'''{ =a+bx+cx', a>O, c>O. (15) 

On the other hand, as we have shown in 13) , the 
damping constant Yk of the SW (for fixed I kl) also de­
pends, to good accuracy, only on x: 

(16) 

The surfaces (15) and (16) can touch only at one or 
two (for b = 0) pOints, Therefore, for any supercriticality 
(in the framework of the S-theoryl), a regime should be 
realized in which NO is concentrated on two or on four 
lines (x = Xo or x = ± Xo respectively), belonging to the 
resonance surface. The theory starting from the depen­
dences (15) and (16) determines only the integral inten­
sity NO on each line; the detailed distribution NO along 
the lines is determined by the deviation of the dependen­
ces Yfl and IPo l2 from (15) and (16). 

Clearly, for sm,~ll values of the supercriticality, when 
N _0 and IPol -hV = const, the surfaces will touch near 
the line x = 0, where YO is a minimum. We represent 
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Eqs. (8) for the integral amplitude N I on the line x = xo 
and for the phase <PI = (Cfik + Cfi-k)lx=xo in the form 

Hence, 

hf' sin fll,=y.". 

(So+S,xo') N,'= (hf') '-y",'. 
(17) 

It remains to determine the location of the line x = Xo. 
For this we shall write the expression (15) for the self­
consistent pumping I Px l2 on a certain line x under the 
condition that NO is concentrated on the line x = xo and 
is determined from (17). The condition for touching of 
the surfaces I Px l2 and Y~ at the point x = Xo gives (for 
more detail, see in(13): 

2y,xo=S,N,. (18) 

Thus, at the threshold pumping amplitude, when NI = 0, 
SW are excited on the line x = 0 corresponding to the min­
imum damping, and the line is then displaced as the sup­
ercriticality increases. This shift, as can be seen from 
(17), leads to further limitation of the amplitude, firstly, 
because of the growth of the interaction coefficient 
SXoxo = So + S2X~ and, secondly, because of the increase 
of YXo' 

The quantities Xo and NI must be determined from 
Eqs. (17) and (18). These can be Simplified using the 
inequalities S~ > S~ > S~. Then, 

2y, ,[, + 2y, ( s, )' ,]_" 
-Xo ","' - - Xo -,:;, 

Yo yoSt . 
N, =1 ~y,x'l ' (19) 

. , 

where ~ = [(hV)2/y~ - 1] is the supercriticality the pump­
ing power in excess of the critical value. It can be seen 
from this that for small supercriticalities the containment 
mechanism associated with the increase of the damping is 
dominant. 

The displacement of the line and the growth of N I 
will continue in accordance with (19) until the surfaces 
I Pxl2 and y~ touch at the second point, along the line 
x = -Xo. It is obvious that this occurs for that amplitude 
NI == Nc for which the function IPxF becomes even: 
I Pxl = I P -xl. Then the location of the first line x = Xo 
= Xc at the point at which SW are excited on the second 
(x = -xc) is determined from a relation following from 
the condition b = 0 in (15): 

y",'8/ 1 . 

[St'+S,'xo']' No' 

Using (18), we obtain from this a biquadratic equation 
for xc: 

(20) 

Taking into account that Yo ~ 2YI [13), we obtain from 
(19) and (20) an estimate for the supercriticality ~2 at 
which pair creation occurs on the second line: 

(21) 

Assuming that ~ > ~2' we shall study the stationary 
state in which two groups of SW pairs, arranged symmet­
rically on the lines x = ± xo, are excited. We represent 
Eqs. (8), (13) and (14) for the amplitudes NI,N2 and 
phases <PI, <P2 of these groups in the form 

where 
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a=1, 2; S,,=S,,=So+S,xo'; 

S,,=S,,'= (So-S,x,') +2iS,xo 

and y == Yx . From these equations it is comparatively 
easy to fin~ the amplitude difference and phase differ­
ence: 

N,-N, = _--,-y8...:1 __ 

, x.[S,'+S,'xo'l 
. (eD.-eD,) -S. sm -,-- = . 
" 2 ''/S.'+S,'xo' 

(22) 

Of course, for ~ = ~2' N2 _0, formula (22) also de­
termines the critical amplitude N, = Nc , which coincides 
with the value of Nc that follows from (12), since for 
~ = ~2 it is natural to assume that Xo = xc. Eliminating 
(N, - N 2) and (4'>, - 4'>2) from half the sum of the equations 
for N, and N2, we obtain with the aid of (22) a simple 
equation for N = N, + N2 4'> = 112(4'>, + 4'>2): 

hVe""+SN=i'Y, (23) 

where 

_ S,xo'(S.'+S,'xo')+S.'(So+S,xo') ~ [ St'] 
'1-1"" IXol (S,'+S,'xo')," ~ 1", 1 + 2S,'xo' ' 

"" ( eD.-eD, ) J.)=00COS -2- , So=So[ 1-~] . 
SoS, 

(24) 

The location of the lines ± Xo must be determined, as 
usual, from the condition for touching of the surfaces 
IPxl2 and y~. Calculating IPxl2 from formula (15) by 
means of the relations (22) and (23), and then equating the 
derivatives dlPxl2/dx and dy~/dx, we finally obtain an 
unexpectedly simple and interesting result: the location 
of the lines ± Xo does not depend on the supercriticality, 
and, naturally, Xc coincides with the original (for ~ = ~2) 
"coordinate" Xc determined by formula (20). 

Thus, except in a not very wide region near the 
threshold (~ < ~z-Cf. (21)), two groups of spin-wave 
pairs, differing little from each other, are excited, and 
their resultant amplitude N = N, + N 2 and mean phase 
4'> = 1/2(4'>, + 4'>2) are determined by the simple relations 
(23). 

To obtain concrete results it is necessary to calcu­
late the value of Xo appearing in the expressions (24) for 
y and 8. From Eqs. (20) we have 

xo'=~['/(~)' + 2yo _~] ",,!.:...,/ 'To -~. (25) 
2S, V 2S, 1. 2S, S, f 21. 4S,'. 

If (S,/S2)~« 1, we obtain for y and 8, approxi­
mately, 

(26) 

It is necessary to note that the ratio S~/S2S0' as can 
be seen from (7), does not contain a small parameter. 
As a result, So differs substantially from So: 

S.' g'B' 
So"",So -~= ---, (ill,,'+(gHo)'J*So. (27) 

S, SOlk 

It is interesting to note that in this expression the 
contribution to the interaction of the parametric SW via 
virtual SW with k ~ 0 has been cancelled. We add also 
that the ratio S,/S2 ~ 0.3, and therefore the difference 
between y and yo can also be considerable. 

3. EFFECT OF RANDOM MAGNETtC 
INHOMOGENEITIES 
3.1 The Interaction Hamiltonian 

ities leads to the result that the quadratic part of the 
Hamiltonian acquires a correction that is off -diagonal in 
k: 

J/B.mp= : E g .. ,a.ak,·b;i1(k-k'-q). (28) 
k,II:',. 

Here N is the number of magnetic atoms in the crystal 
and the amplitude bq is a Fourier component of the sta­
tic random field of the inhomogeneities, the scattering 
properties of which are characterized by the matrix 
~' . The inhomogeneities can be widely different in 
character-impurities, point defects, surface roughness, 
and so on. 

For point inhomogeneities bq is conveniently chosen 
in the form 

where rn are the random coordinates of the defects. 

The matrix elements ~k' can be calculated by taking 
any simple model of the defects. If they are interstitial 
impurities that do not deform the lattice around them­
selves and differ from the atoms of the matrix only in 
their exchange integral (B + B' in place of B), then 

kk' 
gkk,=gO+g. kk' ' 

(29) 
B' (sk)' 

g.=---. 
B illk 

We note that the matrix gkk' in this model was calcu­
lated in the work of Bar'yakhtar and Sanina f '91; the ex­
pression they obtained differs somewhat from (29). 

3.2 Basic Equations 

The effect of inhomogeneities on the parametric exci­
tation of SW was studh~d in tile framework of the Hamil­
tonian (28) in the( 20 1 by Zakharov and L'vov. It was shown 
by means of a diagram technique that in the stationary 
state the correlation functions nk = aka~, Uk = aka--kelwpt 
(the bar denotes averaging over the arrangement of the 
impurities) characterizing the system of parametric SW 
are concentrated in a narrow layer near the resonance 
surface (14). For the integral quantities 

k' k 2 

No=--"-Sn.dk ~a=-"-S a.dk 
(2n)' -' (2n)' 

(kn is the radius of the surface (14)), a system of inte­
gral equations was obtained: 

fa (No-iV,,) + 1m {no' (~o-};")} =0, 
(30) 

Here rn and IIn are the damping and pumping, renor­
namlized on account of the inhomogeneities. They are 
determined by Dyson'S integral equations: 

nck 'a3 f ' 
fo=1o +-, _0_3 - Jlgoo'I'-O-dQ', 

(:!n) Va . Va' 

(31) 

in which 

vo'=fo'-Inol', (32) 

In real crystals of antiferromagnetic substances, there c is the concentration of inhomogeneities, vn is the pro-
are always inhomogeneities violating the translational jection of the group velocity along the normal to this s'ur-
symmetry of the problem. The presence of inhomogene- face, and a3 is the volume of the unit cell. 
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The quantities Nn and tn in Eq. (30) are defined by 
the relations 

and secondly, a Fredholm integral equation of the second 
kind for IIn: 

{37) 

(33) in which 

In [20] these equations were analyzed in the case when 
the problem has axial symmetry, which is realized in 
the parametric excitation of SW in an isotropic ferro­
magnet, and with the use of the model assumption gkk' 
= const. The assumptions are not valid for an AFM: the 
coefficients Yn and Snn', gemerally speaking, do not 
have any symmetry; the coefficients gkk' depend dif­
ferently on k and k' for different types of inhomogene­
ities. Therefore, we shall analyze Eqs. (30)-(33) with­
out making assumptions about the form of its coeffi­
cients. 

3.3 General Analysis of the Equations 

We integrate the first of Eqs. (30) over n and, using 
Eq. (31), obtain the integral relation 

(34) 

which has the meaning of an energy-balance equation. 
The integral on the left describes the flow of energy out 
of the system of parametric waves as a result of the 
characteristic relaxation mechanisms that occur in a 
homogeneous crystal. Two-magnon scattering occurs 
with conservation of frequency; it does not carry energy 
out of the system of parametric waves and for this reason 
cannot appear in the relation (34). The right-hand side of 
this relation can be transformed identically to the form 

TmS hVo·£odQ, 

and describes the influx of energy from the external 
pumping. 

The influence of inhomogeneities, as we now show, 
leads to two effects: the obvious one of making the dis­
tribution Nn isotropic, and the less obvious one of vio­
lating the phase correlations in the pairs, leading to a 
decrease of I~nl in comparison with Nn . We shall study 
this phenomenon in the most interesting limiting case, 
when the concentration of inhomogeneities is large. We 
shall characterize the inhomogeneities of the AFM by 
the parameter Yimp = cg2k2a3 /21TV, where g2 
«lgnn'1 2)n)n'; the symbol 0 denotes averaging over 
the resonance surface: 

1 
<j)o=TnS jdQ. 

In the limit Yimp » y, the initial integral equations 
are considerably simplified. With one exception, with 
which we shall be concerned below, they have a solu­
~ion for. ~hich Nn ».I~nl and r~~ » IlIn l. Using this 
mequahhes, we obtam from (30)-(33) an equation deter­
mining the distribution Nn: 

S Igwl'(No-No·)dQ'=O. (35) 

The only reasonable solution of this equation is the 
isotropic distribution: Nn = N/41T. To calculate ~n' as 
can be seen from (30), it is necessary to know ['n and 
IIn. Taking into account that we seek a solution for 
which [' » Y and [' ":1 II, we obtain from (31), firstly 

(36) 
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(38) 

In a number of cases, e.g., when gnn' = const, Eq. 
(37) has no solution. This implies that our assumption 
['n »IIIn' is not valid. It can be shown that in this case 
the initial equations have another solution, in which 
[' ":1 III I ~ Yimp(Yimp /y)1/3» II ":1 Yimp, For the present, 
we shall not be interested in this degenerate case, and we 
shall assume that the equation for IIn has a single solu­
tion with Inl of the order of IPI. 

Using the relations (31) and (32) we transform the 
equality (34) to the form 

(39) 

From this it can be seen that I PI 2 ":1 Yimp~~), and it 
then follows quickly from (30) that I Znl ":1 Y YimpN« N. 
This circumstance- violation of the phase correlations­
leads to an incr£~ se of the threshold. In place of the es­
timate hcV ":1 (y), which would be obtained in the case 
I ~I ":1 N, it follows from (34) that 

. h,V"" (l'mp(l») 'f.. 

3.4 Case of Point Defects 

We shall study the behavior of the SW in the frame­
work of the equations that we have obtained, USing the 
explicit form (29) for the functions gkk" calculated for 
a simple model of substitutional impurities. For de­
finiteness, we shall assume that Snn' =So +iS1 (x-x') 
+ S2XX'). This is valid for not too large k. Taking into 
account that in this case Pn depends only on x: 

P .... p.+zP .. 

Po=hV+4n[S,(~o)-iS,(x~.) 1, 
p,=4n[S,<z~o)+iS,<~.) ], 

(40) 

and the kernel Knrt' depends only on k . k' (which can be 
seen by substituting (29) into (38)), it is easy to obtain 
the solution of the integral equation (37): 

II.,= 1I0+xII" 

II,=P./d, II,=P/b,. 

d=2g,'i (3go'+g,') , b=1 +d/5. 

(41) 

Remembering that in our case it follows from (36) that 
rn = Yimp, we obtain from (30) and (41) the dependence 

~o=~o+x~" 

. N Po 
~o=-£-. ---, 

4" Y'mp 

iN d P, 
~,=--. ---' 

4n b Y'm.' 
'YiMP=dYimpo 

Substituting (42) into (40), we obtain a system of 
linear equations for Po and P 1 , having the solution 

P,=hV S,N, 
Y,mpll ' 

1l~1 + (S,'-SoS,). N'+i (S,+eS,)N 
. ylhltP Yimp' 

e~~-~",,~(!!....)' for g,<go. 
15 b 45 go 

To determine the dependence of N on the pumping 
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amplitude we make use of the energy-balance equation 
(39), which takes the form 

'i"m.('Ya)=dRe (p~'na)= IP,I'+eIP,j'. 

From the last two relations we obtain a biquadratic 
equation for the dimensionless amplitude m ==NSo/Yimp: 

in which 

A'm'+2m'[B-Ds]+s=0, (44) 

S.' 
2B=1+.e-· 

So' 

and ~ = (h2 /h~ -1) is the pumping power in excess of 
the critical value. The critical amplitude h1 is deter­
mined by the relation 

(45) 

in which 

USin~ the estimate B' /B ~ 10 (following the authors 
of(1s ) and taking sk/wk ~ 1/2, we obtain for MnC03 
the estimate (Yimp/wk) '>l 10- 5c. This means that only 
in the low-temperature region and in sufficiently im­
pure crystals (c > 10-2) can point defects lead to the 
situation Yimp > :;: in which the asymptotic formulas 
(44) and (45) are valid. Taking into account that Yimp 
is greater than ?imp' (by a factor of lid = 3g~/2g~ 
= 3(wk/sk)4(1 + HD/2Ho)), it is understandable that the 
situation in which Yimp > Y and the relationship between 
?imp and Y is arbitrary is much more often realized. 
Comparing the results we have obtained with the solu­
tion of the initial equations that can be obtained in the 
case Yimp ~ Y, Yimp » Y, it is easy to convince one­
self that the formulas (42)-(45) will describe both lim­
iting cases ?imp < Y and Yimp > Y (for Y~ > y) correctly 
if in them we replace Yimp by (Yimp + (Y ». In particular, 
in place of (45) we obtain the interpolation threshold 
formula 

(46) 

3.5 Discussion of the Results 

In the preceding subsection we have obtained for­
mulas determining the parametric-excitation threshold 
(46) and describing the behavior beyond the threshold in 
an EP AFM with point defects ((42), (43) and (44)). Com­
parison of these formulas with the results of the general 
analysis of the initial equations that was carried out in 
Sec. 3.3 gives us every reason to assume that they are 
also at leads qualitatively valid when we go outside the 
framework of the simple model that we have considered 
for the impurities. It is necessary only to assume that 
Yimp and E, appearing in these formulas, are phenome­
nological parameters describing the impurities (and 
independent, naturally, of the temperature). The para­
meter Yimp' which is proportional to the concentration 
of defects, characterizes the SW relaxation frequency 
in the absence of pumping, and E characterizes the ani­
sotropy of the scattering, or, more accurately, the de­
viation of ~' from a constant: 

< [gkt'-<g .. , > l')' 
e ""- <lgtt,I') . 

We shall show that with the aid of the parameter 
Yimp it is possible to explain naturally the experimen­
tally observed temperature dependence of the threshold 
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field h1(T) in the framework of formula (46). In the tem­
perature range 1.2-2.2 K of interest to the experimen­
ters the strongest SW relaxation mechanism in an EP 
AFM is the three-magnon coalescence process[21, 13J 

(47) 

The corresponding damping constant Yk, which we cal­
culated in [13] with allowance for the dipole -dipole interac­
tion. is determined by the formula 

(Yk> 

Wk 

= ~~e-'oo-I~ [e'"'kIT _ 1) (48) 
16nSZS sk 

x[ Uf,:) , w_· +~(ltgMo)' J <h' 
which is valid for sk > Tn~/w~. Here Vo is the volume 
of the unit cell (two formula units of MnC03 or CsMnF3), 
S is the spin, 1 == s/gHex (2.5 A for MnC03[4]), and 

w_=sk+Qo'/2[ wt+sk]. 

Figure 1 shows the dependence (48) of log (Yk) l"'k) 
on the temperature for MnC03 for Ho = 2.5 kOe, 3.3 kOe 
for 4.0 kOe. Figure 2 shows the quantities Yexp deter­
mined by Kotyuzhanskir and Prozorova[5] from the ex­
perimental values of the threshold field h1 (T) by means 
of the relation h1V == Yexp(T) (for V, see formula (12)) 
obtained by Ozhogin. A considerable discrepancy can be 
seen, especially at low temperatures. Here also are 
shown the theoretical values for the quantity h1V. cal­
culated from (46) for our chosen values of Yimp(Ho): 
Yimp/wk = 3 x 10-5 (Ho = 2.5 kOe), 4 x 10-5 (Ho = 3.3 kOe) 
and 6.5 x 10- 5 (Ho = 4.0 kOe). The quantitative agreement 
of the theory with experiment for h1 (T) indicates, firstly. 
the fundamentally important role of random inhomogen-

-s.O 

:£-O.D 

-0.5,'<--LL-;'.-----'---:':;--'-----;;'.,--:::-c--
1.5 1.7 [9 2.1 T.K 

FIG. I. Temperature dependence of the mean damping log «'Yk>/wk) 
for MnC0 3 for fields (I) Ho = 2.5 kOe, (2) Ho = 3.3 kOe, (3) Ho = 4.0 
kOe. 

FIG. 2. Temperature dependence of the threshold field h1 V for 
MnC03 in fields (I) Ho = 2.2 kOe, (2) Ho = 3.3 kOe, (3) Ho = 4.0 kOe. 
The curves 1,2 and 3 are the theoretical dependences (46); the points 
0,6, and 0 are the corresponding experimental values. 
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eities in the experiment of [4-6 1, and, secondly, the fact 
that the relaxation mechanism (47) does indeed make 
the main contribution to y(T) for T> 1.2-1.5°. At lower 
temperatures, as shown in[l3 1, four-magnon processes 
must also be taken into account. 

We note that the point-defect model we have studied 
leads to a different dependence Yimp(Ho) and cannot ex­
plain the observed value of i\mp' It may be thought that 
the main contribution (which does not become small as 
k does) to Yimp is made by scattering at extended (lin­
ear and surface) defects, including scattering of SWat 
the faces of the crystal. 

4. NONLINEAR SUSCEPTIBILITIES OF AFMs 

In the traditional experiment[3-8] one studies the non­
linear susceptibility X of an antiferromagnet, defined 
by the equality 

. m,,(wp) =;.:h(wp) , 

where mx(wp) and h(Wp) are the Fourier components of 
mx(t) and h(t). Using the expression for mx in terms of 
the canonical variables ak and bo, and the equation of 
motion for bo, we can obtain the simple formula 

;':=;':0+ ~ .E V.a., (49) 
'k 

in which XO is the linear susceptibility of the uniform 
precession: 

(50) 

Using the results of the preceding Sections, we shall 
calculate X for different situations. In a pure AFM be­
low the threshold for creation of a second pair (~« ~2, 
cf. (21», we obtain 

(51) 

Here Xo and N are the solution of the cubic equation (19). 
It is interesting to note that for HD = 0 (CsMnF3) the 
susceptibility (51) does not depend on the field Ho. It is 
possible to see this if one takes into account that yo 
~ Hg, S, ~ Ho, So ~ H~ and y, and S2 do not depend on 
Ho for a fixed frequency wk' 

Beyond the threshold for creation of the second pair, 
taking (22) and (23) into account we obtain from (49): 

217" 
;':=;':0 + PIS~I{-P+P+i[P(P-P)]'I'); (52) 

where P = h2/h~ and P == (y/Yo?; V, So and yare deter­
mined by the formulas (12), (27) and (24) respectively. 
In analyzing (52) it is useful to bear in mind that 

:lV' _ (HD+2Ho) 
ISJ-;':o H;- , 

so that for HD = 0 the susceptibilities X' and X" are prac­
tically independent of Ho. Figure 3 shows a graph of the 
dependence (;f X" on P for CsMnF 3. The arrow marks the 
threshold for the creation of the second group of SW 
pairs. An expression for the susceptibility X, qualita­
tively similar to (52), was obtained by the authors and 
Kolganov in [221, in which for Simplicity the dipole-dipole 
interaction was not taken into account, so that Skk' =So. 
If Skk' = So, then for any super criticality one line of 
pairs (x = 0) is excited (this corresponds to the minimum 
damping) and the susceptibility is determined by formula 
(54). Thus, although the dipole -dipole interaction makes 

966 SOy. Phys.-JETP, Vol. 40, No.5 

0.5 

Ii 

6 / A ~A _tJ.-_~_..lJ.. __ 
~ _-ll--6.--8"L-6-----b--l!>. X b. 1Ir __ """'::'-J 

J 9 P,dB 

FIG. 3. Graphs of the dependence of the susceptibility X" Ixo on the 
excess power P for CsMnF 3' The thick lines are the theoretical de­
pendences for (I) € = 0, (2) € = 0.05, (3) € = 0.25, (4) € = 0.5, (5) for 
the pure AFM, (6) experimental data. 

the main contribution to the interaction coefficients Skk', 
it nevertheless does not alter the order of magnitude of 
the nonlinear susceptibility of an EP AFM. 

In a crystal with inhomogeneities in the case Yimp 
> (y) (Yimp is arbitrary), we obtain, using formulas 
(49) and (42)-(44), 

217" m 217' iP-1V 1+2Dm' 
X"=TsJp=""j8,f-P- 2H+A'm' 

(53) 
,_ 217" (..!.._ )[1+C'(S./So)A'm'1 

;.: -;.:. + IS,I P 1 2B+A'm' ' 

where 
217" 2[2H.+HD1' 

--=;':0 
ISol H.(4H.+HD) 

and m is a dimensionless amplitude ~N (the solution 
of the biquadratic equation (44». 

It can be seen from these formulas that impurities 
do not affect the order of magnitude of X' and y" , or the 
character of their dependence on P. For example, for 
E = 0 we have 

217" . --. 
;.:=;.:.+ ISolP [-P+1+il'P-11. (54) 

The nonlinear part of the susceptibility has been reduced 
by a factor of (So/sor' = (4Ho + HD)/(2Ho + HD) compared 
with (52) for pure AFMs. Allowance for the deviation of 
E from zero decreases the susceptibility X" at low super­
criticality, and increases it at high supercriticality and 
displaces the maximum of the dependence X"(P) from 
P = 2 (3 db) to the right. These features of the behavior 
of X"(P) are clearly visible in Fig. 3, where the curves 
of X" are plotted against P for E = 0.05, 0.25 and 0.5 for 
HD = 0 (CsMnFa). 

First of all we shall compare the dependences x'(P) 
and x"(P) obtained for pure AFMs (cf. Fig. 3) with ex­
periment(5,6]. It can be seen that they correctly pre­
dict the qualitative behavior of the dependences of X' 
and X" on P: (X' -Xo) is of the same order as X") the 

maximum of X" is in the range (3-5) dB, the dependence 
of y' and X" on the field Ho is weaker in CsMnF3 than in 
MnCOa, and so on. However, the absolute values of 
(x' -xo) and X" near the maximum are found to be three 
or four times too high in the theory ( which does not 
take the impurities into account). Here it is pertinent 
to recall that the characteristic damping Yk(T) was 
found to be smaller than the experimental value of 
h,V, especially at low temperatures (Fig. 1). In Sec. 3 
we associated this discrepancy with the effect of im-
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purities and described the temperature dependence 
hI (T) with the aid of a phenomenological parameter 
Yimp characterizing the impurities. Another impurity 
parameter E < 1 appears in the formulas for the sus­
ceptibilities beyond the threshold. It can be seen by com­
paring the theoretical dependences of Fig. 3 with experi­
ment that allowance for the impurities makes it possible 
to understand the experiments better, both qualitatively 
and quantitatively, even with E = 0.05. The corresponding 
curves (4 and 6) have equally extended plateaux, which we 
explain by the extended nature of the transition So _ So 
for small E, and the curves are similar when the excess 
power is not too small (xfheor/x~xp' ~ 2 - 2.5). Evidently, 
this difference cannot be associatetl entirely with a pos­
sible systematic error in the experiment. It implies, 
then, that there must exist an additional mechanism 
limiting the amplitude-one that does not appear in our 
simple theory, which takes into account only the inter­
action of the parametric waves amongst themselves. In 
addition, we have not explained the phenomenon of "hard" 
excitation of SW, observed in the experiment of E61 • We 
suppose that these effects are at least partly associated 
with the interaction of the parametric SW with thermal 
SW; this interaction, as we have shown in{13 1, alters the 
amplitude of the thermal SW in such a way that the four­
magnon contribution to the damping of the parametric 
waves is increased and the three-magnon contribution 
is decreased. 

For small N[ll] we have 

Estimates of the values of the characteristic amplitudes 
Ncr and NS show that the nonlinear-damping mechanisms 
that we have proposed should indeed be observed in ex­
periment. 

l)In the following we shall assume that Ikl is determined by the relation 
(14), so that all the coefficients of the problem ('Yk, I'k, etc.) depend 
only on the angular variable .n. 

2)A detailed analysis shows that it is not necessary that sk < Wo for S3 to 
be unimportant. For distributions N.n possessing a fourth·<Jrder sym­
metry axis this term vanishes on averaging. It is important that such a 
distribution satisfies the equations of motion. 
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