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A theory is developed for the anomalous skin effect in a plasma having a diffuse boundary and located in a 
magnetic field parallel to the electron-concentration gradient. Expressions for the plasma surface resistance 
and for the electromagnetic-wave reflection coefficient of the plasma are obtained for the case when the 
electron concentration depends on the coordinates exponentially and the ratios of the electron mean free 
path, the penetration depth of the field in the plasma, and the size of the transition region at the boundary 
are arbitrary. The dependence of the surface resistance on the degree of anomaly of the skin effect and on 
the magnetic field intensity is investigated, as is the plasma diamagnetic-resonance line shape. 

1. INTRODUCTION 

The question of the anomalous skin effect in a plasma 
with diffuse boundary was raised by P. L. Kapitza[l] in 
connection with a study of a high-frequency discharge 
in a gas of high pressure. The theory of the anomalous 
skin effect in a plasma with diffuse boundary was de­
veloped by Liberman, PitaevskiI and one of US[2]. In[2] 
an integral equation was obtained for the electromag­
netic field in a plasma at an arbitrary ratio of the elec­
tron mean free path, the depth of penetration of the 
field into the plasma, and the dimension of the transi­
tion region at the boundary. This equation was solved 
for the case of an exponential decrease of the electron 
concentration outside the plasma under the conditions 
of the anomalous skin effect. The subject of the present 
study was the interaction of an electromagnetic wave 
with a plasma at an arbitrary anomaly of the skin effect, 
including the case when the magnetic field is parallel 
to the concentration gradient. The case when the mag­
netic field is perpendicular to the concentration gradient 
was considered inC 31• 

We shall assume that the dimension of the transition 
region at the boundary is small in comparison with the 
characteristic dimensions of the plasma, but large in 
comparison with the depth of penetration of the electro­
magnetic wave into the inhomogeneous plasma with the 
same electron concentration that is reached in the depth. 
Under these conditions, the electron concentration ne 
can be regarded as a function of one coordinate x. In 
the absence of an electromagnetic wave, the plasma is 
assumed to be in equilibrium, and the specified electron 
concentration distribution is maintained by a static elec­
tric field Eo(x) that acts on the electrons. The potential 
<p(x) of this field is connected with ne(x) by the Boltz­
mann distribution formula 

n,(x) =n, exp(-erp(x)/kT,.). (1.1) 

In Sec. 2 we obtain an integral equation for the field 
in a plasma situated in the magnetic field H directed 
along the x axis, and find a solution of this equation for 
the case when the electron concentration outside the 
plasma decreases exponentially. In Sec. 3 we consider 
the dependence of the surface resistance of the plasma 
on the degree of anomaly of the skin effect without a 
magnetic field. It turns out that, in the low - frequenc y 
limit (3.3), the surface resistance does not depend on 
the collision frequency, and consequently on the degree 
of anomaly of the skin effect. 
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A study of the penetration of an electromagnetic wave 
into a plasma with a magnetic field parallel to the con­
centration gradient is conveniently carried out by ex­
panding the incident wave into a sum of right- and left­
circularly polarized waves. These waves propagate in­
dependently of one another, and the interaction of the 
wave that rotates in the same direction as the electrons 
in the magnetic field has a resonant character if the 
field frequency is close to the Larmor frequency of the 
electrons (diamagnetic resonance). 

In Sec. 4 we obtain the dependence of the surface 
resistance of the plasma and of the reflection coeffic­
ient on the magnetic field. 

2. DERIVATION AND SOLUTION OF THE 
INTEGRAL EQUATION 

The system of equations for a plasma in a constant 
and homogeneous magnetic field H directed along the 
x axis consists of Maxwell's equations neglecting the 
displacement current 

d'E, 4ni", 
-dx' = -c-,-j, v=y, z (2.1 ) 

and the kinetic equation for the electron distribution 
function. The kinetic equation linearized in terms of the 
electromagnetic field Eveiwt takes the form 

. ajl e d<p a/I (a j, aj, ) eE,(x) aj, 
(,,,,+vetT)/,+vr -. ------Q V,--V,- =-----. 

ax m dx aVr avo av, m av, 
(2.2) 

j,=(_m_)"n,(x)exp(_mV2) (2.3) 
2JT.kT. 2kT, 

is the equilibrium distribution function of the electron; 
f, is an increment linear in the field; n = eH/ mc is the 
Larmor frequency of the electron; w is the frequency 
of the incident wave; veff is the effective collision fre­
quency. 

Since Eq. (2.2) is a first-order linear differential 
equation, its solution reduces to integration of the 
characteristic equations, which comprise Newton's 
equations for the motion of an electron in an electric 
field Eo and a magnetic field H: 

dx 
a;=Vro 

dv, 
&=Qv., 

(2.4) 

From the first two equations of (2.4) we obtain the in-

Copyright © 1975 American Institute of Physics 865 



tegral of motion, namely the law of conservation of the 
energy 10: 

mv.'/2+eq> (x) =8. (2.5) 

To solve the last two equations of (2.4), we introduce 
v± = vi ± ivz; then their solutions take the form 

(2.6) 

To solve the kinetic equation we introduce, as usual, 

v.>o, 
v.<O. 

(2.7) 

In the interior of the plasma, x - +"", the wave attenu­
ates and the plasma assumes the equilibrium state. 
From this we obtain the boundary condition 

1-=0, X"" +00. (2.8) 

On the other hand, the motion is bounded by the classi­
cal turning point x = x* , which is determined from the 
equation 

eq>(x') =e. (2.9) 

At the turning point, the electron reverses the direction 
of its motion. Therefore the boundary condition for the 
function f. is 

(2.10) 

In accordance with the specifics of the interaction of 
the electrons with the wave, it is convenient to intro­
duce right- and left-circularly polarized fields and 
current densities: 

(2.11) 

Recognizing that vvEv = (v. E- + v_ E. )/2, and also that 

.!i!(x')=- 1,(8) mv,(x'), (2.12) 
av, kT. 

we obtain the solution of the kinetic equation (2.2) in the 
form 

=_~ wSe-"(X',X),V+(X')E_(X')+v_(x')E+(X') dx', v,<O; 

1- 2kT.. [v.'+2e(q>(x)-q>(x'»lm)'" (2.13) 

I+=-~{ JexP[!l>(x',x)]+ j exp[-!l> (x', x')-!l>(x, x')] } 
2kT. x' .' 

v+(x')E-(x')+v_(x')E+(x') d ' 0 (2.14) x , x, V:x:>, 
[v.'+2e(q>(x)-q> (x') )Im]/' 

where 

. . S.. (iw+VefrJdx 
!l>(x"X,)=(IW+veff)t(XI,X,)55 . [2m I(e-eq>(x»]'" 

" 

is proportional to the time of flight of the electron 
t(x" xz) between the points Xl and Xz, 

(2,15) 

The current density j± is expressed in terms of the 
distribution function (2,13) and (2,14) by the formula 

(2,16 ) 

Recognizing that v; averaged over the equilibrium 
state vanishes, and that the mean value of the product 
v. v_ is -yz, where -y = (2kTe/m)l/Z, we can obtain ex­
pressions for the current j± in terms of the field E±, 
Changing the order of integration with respect to Vx 
and x', and also integrating with respect to Vy and vz, 
we obtain 

i±= ~~':~ii LIE±(X')G±(X,X')dx'+ jE±(X'lG±(X"X)dX'], (2.17) 
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where the kernel is 

, (eq>(x) ) SW (mv., ) 
G±(x ,x)=exp ----,;;r- dv.exp - 2kT 

eo., • 
(2.18 ) 

exp[ -!l>± (x', x)] + exp [ -!l>± (x', x') -!l>± (x, x') ] 

[v.'+2e(q> (1) -q> (x') )Im] 'I, 

The function 4>±(x" xz) is proportional to t(Xl' xz): 

(2.19) 

In the absence of a magnetic field, U = 0, expression 
(2,18) goes over into expression (14) of[Zl, Substituting 
(2,17) in (2.1), we obtain the integro-differential equa­
tion 

d'E",(x)= iww,' {foE (x')G (x x')d.X'+ fWE (x')G (x' x)dx'} 
dx'" 3't '/IC2V ± ±, ±. ± , 

-~ • (2.20) 

where w~ = 41Te'ho/m, and Wo is the plasma frequency 
of the electrons in the interior of the plasma. We note 
that the waves of the right-hand and left-hand polariza­
tions propagate in the plasma independently of one 
another. 

From the solution of (2.20) we can obtain for each 
polarization a macroscopic characteristic (the reflec­
tion coefficient r±) by carrying out the same calcula­
tions as in[Z]. Outside the plasma at a « - X « c/w, 
the field has the asymptotic value E± = A±(x + B±), 
where a is a quantity on the order of the width of the 
transition layer at the plasma boundary. The quantities 
r± are connected with B± in the following manner: 

(2.21) 

In the case of a small mean free path, we can neglect 
the variation of the field over the free path 

l=ii/ I i( w=FQ) +Vecrl, 

i.e., we can take E±(x') = E±(x) outside the integral 
sign in (2.20), after which the integro-differential equa­
tion (2.20) goes over into the known ordinary differen­
tial equation for the normal skin effect: 

d'E± iww.' (x)E± 

dx' c'(i(w=FQ)+Veff)' 
1<1l, (2.22) 

where w~(x) = 41Te'he (x)/m, and {) is the depth of the 
skin layer. 

It is impossible to solve (2,20) without making as­
sumptions concerning the form of the potential rp(x). 

We consider the case of an exponential decrease of 
the electron concentration outside the plasma: 

n,(x) =n. exp(x/a), a=kT,jeE., x .... -oo. 

The electron density in all of space is of course not de­
scribed by this formula. We assume that ne(x) tends 
to a constant value n as x - +"". Under the condition 

Lo .. ln (al;5) , >1, (2,23) 

the electromagnetic wave attenuates strongly and in 
practice does not reach the regions in which the elec­
tron concentration begins to differ from exponential. 
To solve the integral equation in this case it sufficies 
to know only the asymptotic form of the potential 

. q> (xl =-E.x, x .... - oo . (2,24) 

We now proceed to dimensionless coordinates in ac­
cordance with the formulas 

A. N. Vasil'ey and B. E, MeYeroyich 866 



x=a(!;-L) , j",(!;) =E", (x (!;)) , 

2a 
,(",= V (i(w+Q)+Veff), u=r-!;. 

(2.25 ) 

The difference between the right- and left-polarized 
waves lies only in the parameters y±. For simplicity, 
we shall not write out the subscripts ±. Using (2.24) 
and (2.25), we can represent expression (2.18) for the 
conductivity kernel in the form 

G (s', !;) =el - L I dx exp (-x'-'{yT+;;J (eTX+e-TX). 
u Yx'+u 

(2.26) 

Making the substitutions eW = -x + -Ix2 + u in the inte­
gral (2.26) with the first term and the substitution eW 

= x + -Ix2 + u in the second term, we obtain 

{ !;+s' } s- (' e,g 
G(!;,,!;)=exp -2--L _~dwexp -T-'1ew 

(2.27) 
(s' !;) 'e-'W) 

- 4 "'" exp«s+;')/2-L)R(s' -!;). 

The equation for the field 

d' () ~ 
'1.~/' =ilds'/(!;')exp [(s+!;')/2JR(s'-!;) (2.28) 

is solved by the method first proposed by Hartmann and 
Luttinger[4 j and then used many times in[2,3,5J. We ap­
ply to this equation the bilateral Laplace transforma­
tion 

F(k)= S f(!;)e-'Ids, f(s)=~I~F(k)e'ldk. (2.29 ) 

Recognizing that the integral . . 
S du[e"(k+'t.)+e-U(h+",) 1 R (u) = 2n'i dx e-MHt)x'-'x"",p (k) (2.30) 
o 0 

converges in the band -1 < Re k < 0, we obtain 
c+fora c+hlt 

S k'F(k)e"dk= S iP(k)F(k)e(k+t)ldk, -1<c<O. (2.31) 
c_ioa c_ilX> 

Since f( 0 - a (~ + (3) as ~ - - "", it is necessary that 
F( k) have at k a second-order pole; 

lim k'F(k) =a. (2.32 ) 
.~o 

We seek a function F( k) which is analytic in the 
band -1 < Re k < 1, with the exception of the origin. 
Then k2 F( k) is analytic in this entire band and we can 
shift the integration contour in the left integral of (2.31) 
by unity to the right, and then redeSignate k as k + 1. 
Since (2.31) holds at any value of ~, we can change over 
from equality of the integrals to the functional equation 

F (H1) IF (k) =iP(k)1 (H1) '. (2.33 ) 

A solution of (2.33) having the required analytic proper­
ties is unique apart from a normalization constant, 
which is arbitrary by virtue of the linearity and homo­
geneity of (2.28). In[2-5], the corresponding equations 
had right-hands side in the form of a relatively simple 
function, so that the solution could be found by trial and 
error. In our case thus is not possible, and we there­
fore use a regular method that yields the solution of 
(2.33) for arbitrary P( k) in the form of an integral. 

We take the logarithm of Eq. (2.33). We obtain the 
functional difference equation 

Q(kH)-Q(k)=M(k), 

Q(k) =In F(k), M(k) =In(iP(k)l(kH),). 
(2.34) 

The solution of (2.34) is obtained with the aid of the 
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known property of the Laplace transformation. Namely, 
if Q(k) is the Laplace transform of q(t), then Q(t + 1) 
is the transform of e-tq(t). We thus obtain for q(t) the 
simple algebraic equation 

(e-t-i) q (t) =m(t). (2.35) 

The function Q( k), which vanishes at k = 0, is given by 
1 ~ e-kt_1 c+f. 

Q(k)=-.' S dt-_-t - S et'M(z)dz. (2.36) 
, 2m _00 e -1 ._j~ 

Choosing c in (2.36) such that 

-1 <c<Re k for Re k~O and 

Re k-1 <c<O for Re k;;,O, 
(2.37) 

we can interchange the order of integration with respect 
to t and z. Calculating the integral with respect to 
t ([61, 3.311), we obtain for Q(k) the expression 

0+'. . 
Q(k)=~ S dz M(z)smkn (2.38) 

2i,_,00 sinznsin(z-k)n 

The solution of Eq. (2.33) is now expressed in the 
form 

F(k) =g(k)exp Q(k), (2.39 ) 

where g( k) is an arbitrary periodic function with unity 
period. The necessary analytic properties of F( k) can 
be obtained by assuming 

2n' 
g(k) =a 1 _ cos 2nk (2.40) 

Substituting the solution (2.39) in (2.29), we obtain a 
formula for determining the field f( ~). As ~ - - "", the 
main contribution to the integral was made by the resi­
due at the pole k = O. Expanding F( k) in a Laurent 
series, we obtain in accordance with the residue 
theorem 

I(s) =a(s+Q' (0», (2.41) 

whence 

~=Q'(O)=~J M(iW-'/,)dw. 
2 _"> chz nw 

(2.42 ) 

Comparing formulas (2.42), (2.34), and (2.30), we obtain 

in 
B=a(~+L), ~=lnn+3C+2+P("()' 

where C = 0.577 ••• is the Euler constant and 

00 d ' 
p('I) =!!:.-S x {_'I_ + In [i-Ill ('II (x'H) ",) J}, 

2 0 ch2'(nx/2) x'+1 

(I)(x)= =-f e-o'da 
l'n 0 

is the error integral 

(2.43 ) 

(2.44) 

In the case \ y \ » 1, the expression for the field 
coincides with the solution of Eq. (2.22) for the normal 
skin effect: 

f±(s)=AKo(2"'n"'I'I±I-'" exp ( ~+i(~ - ~arc tg w+Q))) , 
2 4 2 "err (2.45) 

and the expression for (3 goes over into 
1 n 

~± =2Inn+2C+ln2-ln'y±+iT' (2.46) 

3. DEPENDENCE OF THE SURFACE RESISTANCE 
ON THE DEGREE OF ANOMALY OF THE SKIN EFFECT 

The derived formulas (2.43) and (2.44) enable us to 
determine the dependence of the surface resistance and 
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1,5 
wa/v 

FIG, 1. Dependence of the surface resistance R on the parameter 
wa!v for a collisionlessplasma, 

of the reflection coefficient on the degree of the ano­
maly in the absence of a magnetic field. In this case the 
surface resistance and the reflection coefficient are 
connected with {3 (2.43) in accordance with the formu­
laS[2] 

4nwa 4nwa (n ) 
R=--Im~=-- -+Imp(l) , 

C Z c2 2 

r=H2i wa (~+L), 
c 

We note that at wa/v « 1 the imaginary part of 

(3.1) 

(3.2) 

p( y) is small (on the order of wa/v), so that in the low­
frequency limit the surface resistance of a plasma hav­
ing an exponential ne(x) dependence does not depend 
at all on the degree of anomaly of the skin effect, and 
is determined by the structure of the transition layer 
at the plasma boundary: 

R,=2n2 wa/c'=2n',10-' wa [01, 
(3.3 ) 

w«-v/a, veffa/v - arbitrary 
For a collisionless plasma (lieff = 0), the surface 

resistance as a function of the parameter wa/v is 
given by 

R=R, p(wa/v), 

~ d 
p(x)=1-J (y/ arctg(2n-'" 

o ch' ny 2) 

(3.4) 
J e"dz). 
• 

The function p(x) is plotted in Fig. 1. At low frequen­
cies (extremely anomalous skin effects) we have 

p(x)=1-2/,x, x=wa/v«1, (3.5 ) 

where 

J / - nx 
['=~2n-''', dx l' x'+1 ch' 2 = 0.6461. (3.6) 

Using the saddle-point method, we find that in the in­
verse limiting case wa/v » 1 the surface resistance 
of the plasma decreases exponentially with increasing 
frequency: 

p(x)"" ~(nx)'f'exp(-3(nx)"'), x~1. (3.7) 
1'3 

At lIeff = 0, the surface resistance is due to collision­
less dissipation of the Landau-damping type, the mecha­
nism of which consists in the fact that the electrons in­
teracting with the field in the skin layer transport en­
ergy into the interior of the plasma. With increasing 
field frequency, the effectiveness of the interaction of 
the electron field in the skin layer decreases, as a re­
sult of which the collisionless dissipation also de­
creases. In the limiting case ofthe ordinary skin effect 
w » via the collisionless dissipation is exponentially 
small. This result agrees with the fact that in the usual 
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skin effect the surface resistance of the plasma tends 
to zero as the number of the collisions decreases_ 

If lIeff differs from zero, then at I}' I » 1 it follows 
from (2.43) that 

2 
R=Rocp(veff1ro)=R.-;arctg (Veff/ro). (3.8) 

If the collision frequency is low, lIeff« vi a, then the 
surface resistance is determined by the sum 

R=R, (p( roa/v) +cp (Veff/ro», (3.9) 

and, depending on the value of the parameter 

x= V:ff ( a; y'" exp ( -3 ( n~ro ) 'f') 
we have either collisionless dissipation (3.4) if K» 1, 
or collision -dominated dissipation (3.8) if K« 1. 

In the region of the extremely anomalous skin effect, 
at an arbitrary ratio of the frequencies lIeff and w, we 
have 

n 
P(l) = 2(-111+1,1'+1,1'+ .. . ), 111«1, (3.10) 

where 11 is defined in (3.6), and 

2· dx 
[,= ( 1--; ) ~ (x'+1)ch'(nx/2) 

(3.11) 
2 ~ dx 

1,= 3n'" (4-n) J (x'+l)'f' ct, (nx/2) 0.0498. , 

4. INFLUENCE OF MAGNETIC FIELD. DIAMAGNETIC 
RESONANCE 

The reflection coefficient r ± of a circularly­
polarized wave is determined from the general solution 
(2.43) of Eq. (2.28): 

r±=1+2iroa (~±+L). 
c 

(4.1) 

We recall that the subscripts ± deSignate right and 
left circularly polarized waves. The absorption coef­
ficient I)± of a circularly polarized wave, defined by the 
formula 

(4.2) 

(S is the flux density of the electromagnetic energy, 
EO± is the amplitude of the field of the incident wave) 
is connected with {3 in the following manner: 

2roa 
11", - -c- 1m ~",. (4.3) 

When the magnetic field tends to zero, the absorption 
coefficient agrees, apart from a constant factor, with 
the surface reSistance, TJ = CR/21T. 

-q -J -z 0 1 Z J 5 
oill-wi/ii' 

FIG, 2. Depedence of the absorption coefficient 17+ of a circularly 
polarized wave on the parameter a(O-w)!v, The figures on the curves 
indicate the dimensionless collision frequencies weff!v. 
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q 5 5 
Qa/v 

FIG. 3. Dependence of the absorption coefficient f/ of a linearly pola­
rized wave on the parameter an/v for a collisionless plasma. The numbers 
on the curves indicate the values of the parameter aw/v. 

50. 

o.s 

[! 011 
Q/w-I 

FIG. 4. Diamagnetic-resonance line shape at different values of w/v 
(indicated by the figures on the curves) at veff = O. 

The dependence of 1'/± on the magnetic field is de­
scribed by the same formulas as the dependence of the 
surface resistance on the frequency in Sec. 3, except 
that the frequency w is replaced in the formulas by the 
combination w 'f a. Thus, for example, for a collision­
less plasma (veff = 0), the dependence of 1)± on the 
magnetic field is determined, apart from a factor c/21T, 
by formula (3.4), in which now x = a (w 'f a)/v. Figure 
2 shows the corresponding plot for different values of 
the parameter veffa/v. 

By regarding a linearly polarized wave as a sum of 
left and right polarized waves, we obtain the connection 
between the components of the reflection-coefficient 
tensor rO' (3 of a linearly-polarized wave and reflection 
coefficients r± of circularly-polarized waves: 
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The off-diagonal elements rO'{3' 0' "" f3, describe the 
transformation of the wave from one linear polarization 
to the other upon reflection from the plasma. The ab­
sorption coefficient of a linearly polarized wave is 
equal to 

(4.5) 

Figure 3 shows plots of 1'/ against the magnetic field for 
a collisionless plasma at different values of the parame­
ter wa/v. 

At high frequencies, w » via, the absorption coef­
ficient increases sharply when the normal frequency of 
the electrons reaches the frequency w of the external 
field. In this case the electrons, rotating in phase with 
the circularly polarized field component, interact effec­
tively with this component. In accordance with the 
standard terminology, the corresponding resonance is 
called diamagnetic. Figure 4 shows the dependence of 
d 1) Ida on al w - 1 at different values of the parameter 
wa/v. When the parameter wa/v decreases, and also 
when the number of collisions increases, the width of 
the resonance line increases. Thus, the diamagnetic 
resonance is most strongly pronounced in the region 
veff «via, w »Vla. Its experimental observation 
could offer evidence that the number of collisions is 
small, and consequently that the plasma temperature is 
high. 
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