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A consistent analysis of the kinetic equation in the quasicontinuous energy distribution approximation for 
conduction-band electrons is performed by taking into account intraband scattering by phonons at 
arbitrary dispersion laws. The choice of boundary conditions is analyzed. The breakdown criterion and the 
effect of spatial diffusion of the electrons are investigated. The temperature dependence of the critical field 
strength is studied. Concrete estimates are presented for the electron-avalanche development time. 

1. INTRODUCTION 

The development of an electron avalanche in the con
duction band was first considered in the approximation 
of the Fokker- Planck equation in [lJ. A qualitative exam
ination of the influence of the energy losses in intraband 
scattering of electrons by phonons was carried out in [2J. 

In addition, certain features of the development of an 
electron avalanche under the influence of a very strong 
electromagnetic field were clarified in [3 J • In this paper 
we propose a general method of solving the kinetic equa
tions, which makes it possible to obtain concrete esti
mates of the avalanche-development constant and of the 
critical value of the electromagnetic field, to analyze the 
temperature dependence of the indicated parameters, 
and also to find the amount of energy transferred to the 
lattice by the conduction-band electrons in a strong elec
tromagnetic field, as the result of which it is possible to 
formulate a physically verified criterion of optical dam
age. 

The mechanism whereby a pure transparent dielectric 
is damaged can be visualized in the following manner: 
The multiphoton processes of ionization of the valence 
electrons in the conduction band gives rise to a certain 
initial number of electrons. These become accelerated 
in the field of the electromagnetic wave and reach an 
energy exceeding the ionization energy, and thus initiate 
the cascade process of multiplication. Damage takes 
place if the electron-number density reaches during the 
time of action of the pulse the critical value at which the 
energy absorbed by the electrons and transferred to the 
lattice is sufficient for the development of irreversible 
processes. 

The acceleration of the electrons in the field of the 
light wave can proceed in different manners. Let w be 
the frequency Qf the electromagnetic radiation, and T E 

the characteristic relaxation time of the electrons along 
the energy axis (T E is smaller by approximately two 
orders of magnitude than the relaxation time of the elec
tron momentum over the directions in collisions with 
acoustic phonons). In the case when w » lirE' the en
ergy acquisition by the electron is either due to suc
cessive collisions with the photons and phonons, or to 
multiphoton absorption processes in the conduction band. 
The first case, neglecting the energy lost by the elec
trons in the collisions with the phonons, was considered 
in [lJ, while the second was considered in [2J, where it 
was shown, in addition, from qualitative considerations, 
that if the kinetic-equation terms that describe the elec
tron-phonon interaction are discarded beforehand, the 
threshold values of the damage-inducing field may be 
greatly underestimated. We shall show below that these 

897 SOy. Phys.-JETP, Vol. 40, No.5 

considerations are valid, but the critical field values ob
tained from a consistent solution of the kinetic equation 
in the Fokker-Planck approximation are still much 
smaller than the critical fields indicated in [tJ for multi
photon processes. 

The general method of determining the critical field 
and the duration of the process of cascade ionization is 
described in Sec. 2. The only assumption in this case is 
liw « I, where I is the ionization potential. In Sec. 3 are 
given concrete estimates of the critical field for the 
physical region of the spectrum, when it is possible to 
investigate analytically the general equations of Sec. 2. 

In the other limiting case, w « lIT E' the processes 
in the conduction band do not differ in main outline from 
the processes in a constant electric field [4J. The region 
w ~ lIT E' just like the region Iiw «I, requires further 
investigation when the Fokker-Planck approximation is 
not applicable. In Sec. 3 we analyze also the dependence 
of the critical field on the temperature. 

In Sec. 4 is presented the solution of the kinetic equa
tion in the region E > I (E is the electron energy); this 
solution is necessary to analyze the correctness of the 
boundary conditions formulated in Secs. 2 and 3. In Sec. 
5 will be investigated the question of the absorption of 
the energy by the conduction-band electrons, and the 
critical density llcr of the number of electrons will be 
determined; by the same token, a breakdown criterion 
will be formulated. Finally, in Sec. 6 the effectiveness of 
the spatial diffusion of the electrons and its influence on 
the cascade ionization process are estimated. 

Since the solution of the kinetic equation obtained in 
Secs. 2 and 3 leads to a very peculiar-very strong-de
pendence of the duration of the development of the 
process on the intensity of the electromagnetic radiation, 
we specially discuss the questions connected with this 
dependence in Sec. 7. 

2. SOLUTION OF KINETIC EQUATION IN THE 
REGION E < I 

We shall henceforth consider electromagnetic-radia
tion pulses of duration from 10-10 to 10-7 sec, so that 
recombination processes, which are apparently charac
terized by times Tp > 10-7, can be neglected. 

Assuming Iiw « I, following the usual procedure of 
changing from the kinetic equation to a diffusion equation 
of the Fokker- Planck type [5, 6J , we can obtain the follow
ing equation for the electron energy distribution function 
f(E, t): 

a af(e, t) 
--(g(e)S(e,t»=N,g(e)--+R(e,t;f). as at (1) 
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Here 
iJf(e, t) 

S(e, t)=-D.(e)-a-e-- Q'(e)f(e, t), 

g(E)S(E, t) is the flux of the electrons through an equal
energy surface E, D1 (E) is the coefficient of diffusion 
along the energy axis, QO(E), as shown in [6J, is the power 
loss due to the spontaneous emission of the phonons, 
g(E) is the density of the number of states, 2Ni/3 is the 
total number of states with energies E ~ I, and It(E, t; f) 
is the term describing the outflow or inflow of electrons 
as a result of ionization. The diffusion coefficient D1 (E) 
can be reduced to the form [2 ,3J 

D.(e)=D.(e)ij'(e) (1+ij(e»=D(e) (1+q(e» (2) 

and analogously 

Q'(e) =Qo'(e) ij'(e), (2a) 

where Do(E) and Qg(E) are the corresponding coefficients 
in the absence of an electromagnetic field, 

4 I 

ij'(e)="3 S (1-~3)I,2(H~)d~, (3) 
, 

1 ~ ( lhO) ) 2 s· 
ij(e)= ij'(e) ~ v.p(e) (l-~)I.'(H~)~, 

I , (3a) 
H=2eEp(e)/hmO)', 

Jz is a Bessel function, Vs is the speed of sound, p(E) is 
the quasimomentum of an electron with energy E, E is 
the effective value of the electric field acting on the elec
tron, and e and m are respectively the charge and effec
tive mass of the electron. In this expression, account is 
taken of the contribution of the multiphoton processes in 
the conduction band to the diffusion coefficient along the 
energy axis. Strictly speaking, relations (2) and (3) are 
valid only in the high-temperature approximation, kT 
» vsp, and in the low-temperature approximation 
(kT «v~p) the expression for q(E) acquires an additional 
factor 5/4, which will henceforth be disregarded. 

The form of Eq. (1) is significantly different in the 
regions E < I and E > I, inasmuch as at E > I the term 
R(E) is significant (it is essential to taken into account 
the outflow of the electrons as a result of ionization), it 
is precisely this process which governs primarily the 
distribution function, whereas in the region E < I it is 
important only in the vicinity of the point E = 0 and can be 
taken into account in the boundary conditions [4J. 

From the solution of Eq. (1) in the region E ~ I we 
can determine the quantity 

a=S(I)/f(I)Q'(I) . (4) 

If the quantity a is known, Eq. (4) is in fact the first 
boundary condition for the region E ~ I. We shall deter
mine a in Sec. 4. 

It will be convenient subsequently to change over to 
the dimensionless variable x = dI and use all the func
tions of E, introduced above, as functions of x without a 
tilde, so that the coefficients D(x) and QO(x) will have the 
dimension sec -1 after division by the corresponding 
power of I. 

We seek the solution of (1) in the form 

I(x, t)=e"/(x). 

In the time interval of interest to us, the condition 

"Y<Q'(x),D(x) 
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(5) 

(Qo(1) » 1012 sec-I) is satisfied with large margin, with 
the possible exception of the very narrow region 
x < [ y/Qo(1W, which turns out to be eVEln narrower than 
the region where the distribution function is governed 
mainly by the influx of electrons as a rElsult of ioniza
tion. The width of the latter is Xo, and formulation of the 
boundary conditions connected with this width will be 
discussed later. It follows from the foregoing that a good 
approximation for the rate y of the casc:ade-ionization) 
process can be obtained from the following successive
approximation procedure: 

In Eq. (1), after substituting (5), we put yo = 0 and ob
tain the zero-order approximation for the distribution 
function fo(x); with the aid of the bounda.ry conditions we 
determine the first approximation for Yl and obtain f 1 (x), 
substituting y 1 f o(x) in the right-hand side of (1), etc. 

In accord with the foregoing, we rewrite (1) in the 
form 

a 
iJx {g(x) [D(x) (1+q(x) )/,' (x) +Q'(x)f(x) ]}=o, (6) 

so that 
,Q'(x) S(l)g(l) 

I, (x)+ D(x) (1+q(x» /,(x)=- g(x)D(x) (1+q(x» , 

and, taking (4) into account, we obtain 

{ S" g(l)Q'(l)} 
/,(x)=/(1)exp{-F(x)} 1-a. dyexp{F(y)} g(y)D(y) (1+q(y)) ,(7) 

where 
F(x) = S Q'(y)dy 

D(y) (1+q(y» , 
We now consider the narrow region x < Xo. The exact 

form of the distribution function in this region does not 
play any role in the determination of y, since Xo < 10-2 

« 1 (see (22)). For the flux So = gS we have 

S(O, t)-S,(x" t)=-2S,(1, t). (8) 

In So(O, t) it is possible to take formally into account the 
processes of nonradiative recombination [4J . At So(O, t) 
= 0 and Xo - 0, we obtain the usual "flll'{ doubling" 
boundary condition [5, IJ : 

S,(0)=2S,(1). (9) 

Neglecting the recombination processes, the requirement 
So(O) = 0 is equivalent to the requirement that the func
tion g(x)f(x) be finite at x = O. This condition is obviously 
not satisfied by the boundary conditions (9), but again, 
owing to the smallness of Xo, the relative error turns out 
to be small-it is determined by the ratio 

., . 
S /(x)g(x)d:x / S f(x)g(x)d;~, 
, " 

which, as shown by concrete numerical calculations, 
does not exceed 5% at Xo < 10-2 • 

We next carry out the procedure of finding the first 
approximation for y: . 

S,(x,)-S,(1)";""y.NiJ g(x)j,(x)dX, x,~o, (10) 

or, taking (8) and (4) into account, 

/ SI !.(x) 
"y.=Q'(1)a ., g(x) /,(1) dx, x,~O. (11) 

Relations (7) and (11) give the cascade-development 
constant in first-order approximation. If necessary, the 
next higher approximations are constructed analogously. 
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3. ESTIMATES OF THE CRITICAL FIELD IN THE 
VISIBLE PART OF THE SPECTRUM. DEPENDENCE 
OF THE CRITICAL FIELD ON THE TEMPERATURE 

The formulas of Sec. 2 enable us to find, with the aid 
of numerical calculations, the dependence of the develop
ment constant of the cascade-ionization process on the 
value of the electric field in the electromagnetic wave in 
the entire range of frequencies satisfying the relation 

k/T.<.1tro<.f, 

at arbitrary values of the dispersion. For concrete 
estimates, we shall dwell on the case 

H<.1, 

and then we obtain from (3a) 

qO""1, q",,'I.(eElmlJ.ro)', 

(12) 

(3b) 

which coincides with the analogous expression in [2J. 
Usin\ the corresponding expressions for Do(E) and Q8(E) 
from 6J in the parabolic-band approximation, and also 
expressions (2) and (3b) of the present paper, we obtain 
in accordance with (7) 

{1-X}( a's 1 {y-1}) !0(x)=!0(1)exp -6- 1-6 , !i'exp -6- dy , (13) 

6=(Hq)kT/f (kT>lJ,p(e»; 

{ 1-l'X} [ as"1 {l'Y-1}] io(x)=/0(1)exp 2-- 1-- -exp 2-- dy 
60 110 y'/' 60 ' , , 

(14) 

8mlJ, 
60 =---=-(Hq) (kT<'lJ,p). 

5l'2mf . 

The approximation (14), which corresponds to the "zero
point oscillations" of the lattice, can obviously not be 
used in the entire region E < I. 

Bearing (11) in mind and estimating the obtained in
tegrals at 0 « 1, we get 

QO(1)oe-l/· 
ll"'r('I,) (Hrcr) (kT>lJ,p). (15) 

Here r ~ 1, 

Q'( 1.) =2m'B,'y2ml/1tp1t', 

p is the density of the dielectric, and 1,\ is the constant 
of the deformation potential. The limiting case 0 » 1 
leads to an expression for y which coincides exactly 
with the corresponding expression of [1J. (In the boundary 
condition (8) it is possible to introduce in obvious fashion 
the probability of the electron "jumping over" the excita
tion region.) 

Let us make a few remarks and consider the conse
quences of the foregoing results. 

1. The boundary-value problem of the "flux doubling" 
type and with f(l) = 0 leads in the high-temperature ap
proximation, for a parabolic band, when the asymptotic 
solutions at 0 « 1 are considered, to the following equa
tion: 

or 

with the estimates 1/8 :5 a::5 1/2 obtained for a. Thus, 
the first approximation obtained above for y can be 
somewhat underestimated (but not overestimated!) in 

899 Sov. Phys.-JETP, Vol. 40, No.5 

comparison with the exact solution of the boundary-value 
problem of the type described in [5 J, which unfortunately 
cannot be expressed in terms of known functions. 

2. We assume the following values of the parameters: 
T = 300o K, p = 3,8 g/cm 3, Vs = 8 X 105 cm/sec, Iffl 
= 11 eV, 1= 9 eV[lJ, liw = 1.17 eV, T = 3 X 10-9 sec, 
m = me' r = 1, and (] - 00. Using the" 40 generations" 
criterion, we obtain from (15) E ~ 1.3 X 107 V/cm. Under 
these conditions and at T = 3 X 10-8 sec, the estimates [2J 
for the multiphoton processes turn out to be mqch higher. 
The dependence of y on E in the form y ex: e -1/0 was 
indicated from qualitative considerations inC 2J , but it was 
concluded that the critical fields exceed by one order of 
magnitude those indicated above. Unfortunately, these 
results cannot be compared with the available experi
mental data, since the effective value of the electric 
fields in the experiments remains unknown, owing to the 
influence of self-focusing. We indicate only that the 
limiting subcritical fields in pure sapphire crystals 
amount, according to the latest data, to 8 x 106 V /cm at 
T = 3 x 10-9 sec. 

3. The possible order-of-magnitude agreement be
tween the estimates of the present paper and the critical 
values typical of short pulses of strong constant electric 
fields is not more than an accident, since in the case of 
optical fields an important role is assumed by the sym
metrical part of the distribution function which, as is 
well known, makes no contribution to the flux along the 
energy axis in the case of a constant electric field. 

4. Under the influence of the electromagnetic field, 
the average energy of the electrons becomes 
~ (3/2)kT(1 + q). In fact, integrating by parts the expres-
sion 

A = j ( l' x r'" J y-'eY" dy) dx, 
o , 

we obtain 

•• 32M3 
k'f S ( :,;"'e-'/' S y-'ev/' dy) ax = -ZkT(Hq)+T '" TkT(Hq), 

o , 

since A » 1. In many cases it turns out that kT (1 + q) 
~ Eo, where Eo is determined from the equation 

(Hq)kT=lJ,p(eo), (16) 

and the use of the high-temperature approximation may 
turn out to be unwarranted. As already noticed, it is im
possible to solve the equation for f(x) in the approxima
tion kT «VSp(E) for the entire conduction band; per
forming the corresponding cutoff near x = 0, we obtain 
the following estimate for 00 « 1: 

o 2Q°(1)aexp{-2!60} 

'(, = 6o'(1+3rcr) . (17) 

In a field E = 1.1 X 107 V/cm, we have y ~ 2 X 109 sec-1 
and yO ~ 3 X 1010 sec-I. At yO = 2 X 109 sec-t, the critical 
field is Ecr = 9 x 106 V /cm in the "zero-point oscilla
tion" approximation. It follows therefore that the high
temperature approximation can be used if Ecr.high-temp 

< Ecr.low-temp' This corresponds approximately to the 
criterion 

T>T,; kT,=lJ,p[kT,(Hq)]' (18) 

the meaning of which is clear from the foregoing. At 
1= 9 eV, m = me (the mass of the free electron), and Vs 
~ 106 cm/sec, the high-temperature approximation is 
valid at T »300o K at the frequency w ~ 1015 sec-I. 
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5. Since (17) gives a value that does not depend on the 
temperature, and the high -temperature approximation 
leads to the relation 

(19) 

we can expect a weak dependence of the critical field on 
the temperature up to the value Tl defined by the condi
tion (IS); at higher temperatures, Eq. (19) is valid. To 
obtain more exact results in particular cases it is 
reasonable to solve the equation in two regions: p(Eo) 
S kT /v S' after which the solutions are matched at the 
point Eo determined from (16). 

6. At sufficiently high electron energies, the spectrum 
of the phonons with which they interact can be cut off not 
at the value ~2p(E), as assumed above (see, e.g., [3J ), but 
at the limiting value of the phonon quasimomentum qDeb' 
If umklapp processes are forbidden, this leads to the 
following expressions: 

kTQ,"(e), kT':Pv,p(I) (20) 

, 21'2 m"'e c;8,' 
Q, (e)= Ii' 'I ' e>ecr, 

np e' 

where Ecr = (k® )2/Smv~ and ® is the Debye temperature. 
The solution of Eq. (1) with the indicated quantities leads 
approximately to the same values of Ecr as before. 

4. SOLUTION OF KINETIC EQUATION IN THE 
REGION E >1 

Our task is now to find the previously introduced 
parameter (J. We consider in somewhat greater detail 
the low-temperature approximation, since in most cases 
of interest the condition kT < v sp(I) is satisfied. 

If we assume for the ionization probability an expres
sion of the type (D4) of [4J , then Eq. (1), after suitable 
substitution of (5) and neglecting the term ~y/Qo(I), re
duces to 

a -
_(6,X"'f'(X) +x'j(x)) =Q1'x(x-l)f(x), '(21) 
ax 

where the dimensionless quantity Q ~ 10l6/Qo(I), and 
under the previously employed conditions Q ~ 3 X 103 • 

We use the parabolic-band approximation. The value of 
00 is defined by (14) and 60 ~ 0.15 in fields on the order 
of 107 V/cm. Making the substitution 

f(x) =exp (ay)y'u(y), y=1'x, 
v=-'/,+21]i, a=-[H(H4Q6,)'I']/6" 

11= (Q/6,-'/,.) 'I, 

(Q/6 0 > 104 and 1) ~ ..JQ!l5o), we reduce (21) to the stand
ard form of the confluent hypergeometric equation 

(H4Q6 )'1, 1 
yun + [ (H41]i) -2y ,] u' - -[ (1 +4Q6,) 'I, (1 +41] i) -4] u=O. 

6, 6, 

The solution f(x) of the initial equation with the asymp
totic form 

f(x) ..... O as x ..... OO 

takes the form 

f(x) =C ( 2 (H::6,) ') ", (y-;) -'1.+", exp{ _ H (1:,4Q6o) '''} 

x W (~41]i _ 2 H4 i' 2( (H4Q6,)xJ'f' ). 
2, (1+4Q6o) 'I, ' '1 , 6, 

(22) 

We note that the region where f(x) differs significantly 
from zero has a width ~x ~ (Q/oo)1/2 "" 10-2, which justi-
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fies the assumption made above concerning the smallness 
of the quantity Xo (see[8J ). 

For the quantity (J we have 

(1=- (6,f'+f)lflx_" 

with 

W'(a,c;z) = W (a,c;z) - W (a,c+l;::). 

To estimate (J under conditions when 2/(1 + 4Q6 0)1/2 
« 1/2 or Ql50 ~ 4, we write [7J 

( 1'"X) (( H4Q6, ) "') f(x)=Cexp -~ x-"'K", -6-,' -x . (22a) 

It is impossible to put (1 + 4Q60)1/2 ~ 2(QOO)1/2 directly 
in the argument; we have neglected in fact only the quan
tity I/Q compared with unity, since the first parameter 
of the function >J! contains a pure imaginary quantity with 
large absolute value 1), and the ratio of the neglected 
quantity to the modulus of the remaining quantity is I/Q 
<R: I/QOo. We can use next the asymptotic form of the 
Bessel function of imaginary argument and pure imagin
ary order Kip(z) as p - 00, z - 00 and at z > p (in our 
case Z2 - p2 ~ 0~2). From the expansion of the hyper
geometric function in Bessel functions :it follows also 
that to change over from (22) to (22a) it is necessary to 
satisfy the condition 15 0 » (2Qrl/2. Under the indicated 
assumptions, which are usually valid at the parameter 
values of interest to us, we obtain the estimates 

(1~Q6o'-'/" (23) 
and in most cases it can be assumed that (J ~ 1. 

In the high-temperature approximation we can obtain 
in analogy with the foregoing 

f( x)=cexp (-1-(H4Q6)'I,)W(_ QH. +12' (H4Q6) 'I. x) 
26 (H4QIl)' " 6 

(the ionization probability is written in the form 
~ (x - l)x- 1/2). Under the conditions 0 ~~ 1, Q » 1, and 
QI5 » 1, we can use the asymptotic form of the confluent 
hypergeometric function >J!(a, c, z) as a - 00, z - 00 

(see [7l, formulas (6), (13), and (25». For (J we obtain 

(1"'~1'Q6[1- K'I.(l;2) (l=-) '1' __ 1 ], 
2 K'I.(W ~, 1'Q6 

where 

e = (1-46)'1' (HO(_1 )) 
~'12Q6' Qo' 

_ (1-46+46(1+4Q6)'/') 'I, 
~2-~' 1-46 

At Q = 3.5 X 103 and 0 = O.OS we get (J ~ 3. 

We note also that the "no-threshold ionization" dis
cussed in [2J , can play an important role in the process 
under consideration. First, it can lead to an increase of 
the parameter (J. Second, it decreases, as it were, the 
ionization potential and one can speak of an "effective 
ionization potential" 

leff =l-IIi(jJ, 

where the quantity I characterizes the order of the multi
quantum processes that lead to an appreciable ionization 
probability in the given fields. For fields ~ 107 V /cm we 
have I = 1-2. 

5. ENERGY ABSORPTION AND LATTICE HEATING. 
BREAKDOWN CRITERION 

The amount of absorbed energy per unit time, as seen 
from (1), can be expressed in the following form (high-
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temperature approximation, parabolic band): 

a~ (IN,S x~'f(X,t)dx)4 =N,Q"(1)J6 S x oax (x' :!)dx 
(24) 

=2N,QO(1)JlI S xf(x)dx~2NQ"(1')16·/·. 
We have integrated twice by parts, using the relation 
N = Ni J v'Xf (x)dx and the properties of the integrals (13). 
It was assumed here that f(x) - 0 and af/ax - 0 at 
x - 00, i.e., the matching at the point x = 1 was effected 
in the correct manner, and we have then neglected the 
integrals in the interval x ~ 1. The + subscript in (24) 
indicates that it is necessary to take the term responsi
ble for the energy absorption from the left-hand side of 
(1). The fraction of this energy is of the order y/Qo(l) 
and goes to increase the number of particles in the sys
tem, while the remainder, which is practically equal to 
the expression written above, goes to heating of the 
phonon field (and to acoustic phenomena of all kinds). 

Let us estimate the number of electrons needed for 
an appreciable heating of the crystal. Neglecting the 
diffusion of the heat from the interaction region, we have 

.:!!..=2Q'(1)ln(~)'"T''' dn=~n (25) 
dt Cp To 'dt' . 

Here C is the specific heat of the lattice, To is the initial 
temperature, the value of () was calculated at the tem
perature To, so that the temperature does not enter in 
practice in the round brackets). 

The solution of the system of equations (25), which 
determines the dependence of the temperature on the 
time, has a vertical asymptote (T - 00 as t - t 1). It is 
reasonable to assume that the pulse duration T necessary 
for the damage is T = t1 - to (to corresponds to the start 
of the action of the pulse). We then obtain the following 
equation for the determination of the cascade-develop
ment constant y (and, in fact, the correct damage criter
ion): 

( ,Cp 1 ) 
''t=ln 1 + . 
, QO(1)J(8/To)'/'T,'" no (26) 

Here no is the initial concentration of the electrons, and 
y as a function of the field is determined by the relation 
(11). 

At To = 3000 K and QO = 7 X 1012 sec-1 (under the con
ditions described in Sec. 3 above) we have Ci = 0.08, 
which corresponds at the indicated temperature to a field 
E ~ 107 V /cm, C = 0.18 cal/g-deg (sapphire), we have 
y ~ 109 sec-1 and yT ~ In(4 x 101s/no). 

The occasionally employerl"yT = 40" criterion corre
sponds, as we see, to an initial electron-number density 
no ~ 20 cm -3, and the "40 generation" criterion 
(240 ~ 1012) corresponds to no ~ 106 cm-3. In real crystals 
we can expect values 1011_1013 cm- 3 and even higher, 
owing to the Single-photon ionization of the impurities or 
to heating of the absorbing defects. 

6. SPATIAL DIFFUSION OF THE ELECTRONS 

The coefficient of spatial diffusion of the electrons 
turns out to be relatively small, even if we disregard the 
small mobility of the holes: 

D =+I.,V •• -I •• [ (1+q}kT/mJ"'. (27) 

Here lae is the average electron mean free path. At 
T = 300o K, E = 107 V/cm, and lae ~ 10-6 cm we obtain 
D ~ 30 cm2/sec. However, since the time of development 
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of the cascade-ionization process depends very strongly 
on the values of the field E, 

,-'-10-" exp (G/E') sec, 

61 (mv.CiJ)' 
G= j kT _e ' kT>v.p(e) 

_151'2ml (mv.CiJ )', 
2mv, e kT«'v.p(e) 

(28) 

it follows that at any spatially non-uniform distribution 
of the density of the electromagnetic radiation there can 
occur, as the cascade develops, initial electron-density 
gradients an/ar (r is the spatial coordinate), and this 
gives rise to more or less strong diffusion fluxes. 

We consider by way of estimate a cylindrically-sym
metrical problem. The equation for the electron-multi
plication process can be written in the form 

a ( iJn ) a - r-D +r,(r)n(r}=-(rn(r,t». 
Or fir at 

(29) 

Let the distribution of the field in the beam be given in 
the form 

E'=E,' exp (-trr'/d') , 

and then 
q=qoexp (-4r'/d') 

(d is the diameter of the light spot), and let the process 
develop within the limits R < d/2. Integrating (29) term 
by term we obtain 

o R iJ R 

( r~D) +S r,(r)n(r, t}dr = -S m(r, t)dr. (30) 
8r T=R 0 at 0 

The quantity 
a R 

a;;2nl S rn(r,t}dr 

° 
describes, obviously, the change in the total number of 
particles in a cylinder of radius R and length 1. If the 
diffusion process is "turned off," then at the instant of 
time t we have n = noexp{ y(r)t}, and the first term in 
(30) becomes 

( r~D) ~RD(~!l!:£) ~_8R2DtGn(rh(r). 
Or '~R 0, oq or .~R d'E' 

We apply to the second integral the mean-value theorem 
R 1 S q(r)n(r,t}=-n(R'§h(R'£}R'. 
o 2 

Here 0 < ~ < 10 It is clear that the diffusion processes 
are significant when both terms of the left-hand side of 
(30) become approximately equal to each other within the 
time of action of the pulse t = T, i.e., when 

16DG,; n(Rh(R) "" 1. (31) 
E'd' n(R'§h(R,§) 

We introduce the quantity dcr from relation (31) at ~ = 1: 

dcr'=16DG,;/E'. 

Since we always have n(R)y(R)/n(ROy(~) < 1, it follows 
that at d > dcr the condition (31) cannot be satisfied, 
and the diffusion processes are inSignificant. Then n(O) 
» n(d/2) and R «d/2. To the contrary, at d « dcr' the 
spatial diffusion leads to a slowing down of the electron 
multiplication process, the process development time 
becomes dependent on the diameter of the light spot, n(r) 
~ n(O) in the entire region r "" d /2, and experiment should 
reveal a eomplete cutoff of the momentum of the trans
mitted radiation as a result of the strong absorption of 
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the electromagnetic energy by the electrons in the entire 
volume of the caustic. 

U_nder the conditions described in Sec. 3, dcr >::! 2 
x 10 3 cm and we can expect damage to occur in a region 
with radius on the order of several microns. 

7. DISCUSSION OF RESULTS 

We note that under the conditions of Sec. 3, at a field 
value 7.5 X 106 V /cm, the cascade-development constant 
is approximately 3 x 107 sec-\ and in a field 9 x 106 V/cm 
we have 'Y >::! 3 X 109 sec-t, whereas at 1.2 x 107 V /cm we 
have 'Y >::! 3 X lOll sec-l. We have used (17), i.e., the low
temperature approximation, We see that small changes 
in the effective field in the light wave give rise to ap
preciable changes in the duration of the process. Resort
ing to the usual terminology, but which we see to be quite 
inaccurate in the present situation, we can state that the 
critical field is practically independent of the pulse dura
tion in a rather wide range. 

Let us examine in greater detail the process of the 
occurrence and development of the cascade in a real ex
periment. 

With increasing field in the pulse-the leading front
multiphoton ionization takes place (in real crystals, in 
addition, single-photon ionization of the impurities takes 
place), and E reaches a value Ecr such that the process 
terminates within a time on the order of the entire dura
tion of the pulse; then, after a very short time interval 
Atl « T, we get E > Ecr and the cascade-development 
process, after abrupt acceleration, terminates within a 
time At « T-the pulse of the transmitted radiation is 
cut off. The time of formation of the "cutoff' will depend 
mainly on the slope of the pulse front. Thus, cascade 
ionization is characterized by cutoff on the leading front 
of the electromagnetic-radiation pulse, and its duration 
depends on the rise time. This situation is observed in 
laser damage of pure samples and is apparently connec
ted with the indicated feature of the development of the 
electron cascade. 

The high-temperature approximation leads to analog
ous results. 

As we have seen in Sec. 3, at sufficiently high tem
peratures we can expect the square of the critical field 
to be inversely proportional to the temperature. We note 
that it follows from the results of Sec. 5 that a similar 
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dependence appears also in the case when the damage to 
the dielectric is due to purely thermal phenomena that 
are connected with the appearance of a large number of 
electrons in the conduction band (breakdown of a dielec
tric containing many impurities in an optical field). 

From the results of Sec. 3 we can draw no conclusion 
concerning the character of the dependence of the critical 
field on the frequency. The analysis carried out there is 
valid only for a narrow region of frequenCies, bounded by 
the conditions 

2eEp/m(fJ~hOl~I, 

the first of which is not sufficiently wen satisfied even 
in the case of a neodymium laser. Preliminary calcula
tions in accordance with the general formulas of Sec. 2, 
as well as an analysis of expressions (a), shows that one 
can expect a rather weak dependence on the frequency in 
the region w < 105 sec-l. On the other hand, the region 
tiw ~ I, as indicated in the Introduction, calls for special 
investigations. It can be assumed, however, that the 
possibility of ionization by an electron after absorption 
of only two or three light quanta leads approximately to 
the same thresholds as in the considered frequency band. 

In conclusion, the author is sincerely grateful to 
academician A. M. Prokhorov for a valuable discussion 
and for interest in the work, and also A. A. Manenkov 
and Yu. K. Danilelko for constant help during its prepara
tion. 
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