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The mean velocity and spectral intensity of the energy dissipated by a dislocation gliding along a Peierls 
relief is calculated. It is assumed that the main cause of energy loss by the moving dislocation is viscous 
friction. The nonlinear dependence of the Peierls force on the coordinates is taken into account exactly. A 
solution for the mean dislocation velocity is obtained for the case of high viscosity and of an arbitrary 
external force. From the expression for the spectral intensity of energy dis&ipation it follows that all elastic 
oscillation modes must be taken into account. if the external force is comparable with the amplitude of the 
Peierls force. 

1. INTRODUCTION 

When a linear dislocation glides in a crystal as a 
result of periodic variation of the atomic structure of 
the nucleus, the dislocation is acted upon by the lattice­
resistance force-the Peierls force F(x). Owing to the 
periodicity of the lattice we have 

F(x)=F(x+a). 

where a is the period of the lattice in the direction of 
the dislocation motion. It is customary to confine one­
self to the first harmonic in the force F(x), and to as­
sume 

F(x) =F. sin (21tx/a) . (1 ) 

If an external constant force f acting in the Slip 
plane is smaller than F 1f' then the dislocation will be at 
rest inside one of the valleys of the Peierls relief. The 
equilibrium pOSition is determined by solving the equa­
tion 

F. sin (21tx/a) =/. 

The quantum and thermal fluctuations cause the disloca­
tion to go over, via production of double kinks, to the 
neighboring valley of the relief with exponentially small 
velocity[ 1]. 

When the stresses exceed the Peierls force, the po­
tential relief has no valleys, and the dislocation will 
glide along the x axis. The average velocity is deter­
mined both by the forces f and F(x) and by the forces 
of viscous and radiation friction. The nature of the 
force of the viscous friction differs in different inter­
vals of velocity. At low velocities the main channel of 
dislocation energy diSSipation are losses to overcome 
the energy barriers of various kinds. At high velocities, 
the principal role is played by transfer of energy to the 
phonons and to other elementary excitations from the 
moving dislocation[2]. The problem of dislocation motion 
with allowance for the reaction of an elastic field was 
considered in a self-consistent manner by AI'shitz, 
Indenbom, and Shtol'berg[51, who has shown that at a low 
value of the viscosity coefficient B there exists a criti­
cal average velocity, below which stationary motion of 
the dislocation is impOSSible. With increasing viscosity, 
the critical velocity decreases and vanishes if the vis­
cosity coefficients exceeds the limiting value Bc. 

At higher external stresses f» F 1f' the dislocation 
moves practically uniformly and the shape of the Peierls 
relief is immaterial. However, to determine the depend­
ence of the average velocity of motion v on the stress 
fib at low velocities it is necessary to take into account 
exactly the Peierls relief. For a piecewise-parabolic 

929 SOy. Phys.-JETP, Vol. 40, No.5 

relief, this problem was investigated in[5] with allow­
ance for radiative dragging. 

The average velocity in the spectral density of en­
ergy dissipation of a moving dislocation is obtained in 
the present paper, for a sinusoidal relief, in the case of 
large viscous friction, when the inertial force can be 
neglected against the background of the viscous losses. 

2. FORMULATION OF PROBLEM 

Equation of motion of the dislocation, with allowance 
for the reaction of the elastic field, is 

-FI (t)+B:i+F. sin (21tx/a) =/. (2) 

where Fdt) is the inertial force, which takes into ac­
count the effect of radiation dragging of the disloca­
tion[ 5] and B is the coefficient of viscous friction. The 
dependence of x(t) on the initial conditions vanishes 
within a time t ~ l/wo, after which x(t) can be repre­
sented in the form 

21tD 
000=--' 

a (3) 

If the inequality f > F 1f is not too strong, it is neces­
sary to take into account exactly the Peierls relief. It 
is then necessary to distinguish between two cases: the 
case of large viscosity and the case of the existence of 
critical velocity. A criterion for the realized case was 
obtained in[ 5J for the case of a piecewise parabolic re­
lief: 

Q=1t!lb"Fn/2ac,'B'In..:r.:: - 1, 
Ulna 

where JJ. is the shear modulus, b is the value of the 
Burgers vector, ct is the speed of sound, and y ~ 1. 
For typical value B ~ 10-4 pOise, ct ~ 105 cm/sec, 
b ~ a ~ 10-8 cm, JJ. ~ 1011 dyn/cm 2, and F ~ 10-1 

dyn/cm we have Q ~ l/ln (yet/ woa) < 1, from which it 
follows that the case of large viscosity can be easily 
realized under ordinary experimental conditions. 

The characteristic times n"(/ and n-\ which are 
connected respectively with the external force f and 
with the Peierls force, are proportional to the viscosity 
coefficient 

Q, -1=aB/2nj, Q-I=aB/2nF •. 

The characteristic times T(n) that are connected with 
the inertial force depend on the number of the harmonic 
in the expansion of x(t) in a Fourier series (3) and are 
inversely proportional to B. The largest value of T( n) 
can be estimated by using for F 1(t) the expression ob­
tained in[ 5]: 
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"b2 ye, 
'l:,=--ln-

4ne,'B woa' 

This paper deals with the case of large viscosity, 
when the time T 1 is the smallest characteristic time of 
the system: 

(4) 

The inertia term in (2) can then be neglected. The ob­
tained first-order equation can be easily solved. How­
ever, it is quite difficult to extract the quantities of in­
terest to us from the explicit solution. We propose be­
low a technical device which enables us to calculate the 
dependence of the average velocity and the spectral in­
tensity of the energy dissipation on the external force. 

3. SOLUTION OF THE EQUATION OF MOTION 

We use the fact that the quantities eimy(t), where 
y = 27fxl a and m is an integer, can be represented in 
the form 

~ 

eimy(t)= .E CmveiliJo'Vt. 

The coefficients e~ should satisfy the conditions 

. 
Co"=6",oJ C:'+n=.E cm"C:'-" . (5) 

Multiplying the reduced equation (2) by eimy(t), we ob­
tain the following finite-difference equation for ern: 

m[ Q~ _~(e8/8m_e-'/8m)] C '=VW C • (6) 2i' mOm. 

Here eCt 51 am is the operator for shifting the index m 
by a: 

To solve the recurrence relation (2), we use the method 
of generating functions. We introduce the notation 

(7) 

In expression (7), the variable z ranges from -1T to 1T. 

Equation (6) is transformed into 
a 

-io;-[ (Qo+Qsinz)<D:J=vwo<D:. (8 ) 

Equation (8) can be easily solved. 

C S· dz , { a dtg(zI2)-1 } Cmv=_ · ___ e-1mXexp 2iv~arctg , 
2Jr_.d+sinz l'd'-l' l'd'-1 

(9) 

where d = no/n and a = wo/n. The constant e should 
be obtained from the normalization condition (5). The 
first equation of (5) can be fulfilled if the following re­
lations hold between the average velocity of motion of 
the dislocation v and the external force f: 

/=F.l'H (BuIF.) 2. (10) 

Here e = v'<f2=1. It is easy to verify that relation (10) 
with allowance for formula (9) satisfies the time­
averaged reduced equation (2). 

The integral (9) can be taken at arbitrary values of 
m and II. We shall need subsequently an expression for 
e~ - e~l: 

C • C '--2' I (Wo-Qo) (Q-iwo) ]. (11) 
,- -, -!a QQo ,V>O. 

The analytic relation (10) for f( v) in the case of a 
sinusoidal barrier differs from the corresponding ex-
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pression for a piecewise-parabolic barrier, obtained 
in[5J: 

/=F.cth (F./Bu). (12) 

However, as seen from the figure, curve 1, calculated 
by formula (10), lies quite close to curve 2, calculated 
by formula (12). As expected, the largest deviation be­
tween the curves is obtained for comparable values of 
f and F 1T • When f» F1T we obtain in both cases the 
same asymptotic relation f ~ Bv. 

The oscillations of the Peierls force in time give 
rise to a field of elastic oscillations, the excitation of 
which consumes part of the dislocation energy. If we 
disregard the broadening of the spectral line due to the 
interaction between the moving dislocation and the 
lattice defects of other types of energy barriers, then 
the oscillation field consists of monochromatic lines 
with frequencies that are multiples of woo It is conven­
ient in the calculation to introduce a finite line width, 
which is then made to approach zero in the final expres­
sion. To this end we add to the frequency of the oscilla­
tions the term iO, 5 = +0. 

The spectral density of the energy dissertation is 
proportional to the correlator of the Peierls forces 

-
R(w)=Re S dte'·'R(t), 

" 
where 

R(t) = lim F.' sin y(t+'t,)sin y(t,). 

(13) 

The correlator R( w) is expressed in terms of ern as 
follows: 

F 2 1 
R(w)=-4-' \'1IC"-C_"1 2 -,-c--( -+--+-.-.)-, ~ -l W roo"· lu (14) 

where it is necessary to take in the final expression the 
real part of -1/i(w + Wo + i5), i.e., 1TO(W + WolI). USing 
expressions (14) and (11), we can find the relation be­
tween the intensity of the energy dissipation by the oscil­
lations with various harmonics: 

R(w=woi) (.!.... _ 1/ f -1) 2«_;) (15) 
R(w=woj) F. V F.' . 

It is seen from (15) that if the constant external force 
is comparable with the amplitude of the Peierls force, 
then the motion of the dislocation has an essentially 
non - single - mode character. 

The author is grateful to V. 1. Al'shitz and V. G. 
Bar'yakhtar for a discussion of the work and for valu­
able remarks. 
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