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The problem of the interaction between monochromatic and noise waves in nondispersive media is solved. 
The results are applied to explain a number of phenomena, e.g., the cavitation spectrum, Fermi 
acceleration, and sound attenuation. General formulas are obtained for transforming the spectra of the 
interacting waves. The interaction between the sound waves and the noise, which consists of thermal elastic 
waves of the meidum, are considered in detail. The theory of sound attenuation developed in the paper 
takes into account effects due to the finite sound amplitude, the presence of external noise, etc. Under 
certain conditins, these effects lead, in particular, to the Landau-Rumer formula for the absorption 
coefficient in solids. Application of the theory to liquids and gases yields an estimate of the sound 
absorption due to the translational motion of the molecules with allowance for fluctuations in the media. 

1. INTRODUCTION 

The rigorous description of many physical phenomena 
requires the solution of nonlinear partial differential 
equations. In this connection, models based on exactly 
solved nonlinear equations have great value for the un
derstanding of the basic regularities of nonlinear pheno
mena. The equation for simple waves, Burgers equation, 
the Korteweg-de Vries equation and others serve as 
standard equations of this type. The analysis of a num
ber of phenomena in different areas of physics and 
mechanics reduces to these equations. £1,2] The results 
obtained here are as a rule formulated in space-time 
language. Thus, if we are dealing with one-dimensional 
waves, then the corresponding solutions describe the 
distortion of the initial profiles of the waves with the 
coordinates or with time. 

A deeper physical analysis of the phenoeman and 
interpretation of the experimental results require a 
knowledge of the behavior of the spectrum. The pre
sence of a nonlinear medium, as is well known, pre
vents the obtaining of a closed equation for the spec
trum in the general case; therefore, the exact solution 
of the dynamics of nonlinear processes is obtained 
only for regular waves. In media with strong disperSion, 
within the framework of transformation to the reduced 
equations, there exists a transformation to the "under
resolved" spectrum of the process; this facilitates the 
analysis of the interaction of waves with a finite spec
trum width. [3,4] In media with weak disperSion, an in
finite number of spectral components interact simul
taneously, and the problem turns out to be extremely 
complicated. 

In our recent researches we developed a general 
method [5] and obtained results [5, 6] which pertain to the 
dynamics of the spectra of noise waves as they propa
gate in nondispersive, nonlinear media. However, more 
interest attaches to the problem of the interaction of 
regular and noise waves which is due, in particular, to 
the presence of characteristic fluctuations of the non
linear media. 

The purpose of this work is the presentation of the 
results of the interaction of waves with regular and 
random modulations, described by the equation for 
simple waves. Exact formulas are obtained for the 
transformation of the spectra of the interacting waves. 
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The results of the research are applicable for the ex
planation of the features of sound damping in nonlinear 
media, the dynamics of the cavitation spectrum and 
Fermi acceleration. It is shown that the developed 
statistical nonlinear wave theory of the damping of 
sound allows us to obtain more general results in 
comparison with the existing kinetic approach. [7,8] 

Thus, it takes into account the generation of harmonics 
and the presence of external nOise, which leads to ex
cess absorption. 

2. DERIVATION OF THE FUNDAMENTAL RELATIONS. 
THE SPECTRUM OF NONSTATIONARY NOISE 
DESCRIBED BY THE EQUATION FOR SIMPLE WAVES 

We consider the evolution of a field u in a nondis
persive medium, described by the equation 

au au 
--~u-=-bu. az iJll 

(1) 

Here z is the spatial coordinate along the direction of 
propagation of the wave, 1] is the time in a set of coor
dinates moving along with the wave; the coefficient f3 
characterizes the nonlinearity of the medium, the 
parameter 1) is responsible for the low-frequency dis
sipation (0) 0) or for the amplification of the wave 
(0 < 0), when we are dealing with an active medium. 

The solution of Eq. (1), which corresponds to the 
boundary condition u = uo(1]) at z = 0 can be written 
in the form 

V(ll,X)= - 2: II w-'uo(6)exp{-iw[6-~xu,(6)-ll]Jdwd6, (2) 

where 

We analyze below the case in which uo(1]) is a ran
dom function. 

(3) 

It follows directly from Eq. (2) that for the calcula
tion of the correlation function 

(4) 

It is necessary to use the four-dimensional distribution 
law 

W.[Uo(6d, uo(6,), uo(6,), uo(6,)], 

Copyright © 1975 American Institute of Physics 945 



which entails extraordinarily cumbersome calculations. 
In addition, the structure of Eqs. (2), (4) allow us to 
introduce the operator 

Then 

and for the averaging of (6) we can use the two-dimen
sional distribution W2[UO(e1), uo(e2)]. 

We assume that 

(7) 

where f(1j) is a determinate function and ~ (11) is a normal 
random process with mean value (~) = 0 and correla
tion coefficient 

R (-r) =<; (8); (8+1:) >0-', 

a2 = (e> is the in-tenSity. of the random process. The 
statistical averaging in (6) gives 

<exp {i~x[wd;(8,)-W'6(8,) ])>= 
=exp {-1/2 (~ox)'[w,'+w.'-2w,w,R(8,-8,)]). (8) 

Inasmuch as the random process uo(l1) (7) is nonsta
tionary, Eq. (6) must still be averaged over the time 
111, (112 = 111 + T); as a result, we obtain 

x exp{iw (8,-8,) + (~owx)'R (8,-.8,) +;~wx(f(8,) -/(8,) j}d8, d8,; (9) 
a'R aR ' 

«1),=-0' [ de: + (~owx)' he;) ], 
«1),=-iopowx [!!!.!1. - !!!.!1.] 

all, a8, a8, 08, ' (10) 

Further simplification in the general case has not 
been accomplished. At this stage, it is necessary to 
specify the function f(e). Let f(e) be the harmonic func
tion 

/(8) =A sin 01 08, (11) 

where Wo is the frequency of the monochromatic wave. 
In the case considered, the spectral density S (w,x) of 
the process v in an arbitrary section z of a nonlinear 
medium can be represented in the form 

S(w, x) =S,+S,+S,; 

0' 00 d'R dR ' 
S,(w,x)= --s [-+(~owx)'(-) ] e'<"/0 (>I>(8»d8, 

2n _00 d8' d8 

oA SOO dR 01 08 
S,(w,x)=- 1,(1jl(8»e,(6'-eos-d8, 

801__ d8 2 

A2 2 110 

S,(w, x) = ~S [/0(1jl(8) )eos 01 08-1,(>1>(8» ]e'(O' d8, 
4nw' _00 

(12) 

(13a) 

(13b) 

(13c) 

monochromatic wave (11); as the amplitude A - 0, 
we obtain the result for the noise wave. [5] The formula 
(13c) describes the nonlinear distortion of the mono
chromatic wave with correction for the noise wave; 
in the limit as a - 0, we can obtain a result which cor
responds to the well-known Bessel-Fubini solution 
(see, for example,[9]). The term S2(W,X) (13b) gives 
information on the cross interaction of the monochro
matic wave with noise. 

To separate the spectra at the frequencies of in
terest, we can use the addition theorem for cylindrical 
functions, which allows us to expand the Bessel func
tion I n (I/J) of argument I/J (14) in a series of paired pro
ducts of the functions In(j3Awx). We then obtain an ex
pression for the distortion of the spectrum of the noise 
wave "in pure form": 

0' s- dR sin 018 
SI(W,X)= --/o'(~Awx) ---exp{(~owx) [R(8)-1lJd8. (15) 

n • ~ 01 . 

The factor Jg(J3 AWx), as in (13a), takes into account 
the interaction with the monochromatic wave. 

More complicated calculations are connected with 
the separation of the terms which describe the creation 
of new sections of the spectrum in the process of in
teraction of monochromatic waves and noise waves. 
Keeping the terms in sinwoe or coswoe in Eqs. (13), 
and performing a number of transformations, we arrive 
at the following result: 

0' S-dR sin(w-iu)8 
SI.,(m,x)=--I,'(~Awx) -d8exp{(~owx)'[R(8)-1lJ 0 d8. 

n. (0-<00 

(16) 

The structure of the integrals in (15) and (16) is the 
same; this circumstance simplifies the analysis of the 
resultant expressions. 

Expansion of (13c) leads to formulas which describe 
the dynamics of the spectrum of the initial monochro
matic wave (11); as a result, we have, at the fundamen
tal frequency w, 

S,.,(m, x)=A'exp {-(~owx)'}[/,(~Awx)/~Awxl'll(m-wo) (17) 

and, for example, at its second harmoni c 

SI. ,(01, x) =A' exp{- (2~owx)2}[/,(2~Awx)/2~Awx l'll (m-2wo). (18) 

It is seen from (17) that, because of the nonlinear inter
action with the noise wave and the generation of the 
characteristic harmonics, the intensity of the initial 
monochromatic wave decreases. 

The derived expressions (15}-(18) have a rather 
general character: they were obtained in the absence 
of any restrictions on the intensity a2 , on the form of 
the noise spectrum, and on its location relative to the 
spectrum of the monochromatic wave. Formulas 
(15}-(18) allow us to consider various problems which, 
in the final analYSis, reduce to the problem of the inter
action of noise with a monochromatic wave (Fermi ac
celeration, damping of sound, cavitation spectrum, and 
so forth). 

1jl(8) =2~Aw sin (01 08/2), X(8) =-iw8-(~owx) [1-R(8) l. (14) 3. INTERACTION OF BROADBAND NOISE WITH A 
MONOCHROMATIC WAVE 

Each of the terms of (13) has a clear meaning. The 
expression Sl (w,x) describes the process of nonlinear 
distortion of the spectral density of the noise ~ (11), 
"corrected" under the integral (13a) by the factor 
Jo(I/J), which takes into account the presence of the 
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As an example, we consider here the case in which 
the noise correlation coefficient at the input of the non
linear medium is of the form 

R (8) = (1-21'8') exp (-y'8') (19) 

O. V. Rudenko and A. S. Chirkin 946 



The results of the calculation of the spectra (15) and 
(16) for this R(8) are shown in the figure. The initial 
noise spectrum undergoes in the nonlinear medium 
relatively weak distortions that have a tendency to 
energy redistribution both in the lower and in the upper 
frequency ranges. 

Special interest attaches to the consideration of the 
dynamics of the new spectral region created in the 
vicinity of the frequency woo The width of this pedestal 
at small distances x is equal, approximately, to twice 
the width of the noise spectrum and increases with in
crease in x. It is important in principle to note the non
symmetrical form of the pedestal. Its high-frequency 
wing has a large amplitude and grows rapidly as a re
sult of the nonlinear energy pumping. The dip between 
the two wings gradually disappears (curve 4) and both 
wings of the pedestal fuse into a single broad line, the 
energy center of which is shifted in the direction of 
frequencies w> woo Subsequently, this line increases 
still more in amplitude (curve 5) and then begins the 
stage of "spreading" over the spectrum 'the solid 
curve 6) and, again, a small fraction of the energy is 
pumped over into the high frequencies. The motion of 
the energy center upwards in the frequency spectrum 
in the process of interaction with a low-frequency 
noise is similar to the well known Fermi acceleration 
effect. [10) 

at the foot of each discrete component, in accord with 
the theory presented above, it is not difficult to conclude 
that the continuous part of the spectrum grows rapidly 
as the sound propagates in the medium. 

4. STATISTICAL NONLINEAR WAVE THEORY OF 
SOUND DAMPING 

The examples of the preceding section to not cover 
all the applications of the general results of the present 
paper. By using these results, we can, from one point 
of View, consider the problem of sound damping in vari
ous media, due to the translational thermal motion of 
the molecules. As has already been pointed out, the 
theory of sound damping existing at the ~resent time 
for solids uses the kinetic approach;h, 8 the founda
tions of this theory were developed in the works of 
Landau and Rumer[12] and Akhiezer.[13] So far as the 
theory of sound attenuation in liquids and gases is 
concerned, it is based on the equations of hydrodyn
amics [14] and does not take into account the presence 
of fluctuations in the media. 

Equation (1) can serve as a simple model of the in
teraction of a sound wave with internal thermal noises 
of the medium; it can be derived from the complete 
set of equations of hydrodynamics or the theory of elas
ticity under the assumption that the distortion of the 
wave profile is slow at distances of the order of a wave
length. Here the variable u in (1) has the meaning of 

Noise spectrum S~ (w,x) (dashed the oscillating velocity of the particles, f3 = E/d, where 
curve) and the spectrum Sf, ~ (w,x) Co is the velocity of linear sound. For solids, E is ex-
that develops in the region of the fun- pressed in terms of the elastic constants of second and 
damental frequency Wo of a monochro- third orders; for liquids and gases, f3 = (y + 1 )/2c~, y 
matic wave as a result of interaction is the adiabatic coefficient in the isentropic equation of 
with noise (solid curves) at various state or the corresponding constant in the Tait equation. 
reduced distances x= 481hu x: 
1) x= 0; 2) x= 1; 3) x= 4/3; We return to Eq. (17); it describes the decrease in 
4) x = 2; 5) x = 4; 6) x = 8. In cons- the intensity of the fundamel'.tal wave 
truction of the graphs it has been as-

o 1 

If the spectral line of the initial wave has a suffi
ciently small finite width, then sooner or later it joins 
with the pedestal formed at its foot into a single com
plex, and it is not possible to speak of the location of 
the line; at this stage it is necessary to follow the mo
tion of the energy center of the entire complex as a 
whole. The complete picture is, however, more compli
cated: Together with the generation of the harmonics 
nWo (n = 2, 3, ••• ) of the initial frequency wo, new spec
tral complexes appear in the vicinity of these harmonics. 

It must be emphasized that in the analysis of the 
nonlinear dynamics of the superposition of regular and 
noise waves we have, for Simplicity, considered such a 
location of the spectral line of the signal that it does 
not intersect with the spectrum of the random pertur
bation. The results obtained allow us to consider the 
general case also. However, if the initial spectral dis
tributions of the wave and the noise intersect, then the 
resolution of the spectrum S (w ,x) into the components 
S~, Sf~' Sf for x f 0 becomes a formal procedure. 

Just this latter case is often encountered in practice. 
The spectra of cavitation, [11] of the nois e of jet engines 
and certain other sources of intense noise consists of 
discrete lines located against a background of broad
band noise. Inasmuch as a wide spectrum is reproduced 
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I~2A '[/, (~A(J)ox)/~A(J)ox l'exp{ - (~cr(J)ox) '} (20) 

for two reasons. First, this is nonlinear self-action of 
the wave, taken into account by the factor F(K) 
= 4J~(K)K-2 and connected with the transfer of energy 
into its harmonics; as K -0, this effect is small, 
F '" 1. The second reason for the decrease in intensity 
is the process of interaction of the wave with noise; 
this noise is specified on the boundary and its effect is 
described by the exponential factor. 

In the general case, the noise intensity rr can be 
represented in the form of the superposition of the 
thermal-noise intensity ather produced by thermal 
elastic waves of the medium, and the intensity of out
side (or external) noise a~xt> which owes its presence 
to other sources. It is evident that the external noise 
leads to an excess attenuation of the sound wave. When 
account is taken of only the thermal noise of the med
ium, we obtained the known results for the sound atten
uation coefficient. According to (20), we get for the at
tenuation coefficient a (2aI = - aI/ax) of the fundamental 
wave due to interaction with the noise 

a~8' (Pocr') (J)o'x (co'Po) -'. 

The quantity t.~ = poa 2 is the volume energy density 
of the noise which interacts in synchronism with the 
signal wave. 

(21) 

We proceed from one-dimensional to three-dimen
sional nOise, taking into account the spatial isotropy of 
the latter. Only the part of the total noise energy formed 
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by those Fourier components which propagate relative 
to the wave at an angle less than the width of the angle 
of synchronous interaction Bc interact most effectively 
with the initial wave. In the medium considered without 
dispersion, only waves traveling strictly in one direction 
are in exact synchronism. However, the finite distance 
z to the point of observation permits an x-dependent 
detuning of the wave vectors, at which the interaction 
of the waves still takes place effectively. This leads to 
a definite solid angle of so-called parametric capture 
Don = 71B~(x). It is not difficult to show that at low effec
tiveness of the interaction (see, for example, [15\ 

(22) 

The fundamental contribution to the sound absorption 
is made by the high-frequency thermal phonons, for 
which w» wa. With account of this, e~ = 21TCa/WoX and 
the fraction of the noise energy in "synchronism," 
Do~/~, is equal to 

(23) 

The expressions (21) and (23) determine the value of the 
absorption coefficient 

(24) 

Inasmuch as we have assumed, in the derivation of (24), 
that the momentum and the energy of a thermal phonon 
are determined exactly, the condition of applicability 
of (24) is: the path length of the thermal phonon is 
greater than its wavelength or waT > 1 (T is the relaxa
tion time of the phonon). 

The approach developed in this paper allows us to 
describe N-processes that lead to stimulated redis
tribution of the acoustic energy over the frequencies 
of the Debye spectrum. The processes which bring 
the spectrum to equilibrium, on the other hand, can 
only be taken into account phenomenologically by 
changing the model of the medium (1) in such a way 
as to introduce in it a relaxation term in terms of 
the noise component. However, there is no need of 
complicating the problem. Allowance for the finite 
value of T leads to a decrease in the interaction 
length and reduces (see[8]) to the appearance of an 
additional factor WaT /1T in Eq. (24). This gives the 
result 

which is valid for waT« 1. 

An important aspect of the sound damping theory 

(25) 

that we have developed is the use of the fact that the 
thermal motion of the molecules in a medium can be 
expanded in Debye elastic waves. Just this assumption 
was used in the kinetic approach for the derivation of 
sound attenuation in solids. For SOlids, ~ ~ C(T)T, where 
C (T) is the heat capacity, T the absolute temperature; 
Eqs. (24), (25) give well-known results: (24) gives the 
Landau-Rumer result [12] for high-frequency sound, and 
(25) gives that of Akhiezer[13] for low-frequency sound. 

Along with this, experiments on molecular scattering 
of light show[1s] that the expansion of the thermal motions 
of a medium into elastic waves is applicable also for 
liquids and gases. Consequently, Eqs. (24) and (25) also 
apply in prinCiple to these media. Then the problem of 
calculation of the absorption coefficient reduces to find
ing the kinetic energy of the translational motion of the 
molecules in the media concerned. For an ideal gas, for 
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example, E = pv 2/2 = 3kTNL/2, where k is Boltzmann's 
constant and NL is Loschmidt's number. In this case, 
the damping coefficient (25) is large in comparison 
with that calculated by the classical theory of Stokes ,[14] 

which determines the damping in terms of the shear 
viscosity and the thermal conductivity. This difference 
is due to the fact that the nonlinearity parameter 
E> 1 and the mean-squared..!.eloc!t¥ of the molecules 
V" enter in (25), while (\1)2, (v2> (v) ) appears in the 
Stokes formula. 

CONCLUSION 

In the present work we have obtained exact expres
sions for the evolution of the spectra of monochromatic 
and noise waves which interact in nonlinear, nondis
persive media. The results of the work are applicable 
to the analysis of phenomena described by the equation 
for simple waves. As is shown, in particular, the effect 
of Fermi acceleration can be explained with the help 
of formula (16), and the behavior of the cavitation spec
trum can be explained with the help of formula (16) and 
(17). 

The equations (24) and (25) for the sound attenua-
tion coefficient are similar to those obtained earlier 
with the help of the kinetic approach. Along with this, 
our results permit us to take into account a number of 
factors which have value in principle for the propagation 
of elastic waves. Above all, Eq. (20) rigorously describes 
the losses due to the finiteness of the sound amplitude A. 
The possibility of taking into account the nonlinear 
losses broadens the range of intensities used for the ex
perimental measurement of the sound absorption coef
ficient. The presence of the external noise a ~xt leads to 
an excess sound attenuation which can also be taken into 
account on the basis of the developed theory; it is pos
sible that the excess sound absorption in experiments 
at low temperatures can be attributed to this external 
noise. 

The formulas in the paper contain a variable x that 
is connected with the length z of the nonlinear medium 
by the expression (3), which allows us to take into 
consideration the features of the interaction of acoustic 
waves in the presence of excitations of any nature 
(6 i- 0). In the approximation of the nondispersive me
dium, the decrease in the intensity of the Signal is de
termined by the total energy Do~ of the noise "in syn
chronism" and does not depend on the shape of the 
noise spectrum and the location of it relative to the 
signal. The effect of the dispersion reduces to a change 
Do~ which is determined by the competition of two fac
tors: on the one hand, the dispersion limits the frequency 
width of synchronism, and on the other-it increases the 
effective solid angle of capture Don. The reasons that 
have been indicated account for the difference in the ex
pressions for the absorption coefficients from (24) and 
(25). 
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