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An asymptotic method is proposed for determining the long-wave localized characteristic vibrations of 
a one-dimensional anharmonic chain in the case when nonlinear stationary waves in such a chain are 
unstable. The frequencies of the self-localized vibrations can lie both below and above the band of 
vibrational frequencies of the corresponding harmonic chain. The magnitude of the splitting of the 
vibration frequency from the edge of the continuous harmonic-approximation spectrum is the small 
parameter that makes it possible to obtain an asymptotic expansion of the solution of the nonlinear 
vibration equations. 

INTRODUCTION 

Crystal-lattice mechanics often reduces to the analy
sis of one-dimensional models, both because of the 
simpliCity of obtaining exact results and in connection 
with the study of objects for which one-dimensional 
dynamics is a very good and adequate approximation. 
In particular, the widely-known one- dimensional mode I 
of Frenkel and Kontorova (1) for a dislocation in a crys
tal is used for the first reason, and a model of kinks in 
dislocations that is practically equivalent to the latter 
model in the mathematical sense is usually considered 
for the second reason. 

In the Frenkel-Kontorova model a one-dimensional 
atomic chain is assumed to be situated in an external 
periodic potential field, which models the influence of 
the three-dimensional crystal on the selected row of 
atoms. If un is the displacement of the atom with label 
n, then in the approximation of a harmonic interaction 
between nearest neighbors the equation of motion of the 
atom considered has the form 

d'u n , au 
-d' +x-(2u,,-u,,+,-u,,_,)-F,,=O, mF"=-a-

t u" 

where m is the mass of the atom and U(u) is a periodic 
function whose period is taken to be equal to the equili
brium distance a between neighboring atoms. We denote 

F n~a(iJu'!(u"la), 

thus introducing a minimum frequency Wo of the har
monic vibrations of the chain, and a dimensionless force 
f. We shall measure the displacements in units of a, and 
the time in units of 1/wo• Then the equation of motion of 
the chain can be written in dimensionless variables: 

(1) 

where b = K/Wo is the characteristic dimensionless para
meter defining the ratio of the forces of the interatomic 
interaction along the chain to the force of the external 
potential. 

The entire nonlinearity of the model formulated is 
contained in the function f(u). We shall assume that for 
small displacements (u« 1) the function f(u) is linear: 
f(u) = -u. In this case, small harmonic vibrations of the 
chain under consideration have the dispersion law 

(iJ'=2b'+1-2b' cos k. (2) 

The dispersion law (2) describes the band of frequencies 
of the optical vibrations of a one-dimensional crystal, 
and therefore the presence of a gap is characteristic for 
it: w(O) ==:.v o = 1. 
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Being interested in vibrations with frequencies near 
the lower band-edge (i.e., the long-wave vibrations), we 
can replace the difference equation (1) by a nonlinear 
Klein-Gordon differential equation: 

a'u a'u {jf-7h'- f(u)=O, (3) 

where x is the coordinate along the chain, in units of 
ba = Ka/Wo. Equation (3) is widely discussed in the theory 
of crystal lattices, in nonlinear optics[21, field theory[3) 
and other branches of physics. In crystal-lattice me
chanics one is usually interested in the solutions of the 
nonlinear equation (3) that describe displacements of 
the order of the lattice constant(4), i.e., u ~ 1. However, 
for small displacements too (u « 1), Eq. (3) can des
cribe essentially nonlinear phenomena, e.g., the self
localization of the characteristic vibrations. We shall 
be interested only in solutions of this type, and, there
fore, shall assume the displacements u to be small. 

Taking into account the smallness of the displacements, 
we expand f(u) in a series in powers of u, confining our
selves to the first terms of this expansion: 

I(u) = -u+au'+~u3. (4) 

It is clear that all the results look simplest for a sym
metric potential U(u), when Ci = 0, but we shall also dis
cuss the general case in which the chain has no center of 
inversion, when Ci 10. 

In Sec. 1 an asymptotic method is proposed for finding 
the localized vibrations of Eq. (3) with the force (4). The 
frequencies of these vibrations lie in the forbidden band 
of the spectrum of the harmonic vibrations (w < Wo = 1), 
and the amplitudes of the corresponding vibrations are 
smaller the smaller is the quantity -/1 - W • It is shown 
that such vibrations are possible only for f3 > 0, if Ci 

= O. In Sec. 2 we formulate an effective equation des
cribing the motion of a self-localized vibration in the 
leading approximation with respect to the size of its 
amplitude. In Sec. 3 we consider the localized vibrations 
whose frequencies lie above the upper edge of the har
monic-vibration spectrum (2) (w > wm = )1 + 4b2). Such 
vibrations are possible only for f3 <, if Ci = O. There too 
it is shown that the appearance of self-Iocali~ed vibra
tions can be associated with the anharmonicity in the in
teraction between neighboring atoms in the chain (even 
for f(u) == 0). 

1. ASYMPTOTIC METHOD FOR INVESTIGATING 
LOCALIZED VIBRATIONS 

We shall start the analYSis of the self-localized char
acteristic solutions of the nonlinear equation (3) using 
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the simplest form of the force (4), when O! = 0 and Eq. 
(3) takes the form 

If we neglect higher harmonics, the "solutions" of 
Eq. (5) are nonlinear stationary waves 

u=a, cos (wt-kx) 

with the dispersion law 

w'=l-~~a"+k'. 
4 

(5) 

(6) 

(7) 

In accordance with Lighthill's criterion [5], for {3 > 0 the 
stationary waves (6) are unstable. But we shall imagine 
that the amplitude ao is a slowly-varying function of the 
coordinate x and is nonzero in a certain restricted in
terval of the x-axis. Then, for (3 > 0, in this interval 
the lower edge of the allowed band of frequencies drops 
below the edge of the frequency spectrum in the harmonic 
approximation, i.e., into the region W < 1. Vibrations 
with frequencies W < 1 can arise in this spatial interval. 
It is clear that such vibrations will be stable against de
cay into small harmonic vibrations. Indeed, for W < 1 a 
harmonic system only permits vibrations that fall off 
with distance like exp(-E!X!), where 10 = I1_w2. 

The localized vibrations corresponding to Eq. (5) are 
studied most easily by a method analogous to the asymp
totic method of Bogolyubov and mitropol'skir[6], which 
was proposed for the analysis of nonlinear systems with 
many degrees of freedom. In our case, the system for
mally possesses an infinite number of degrees of free
dom, since it is described by a differential equation in 
partial derivatives, but this does ~ot hinder the develop
ment of the corresponding method 7]. 

We shall seek the solution of (5) in the form of the fol
lowing series: 

n(x, t)=A(x) coswt+B(x) cos3wt+ ... , (8) 

where A(x) and B(x) are functions of the coordinate that 
vanish at infinity. Naturally, such a procedure has mean
ing only in the case when the expansion coefficients fall 
off sufficiently rapidly with the label of the harmonic. In 
particular, it is necessary to assume that B(x)« A(x). 
We substitute (8) into Eq. (5) and equate the expressions 
multiplying coswt and cos3wt to zero. With allowance 
for the inequality B(x) « A(x) this gives us, in the 
leading approximation, the following system of equations 
for A(x) and B(x): 

d2A 3 
dx' -(l-w')A +4~A3=O, (9) 

d'B 1 
dx' +(9w2-1)B=-4-~A'. (10) 

The only solution of Eq. (9) that falls of at infinity is 
the function 

8 'I, 
A(.x)= (-._) _E_, E=(1-W')'/'. (11) 

3~ ch ex 

Inasmuch as Eq. (5) was itself obtained under the as
sumption {3u3« u, the inequality (3A2 (0) « 1 must be 
fulfilled, and from this it follows that 1 - w2 « 1. Thus, 
the small parameter of the theory (10 2 « 1) arises in a 
natural way. 

We turn to the inhomogeneous equation (10) for the 
function B(x). Since the corresponding homogeneous 
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equation has no solutions vanishing simultaneously both 
for x -0- 00 and for x -0-_ 00 , we must select the necessary 
particular integral of the inhomogeneous equation. But 
in this case, 

tJ'B IB _ d'A IA-E'¢:l 
dx' dx' 

and the derivative in the left-hand side of (10) can be 
omitted. Then, in the leading approximation in the 
small parameter, we obtain 

1 8 .,/, E' 

B(x)=-12( 3jl) Ch'EX' (12) 

We emphasize that the small parameter whose powers 
determine the contribution of the temporal harmonics 
with the corresponding labels is 10, i.e., the magnitude 
of the splitting of the localized-vibration frequency 
from the lower edge of the continuous spectrum of fre
quencies in the harmonic approximation. 

It follows from (11) and (12) that the amplitude of the 
vibrations has the order of magnitude of 10 « 1, and the 
spatial region Ax of localization of the vibrations con
sidered has the order of magnitude of - 1/10 ~ 1. Both 
these properties of the localized vibrations justify going 
over from the system of difference equations (1) to the 
differential equation (3) or (5). 

Having convinced ourselves of the basic consistency 
of the method of treating the localized vibrations, we 
pass on to the formulation of a consistent quantitative 
procedure. We note that since it was found that B(x) 
"" 10 3, a consistent procedure for finding the solution 
should give a correction to A(x) of the same order of 
magnitude. Therefore, we must seek from the outset the 
coefficients of the different temporal harmonics in (8) 
by expanding them in powers of E. In principle, such a 
solution can be obtained to any degree of accuracy in 
10, but then, naturally, the expansion of f (u) in a series 
in u would be assumed to be written with the corres
ponding accuracy. We shall demonstrate the procedure 
for solving Eq. (3) to order 10 5, assuming the force to 
be 

(13) 

We write the solution of (3) in the form 

u=A(x) coswt+B(x) cos3wt+C(x) cos5wt, (14) 

where the functions A, B and C of the coordinates have 
the expansions 

A=A,c+A,e'+A,e', B=B.,e'+B,e" C=C,e'. (15) 

Substituting (14) and (15) into Eq. (3) with the force (13) 
and equating the coefficients of each temporal harmonic 
and each power of 10 to zero, we see that the equation for 
EA1(x) COincides with (9), and the following system of 
equations is obtained for the remaining coefficients in 
the expansions (15): 

1 1 A 2B 1 A' (16) B'=-32~A,", C,=- 32 ~ , ,- 384 Y " 

A," -A, + ~ ~A,'A,=- ~ ~A,2B, - --"--yA,', (17) 
4 4 8 

B,=~B,-~B," _~~A,2(A,+2B,)-~yA", (18) 
8 8 ~ 1~ 

A,H_A, +~ ~A,'A,=-~ ~(3A,A,'+A,2B,+2A,A3B,+2A,B,') 
4 4 

25 35 (19) 
- 16 yA ,'(2A,+B,)- 64 {jA,'. 
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In writing Eqs. (16)-(19) we have denoted the derivative 
with respect to the argument EX by a prime. 

We note that the last term in the right-hand side of 
(19) is proportional to I). It follows from this that to 
find the solution exactl~ to order En it is necessary to 
retain terms up to un+ inclusive in the expansion of 
the force f(u). After EA1(x) has been found in the form 
(11), the relations (16) determine B3 and Cs uniquely. 
Equally, Bs is found uniquely when the function A3(X) 
is known. However, in solving the inhomogeneous equa
tion (17) we must take into account that the corresponding 
homogeneous equation 

A,"-A, +~~A"A,=O 
4 

has an eigen-solution vanishing at infinity: 

A,'(x) =6 sh Ex/ch' EX, 

(20) 

(21) 

where ~ is an arbitrary constant. Thus, the solution of 
(17) of interest to us has the form 

A,(x)=A,'(x)+ - - 1--- - ____ . ( 8 )'f' 1 ( 80 'Y ) (2 1) 
3~ 36 3~' ch EX ch' EX (22) 

After (22) is substituted into (18), it is found that Bs 
also contains a term proportional to the arbitrary con
stant ~: 

, . 1 sh EX 
B, (X)=--6--. 

4 Ch" ex (23) 

The full expression for Bs appears in the form 

, 1 ( 8 ) 'f, « 80 'Y) 1 < 11 100 'Y) 1 ) 
B,=B, -'12 ~ 1-3 1i' ch'ex + T+T-V ch'ex . 

(24) 
In an analogous manner we can find the function As(x), 
which, in view of its cumbersome form, we shall not 
give; we note, however, that it consists of terms with 
sech EX, sech3 EX and sechs EX. Therefore, As(x) can 
certainly be represented in the form 

A,(X)=A,(X) sech ex, where A,(oo)=const*O. 

By considering the structure of the eigen-solutions (21) 
and (23) it is easy to notice the obvious relations: 

e'A,'=-es ( ~ ) 'f, dA~X) , e'B,'=:"-es (~)'j, dB,(x) . 
8 dx 

(25) 

It follows from (25) that the contribution of the homo
geneous solutions to A3 and Bs describes a shift of the 
corresponding first-approximation terms Al (X) and 
B3 (x) through a small constant distance Xo = - d3j3/8)1/2~. 
Allowance for Similar terms in the third-approximation 
term As leads to a more exact calculation of the shift 
through the distance Xo in the terms from the preceding 
approximations. Thus, allowance for the homogeneous 
solutions in Eqs. (17) and (19) corresponds to an arbi
trary shift of the solution along the x-coordinate. It is 
clear that invariance with respect to such a shift is 
embodied in the structure of the initial equation (5), and 
therefore the solution can always be sought in the form 
u = u(x -xo, t), where Xo = const. 

Taking into account all that has been said above, we 
shall give the explicit form of the localized solution of 
Eq. (5): 

u = (~)'f'_E_{[ 1 +~( 1 ~ 80 l) (2 __ 1_) +e'A,] coswt 
3~ ch EX 36 3 ~' ch' EX 

_~_E'_[1+_~ (1- 80 l) +<~+ 100 l)_1-]COS3wt 
12 ch' EX 6 3~'. 2 3~' ch' EX 
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1 ( 1 'Y) e' } +- --- --cos5wt . 
18 8 3~2 ch' ex (26) 

The solution (26) is localized near the point x = 0, but 
again we recall that it can be localized near any point 
x = xo. 

A particular case of Eq. (3) is the so-called sine
Gordon equation[3, a], in which f(u) = -sin u. For this 
equation an exact solution corresponding to localized 
vibrations is known. It was first obtained br Seeger[9] 
and has been discussed in detail by Lamb[2 and Ablowitz 
et al. [a]. In our notation, this solution has the following 
form: 

{
"COS wt } 

u(x,t)=4arctg --h- . 
(0 C EX 

Inasmuch as (27) is an exact solution, the parameter 

(27) 

E can take any values from 0 to 1. Correspondingly, the 
possible frequencies w occupy the whole interval from 
zero to the lower edge (w = 1) of the harmonic-vibration 
spectrum. However, we are interested primarily in the 
solution (27) for small E and, consequently, small dis
placements. For small u, the values [3 = 1/6, Y = -1/120 
and I) = 1/5040 correspond to the series expansion of 
f(u) =-sin u. Naturally, if these values of [3, yand I) 

are substituted into (26), then (26) coincides with the 
first three terms of the expansion of (27) in a series 
in the argument of the arctangent. 

We must say a few words about the stability of the 
. 'd d Th . I . ts of[lOl vibrahons COnsl ere. e numerlCa experlmen 

show that the localized vibrations (27) are stable. In 
addition, in[a] the general solution of the sine-Gordon 
equation was obtained by a method used in the inverse 
scattering problem, and it was shown that for arbitrary 
initial conditions, falling off suffiCiently rapidly at in
finity, the asymptotic (as t - O(») solution can contain the 
localized vibrations (27). Thus, the vibrations (27) are 
stable with respect to perturbations that fall off suffi
ciently rapidly at large distances. It may be hoped that, 
in the general case of an arbitrary function f(u) also, 
the localized vibrations for which the asymptotic method 
of description outlined above is valid are stable. In any 
case, they are stable against decay into small harmonic 
vibrations • 

Up to now we have considered the case of a symmetric 
potential U(u). However, the method of finding the local
ized vibrations is not difficult to generalize to the general 
case when there is a term with a 'lOin the expansion (4) 
for f(u). Naturally, .when terms with u2 and u3 are pre
sent Simultaneously in Eq. (3), the solution will contain 
all temporal harmonics, including the zeroth: 

u(x, t)=C(J!)+A(x) cos 6lt+D(x) ro~ 2wt+... (28) 

As in the preceding case, we shall seek the functions 
of the coordinate in the form of expansions in powers 
of E. For A(x) this expansion has the same form as (15), 
and for C (x) and D (x) it must be represented as 

C(x) =C,e'+CE'+ ... , D(x) =D,8'+D,e'+... (29) 

Confining ourselves to the force (4), we obtain the fol
lowing localized solution, exact to order E21 ): 

u(x, t) 28 {~_ [15 (1+~~)]'f' 
5a(1+9~/lOa') ch'ex 10 a' 

cos wt cos 2wt} x--+e-- . 
ch EX ch' EX 

(30) 

It follows from the expression (30) that in the present 
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case localized vibrations exist only when there is a well
defined relationship between the constants a and ~ 
namely, when {3 > -lOa 2/9. Referring to the work of 
Grimshaw [111, it is curious to note that when this ine
quality is fulfilled, nonlinear periodic solutions in the 
given system are unstable. 

2. EFFECTIVE EQUATION OF THE VIBRATIONS 
IN THE LEADING APPROXIMATION 

The regularity of the procedure used in obtaining an 
expansion of the type (26) or (30) makes it possible to 
conclude that Eq. (3) always admits a solution in the 
form of a localized standing vibration with W < 1. The 
degree of monochromaticity (discrimination of the fun
damental frequency) of such a vibration is uniquely re
lated to its degree of localization. If 1 - w 2 « 1, i.e., 
€ « 1, the first term of the asymptotic expansion, cor
responding to the vibration with the fundamental fre
quency, is the principal term and gives a good approxi
mation for the localized solution. But in this case the 
region Ax of localization of the vibration turns to be 
very large, in proportion as the quantity € is small, 
namely Ax ~ 1/€. It should be noted that allowance for 
subsequent terms in the expansion of the solution under 
discussion does not widen its region of localization. 

If we make use of the expansion (26) or (30) for the 
qualitative characteristics of the localized vibration for 
€ ~ 1, we see that the standing vibrations turn out to be 
strongly localized (Ax ~ 1). But, on the other hand, the 
contribution of high harmonics then becomes important 
and in describing a periodic localized vibration we 
cannot neglect them. The latter circumstance is illus
trated by the explicit form of the solution (27) for the 
sine-Gordon equation. However, in this case we must be 
cautious in using the differential equation (3), which is 
a long-wave approximation for the finite-difference 
equation (1). Only under the condition b ~ 1 (see the 
Introduction), i.e., when the interaction of the atoms 
along the chain is substantially greater than their in
teraction with the external potential, can Eq. (3) be used 
to describe localized vibrations, even for Ax ~ 1. 

Returning to the case for which we shall apply the 
method developed (€ « 1), we shall confine ourselves 
to treating sufficiently small vibrations of a chain with 
a center of inversion, i.e., a chain describable by Eq. 
(5). We shall find that effective equation stemming from 
(5) for which the principal term of the expansion (26), 
i.e., a function of the type u(x, t) = A(x) cos wt, is the 
exact solution. For this we introduce a complex function 
>I! (x, t) such that its real part defines the displacement: 

u(x, t)~Re ,¥(x, t). (31) 

In proposing an equation for >I! (x, t), we shall take the 
dispersion law (7) as the basis of its derivation and use 
a procedure analogous to that described in the mono
graph by Karpman 112 Lname ly, we shall replace k2 by 
- o2/oX2 and w2 by -li/ae. We then obtain 

ii''¥ 8''¥ 3 ---+ '¥ --~1'¥12,¥~O. 
iit' iix' 4 

(32) 

We note that this equation follows directly from (9). It 
is easily verified that the exact solution of Eq. (32) that 
corresponds to localized vibrations is the function 

( 8 ) 'I, e 
'¥(x,t)~ _ __e'wt. 

3~ ch ex 
(33) 
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We see that Re>I! (x, t), where >I! (x, t) is defined by the 
expression (33), does indeed etermine the leading approxi
mation of the vibrational solution of Eq. (5). However, for 
small amplitudes (ao« 1) it is usual to represent the 
dispersion law (7) in the long-wave approximation in the 
form 

(34) 

In the sense of establishing the k-dependence of w for 
small k, the dispersion laws (7) and (34) are equivalent. 

On the basis of (34), it is possible by the procedure 
indicated [12] to re- establish the nonlinear parabolic 
equation 

In the approximation for which the effective equation is 
written, (32) is equivalent to the nonlinear parabOlic 
equation (35). Indeed, Eq. (35) has the same solution 
(33), with, however, W = 1 _1/2€2. But for € « 1 this 
expression coincides with w 2 = 1_€2 "'=J (1_€2/2)2. If 
we separate out explicitly the rapid temporal oscilla
tions of >I! (x, t) = <I>(x, t)e1t, from (35) we obtain for the 
slowly-varying (with frequency 1/2 €2) function <I>(x, t) 
the well-known [12] nonlinear equation for the envelope 
waves: 

ii<D ii2<D 3 
2i-----~I<DI'<D~O 

iit iix' 4 . 

The properties of this equation and of its solutions are 
sufficiently fully discussed in the literatu re, and so we 
shall not dwell on them. 

Up to now we have confined ourselves to considering 
only those vibrations whose center of localization does 
not move along the chain. But by virtue of the Lorentz 
invariance of the nonlinear wave equation (3) or (32), 
along with the solution u = u(x, t) there always exists 
the solution 

( x-vt t-VX) 
u~u (i-v')'/" (i-v')'/' . 

Therefore, if there exists a stationary localized vibra
tion of the type (26), i.e., a solution with the asymptotic 
expansion 

u(x,t)~ 1: An(e,x)cosnwt, e~(1-w2)"'. 

then simultaneously there also exist vibrations of the 
following form: 

1: ( x-vt) u(x,t)= An e, ---,-, cosn(wt-kx). 
(1-v2 ) , 

(36) 

where v = k/w and €2 = 1 + k2 _w 2 • The function (36) is 
a solution of the initial equation for v < 1; however, 
the equation itself was obtained by us to describe long
wave vibrations and, therefore, it must be remembered 
that v = k/w « 1, and so 1 _v2 "'=J 1. 

The solution (36) has the form of a wave-packet of 
width Ax ~ 1/€, moving with a velocity which coincides 
with the group velocity v = Ilw / Ilk corresponding to the 
dispersion law (7). A remarkable property of this pack
et is the fact that it does not spread as a consequence 
of the dispersion of the waves, although its motion is 
itself due to this dispersion. 
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3. SELF-LOCALIZED VIBRATIONS WITH 
FREQUENCIES NEAR THE UPPER EDGE OF 
THE SPECTRUM 

We have considered self-localized vibrations with 
frequencies lying below the frequencies of the corres
ponding waves in the harmonic approximation. The con
dition for their existence was the fulfilment of certain 
inequalities relating the coefficients of the nonlinear 
terms in the expansion of f(u): {3> 0 in (5) or (3> 10a2/9 
in (4). However, it is known from the theory of local vi
brations in the harmonic approximation(4) that if for one 
sign of the perturbation in a one-dimensional system 
local frequencies appear below the band of frequencies 
of the unperturbed chain, for the opposite Sign they ap
pear above the frequency-band of the ideal system. We 
should expect, therefore, that when other inequalities 
relating a and {3 are fulfilled, self-localized vibrations 
with frequencies w> wm , where :.,1m is the maximum 
frequency of harmonic vibrations of the chain of atoms, 
may turn out to be possible. We recall that it follows 
from (2) that wm = (1 + 4b2)1/2. 

Again, we start the analysis of such vibrations from 
the simplest case, when f(u) = - u + {3u3 , but (3 < O. Then 
Eq. (1) for the vibrations of the chain has the form 

(37) 

We shall be interested in vibrations with frequencies 
W > wm such that W - wm « wm . Then the displacements 
are conveniently written in the form un = vn COS1Tn, where 
the quantity vn (t) is a slowly-varying function of the 
label n and can be regarded as a continuous function of 
the coordinate x: Vn(t) = v(x, t). Therefore, by writing 
(37) in terms of vn , we can replace it approximately by 
the following differential equation in partial derivatives: 

(38) 

where x, as in Sec. 1, is measured in units of ba =Ka/Wo. 

It is easy to see that for W > wm with {3 > 0 Eq. (38) 
is analogous to Eq. (5) for W < Wo with (3 > O. Therefore, 
it has a solution of the self-localized vibration type, 
similar to (26). The amplitude and degree of localization 
of these vibrations are determined by the parameter 

e= (w'-w",') '''. (39) 
The leading term in the expansion of the solution of (38) 
in E coincides with the leading term of the expansion 
(26), if for E we take its new value (39). 

It is somewhat more complicated to find a solution 
for the high-frequency localized vibrations in the case 
when the force f(u) contains both odd and even terms 
in u, i.e., has the form (4) with a I- O. We write the 
equation of the vibrations in this case: 

(40) 

It is now found that although, as before, the displacements 
of neighboring atoms are almost opposite in phase, their 
magnitudes are different because of the asymmetry of the 
external potential with respect to the direction of dis
placement of the atom. Therefore, the solution of Eq. 
(40) must be sought in the form 

Un=V n ' cos nn, n=2m, 

Un=Wn'Cosnn, n=2m+1, (41) 

where vn and wn can be regarded as slowly-varying 
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functions of the label n. In the long-wave approximation 
the following system of equations is obtained for v(x, t) 
and w(x, t): 

{)'V {)'w 
at' + a;;z + (1 +2b')v+2b'w-av'-pv'=0, 

{)'w {)'v 
iii,2+ {)x' +(1+2b')w+2b'·v+aw'-~w'=0. 

(42) 

Since in Eq. (40) we have confined ourselves to cubic 
terms in u, we shall seek the solution of the system (42) 
to terms of order E2 inclusive. This E>olution has the fol
lowing form: 

li= (~)'/' 8coswt +~_e_'_(1_ cOS2wt) 
3T] ch ex . 3T] ch' ex 1-4w"," 

w = (~)'i' 8COS wt _ ~_8_'_( 1- cos 2wt ) ; 
3T] ch 8X 311 ch' ex 1-4w",' (43) 

6-16w",' > 
T]=-~ - 3-12w",' a , 

It follows from (43) that localized vibrations near the 
upper edge of the spectrum exist only for 7J> 0, i.e., 
for 

6-16wm ' 
~<----a'. 

3-12w",' 

In conclusion, we shall discuss the question of the 
effect of anharmonicity in the interaction of the atoms 
of the chain with each other on the problem of the ap
p earance of self-localized vibrations with frequencies 
w> wm . We denote the anharmonic correction to the 
interaction energy of the atoms by W: 

W=-fA ~(Un-Un_,)3++M ~ (Un-U n-,)'. (44) 

Being interested in the role of this nonlinearity, we shall 
omit the force associated with the external potential 
U(u), i.e., we shall consider the acoustic vibrations of the 
chain. Then in p lace of (1) we obtain the following equa
tion for the vibrations: 

d2un - + (2u n-un+,-un_,) {1 +,,(Un+,-un_,) 
dt' (45) 

+fj- (Un+,-un-,) '+fj- (un-un+,) (Un-Un-,)} =0, 

in which the time is measured in units of 2/wm where 
wm is the maximum frequency of the acoustic band in 
the harmonic approximation, ,\ = 4aA/m',L):n and 
fJ. = 4a 2M/mw:n. Introducing the new variables vn and 
wn by formula (41), we can obtain for them a system of 
two differential equations in partial derivatives. How
ever, the explicit form of Eq. (45) leads to the conclu
sion that it is more convenient to introduce other vari
ables, namely, 

x=v+w, Ijl=v-w. 

Bearing in mind the definition (41), it is easily seen that 
X is the difference in the displacements of two neighbor
ing atoms, while <p defines twice the displacement of the 
center of gravity of the two neighboring atoms. The sys
tem of equations for the new variables X and <P has the 
form 

{)'x a'x aljl - + - + 4x-4"x- + 4 .. x'=0, or ax' ax r 

8'Ijl 8'Ijl ax 
---+4"x-=0, 
at' ax' ax 

(46) 

where both the displacements X and <p and the coordinate 
x are measured in units of a. 

The small parameter that makes it possible to for-
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mulate a method for constructing the asymptotic solu
tion of this system is, as before, the amplitude of the 
localized vibrations, which is determined by the same 
parameter £ = (W2 _W:n)1/2. In the leading approximation 
in this parameter we obtain 

'I-e cas oot 
x= o~, 1jJ="oEthex, (47) 

where (J = 2/(31L - 4i\2). It can be seen that such a solu
tion exists only for (J> 0, i.e., when the inequality 
11. > 4i\ 2 /3 is fulfilled. An interesting feature of the vi
brations (47) is the fact that 

U(+oo)=-'/2"oe, u(-oo)=';.J"oe. (48) 

Thus, in the presence of a nonlinear localized vibration 
a statistical elongation <'iu = u (<Xl) - U (- <Xl) = i\CJ£ arises 
in the chain, i.e., the chain is found to be extended for 
i\ < 0 or compressed for i\ > O. The static deformation 
induced by this elongation is concentrated in the region 
~ ~ 1/£ in which the vibration itself is localized. Natu
rally, this effect occurs only for i\ I 0, i.e., when the 
potential W is nonsymmetric with respect to the direc
tion of the mutual displacement of the atoms. 

As before, it is natural to seek the asymptotic solu
tion of Eq. (45) in the form of an expansion in powers of 
£ to terms of order £2 inclusive: 

- e [{ e'o«( f.!'O) ( f.!'O) 1 .)} x='Io-- 1-- ,,'+- - ,,'+- -- casoot 
ch ex 8. 4 8 ch' ex 

f.!o e' ] + 32 ch' ex cos 300t , 

(49) 
[ e'(1 ( ( 5,,' f.!'O) 1 ( f.!'O) 1 ) 1jJ="oEthex 1--. -+- +- ,,'+- --

4 2 3 3 8 ch2 EX 

The method of obtaining the solution (49) and its struc
ture are such as to enable us in principle to take simul
taneous account both of anharmonicity in the interac-
tion of the atoms in the chain and of an anharmonic exter
nal potential U(u). In view of the cumbersome form of the 
corresponding expressions, we see no need to cite the 
results for this case. 

We note that the presence of self-localized charac
teristic vibrations of the type (49) can influence the 
character of the local vibrations in a one-dimensional 
chain with point defects, if the corresponding frequen-
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cies lie near an edge of the frequency spectrum in the 
harmonic approximation. In addition, it may turn out 
that kinetic phenomena in a one-dimensional chain that 
admits stable localized characteristic vibrations are 
described more conveniently in terms of the dynamics 
of such moving structures than in terms of scattering 
of ordinary phonons. 

In conclusion, the authors take the opportunity to 
express their gratitude to I. M. Lifshitz and S. S. Moi
seev for discussion of the work. 

I)rn contrast to the preceding case, to find the solution exact to order €2 

it now turns out to be sufficient to keep terms up to u3 inclusive in the 
expansion for the force. 
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