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It is shown that the interaction of charged particles with the field of a traveling monochromatic 
plane wave of small but finite amplitude under resonance conditions at half-integer cyclotron 
frequency harmonics w(k)=k z v z + Y, n wB(n = + 1,±3, ... ) results in the appearance of wave 
damping. 

1. INTRODUCTION 

It is shown in the present paper that electromagnetic 
waves of small but finite amplitude can be absorbed 
effectively by resonant particles of a plasma in a mag­
netic field for which the condition 

w(k)=kzv,+1/2nwB, n=±l, ±3, ... , (1.1 ) 

is satisfied, where k is the wave vector, w(k) the fre­
quency of the wave, wB the cyclotron frequency of the 
particle, and kz and Vz the projections of the wave 
vector and the particle velocity on the direction of the 
external magnetic field Bo• 

The origin of this resonance, which can be called 
resonance at half-integer harmonics of the cyclotron 
frequency, can be understood from the following con­
siderations. In the absence of an electromagnetic wave, 
a charged particle moving in a magnetic field along a 
helix can be regarded as an oscillator with the eigen­
frequency WB. The Lorentz force exerted on the parti­
cle by the field of the wave oscillates, in the approxima­
tion linear in the field amplitude, with frequency w(k) 
- kzvz, and with account of the finiteness of the Larmor 
radius of the particle, with frequency w(k) - kzvz 
- sWB (s is an integer). 

Linear cyclotron resonance occurs upon coincidence 
of these frequencies with WB. With account of the small 
(in comparison with the wavelength) but finite displace­
ment of the particles in the wave field, which oscillates 
with the frequencies w( k) - kzvz - lWB, 1 = 0, ± 1, ... , 
the Lorentz force will contain a term that is quadratic 
in the field amplitude and that oscillates with the fre­
quencies 2w(k) - 2kzvz - (l + s)wB. Nonlinear cyclo­
tron resonance takes place upon coincidence of this fre­
quency with WB. 

The present paper is devoted to the theory of non­
linear cyclotron resonance. The motion of a single 
charged particle in the field of a plane traveling mono­
chromatic wave is considered by the method of averag­
ing under the resonance conditions (1.1). The width of 
the region of particle capture on the phase plane (vz, 
<fin) where l/in is the resonance phase, and the frequency 
of oscillations of the captured particles ntr are found. 
The damping decrement of the wave is found under con­
ditions when capture of the resonant particles by the 
wave field does not occur. The value of the damping 
decrement turns out to be equal, in order of magnitude, 
to 

Inl=l, 

n=±3,±5, ... , 
kv-,­
--<1, 

WB 

(1.2) 

(1.3) 

where vrff = e rff/mw is the velocity acquired by the par­
ticle in the wave field and vT is the characteristic 
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thermal velocity. (In obtaining the estimates (1.2) and 
(1.3), it was assumed that kz ~ kl and vT« w/k.) 

A comparison of (1.2) and (1.3) shows that the reso­
nances at the higher odd harmonics (\ n \ 2:: 3) lead to 
very weak damping. The damping of the field at \ n \ = 1 
may prove important for comparatively small fields, 
and the resonance \ n \ = 1 can be used to heat the ions 
in a plasma to high temperatures. 

2. MOTION OF THE CHARGED PARTICLE 

The equations of motion of a nonrelativistic charged 
particle have the form 

dv e 
m-= eE +-[v,B+Bol, 

dt c 

dr 
V=-

dt' 
(2.1)* 

where E and B are the electric and magnetic fields of 
the wave, 

E=Re.!fee"··-·,+a), B = Re~[k, E], (2.2) 
W 

E is the amplitude, at the initial phase, anet Edhil- polari­
zation vector of the wave. For weak absorption, the 
amplitude of the wave E and the phase at change slowly 
with time. In this case, the polarization vector can be 
chosen in the form e = (ex, iey, ez); ex, ey, ez are real 
numbers.[2] 

If the amplitude E and the phase u of the wave are 
constant, there exist three exact integrals of motion of 

" [ Bo] k e.!f . 
V-ffiB r, - - _ v' - - Re iee1(kr-I'II+a)=c, 

Bo 2w mw 

Eqs, (2.1): where C is a constant of integration. (The 
integrals (2.3) were obtained in the relativistic case by 
Woolley.[3]) It is not possible to carry out further inte­
gration of Eqs. (2.1) and we must turn to approximate 
methods to study the character of motion of the particle. 

We choose a set of coordinates with the z axis 
parallel to the external magnetic field B o, and the x 
axis lying in the plane of the vectors k and Bo. 

Making the following substitution of variables in Eqs. 
(2.1): 

V::c=V.L cos 8, 

vy=v..,Lsin8, 

v-,- . x=; - -sm e, 
WB 

v-,­
Y=T]+-cose, 

WB 

(2.4) 

where e is the aximuthal angle in velocity space and ~ 

and 1) are the transverse coordinates of the Larmor 
center, we get 

d; efffE (.) -= --- R, sin (fll.+a) , 
dt mWB 

"dT] e.!f 'l> (.)" 
-= --- \ R" cos(fll.+a}, 

dt mWB~ " 

dv, efff E (.) -=- R" cos(fll.+a}, 
dt m ' 

dv-,- e.!fE (.) ( ) -=- R, cos fll.+a, 
dt m .L 

de 1 e.!f E (.) . 
--=-WB+--_ R, sm(fll.+a}. 
dt V.L m • 
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Here 
(.) ( soo. k,V,) 

RI =e. 1--;---;;;-, I,(a}, 

(.) [ ( . k,v,) k.v, 'J' k.v.1. , R. = e. 1--;;;-, +e'7 I.(a)-e.-;;-I. (a), 

(., [( soo. ) k, soo. J k,v.1. , R, = e, 1-,- +e.--- I.(a)-e.-.-I. (a). 
z (i) k~O) w 

(.) [( k,v, ) k.v,] s (k,V,) , 11. • .1. = e, 1-7 +e.-;; -;,-1. (a}-e. 1--;;;- I. (al, 
(2.6) 

Rt') = [ e, ( 1- k:' ) +e. k:. J I: (a) 

( k,V.) S k.v.1. 
-e. 1--- -I.(a)+e.-, -I.(a), 

00 a 00 

Js(a) is a Bessel function, a = kxVi/WB, and CPs = kzz 
- wt - s(l+ kx~. 

We note that the equations for the quantities ~, vz, 
vi and (I do not contain 1). Therefore the equation for 

!7 is given no further consideration. 

We shall assume that the amplitude of the wave is 
small: 

(2.7) 

Then the set of equations (205) contains rapidly changing 
phase (I and kzz - wt, and can be investigated by the 
method of averagingYl To study Cherenkov and cyclo­
tron resonances, it suffices to restrict ourselves to an, 
approximation that is linear in the amplitudey,51 The 
study of the resonances (1.1) requires consideration of 
the next approximation, which is quadratic in the field 
amplitude. For this purpose, we make the following 
substitution of variables in Eqs. (2.5): 

u.=v,+v" V.1. =V.1. +V.1., 9=1)+0, 6=~+I, z=z+z, (2.8) 

where 

(2 0 9) 

As a result of this substitution, we get the following 
equations for the mean values 'f, VZ, vi' e under the 
resonance conditions (1.1): 

01 (iff)' k dt = cB, -;;F,(v" V.1.)COS (1P.+2a.) , 

dv iff ' 
at' = (c B.) kF., (v"v.1.)sin(1jJ.+2a.), 

dv.1. ( iff)' ~ _ . dt"= c B. kF,.l. (V" V.1.) sm (1jJ.+2a.) , 

(2.10) 

dil 1 iff' 1 iff Z 

-=-ooB+-::--{ c-) kF"(v,,v.1.)+~f c-B ) kF"(v,,v.1.)cos(1jJ.+2a.), 
dt V.1. \ B. V.l. \ • 

where k = ,; ~ + k~ and </in is the resonance phase: 

'iJ.=2k,z-2oot-nH2k~. (2011) 

The quantities Fa CVz , vi) are determined by the ex­
pressions 
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The functions Ris ) and R~n-s) in these expressions de­
pend on the averaged variables VZ ' vi' 

lt is also convenient to introduce the equation for the 
resonance phase 

d1jJn'=nw.-2oo+2k,V,-.!!....( c ~)' kF" 
dt· v.J. Bo 

,tt- (c!"")'k (2k'F,_ ~ F,,) cos (1jJn+2a.). 
.... Bo WB VJ. 

(2.13 ) 

Equations (2.10), (2.13) describe the nonlinear motion 
of a charged particle in the field of a traveling mono­
chromatic wave under the resonance conditions (1.1) on 
the phase plane (vz' </in) or (Vi' </in). 

At small values a « 1 (kz ~ kx ) we get the following 
order-of-magnitude estimates: 

F,~a'"', F,,~a'"', F'l.~1 (ini=1), F,l. ~a'n'-J (ini~3), 

F,"~1, F,,~1 (ini=1), F,,~alnl.3 (ini~3). 

These estimates show that for a <.<. 1 the greatest 
change is experienced by the quantities vi and 80 

The singular points vzc, vie, </inc on the phase 
planes are determined from the equations 

sin (1jJn,+2a.) =0, 1jJ,,=Zn-2a, Z=O, ±1, ... , 

n ( iff)' nw.-2w+2k,v,,-~ c - kF" (v,,, v .J.') 
.. V...Lc Bo 

( iff) 2 [2k, _ _ n _ _] 1 + c- k -F,(v,,, v.J.,)--::--F" (v,,,v.J.') (-1) =0. 
Bo WB V..LC 

(2.14) 

(2015) 

(Moreover, the existence of singular points determined 
by the equation Fvz(vzc , viC) = 0 is possible. These 
will not be discussed here.) 

For a wave propagating at an angle to the magnetic 
field that is not close to 1T/2, we get the following inte­
gral of motion by using Eqs. (2.10) and (2.13): 
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(c :J ;, F., (v"Vol.)cos(1jl.+2rx)=C,- (V,- 2w2~~WB)'. (2.16) 

It follows from Eqs. (2.15) and the integral (2.16) that 
the motion of the particle on the phase plane (vz, l/!n) 
can be infinite or finite. In the latter case, the particle 
is captured by the field of the wave. The region of cap­
ture in the variable Vz is of the order of 

B [k ]',. ilv,-c- -F. (v,,,Vol') , 
B, k, ' 

(2,17 ) 

and the oscillation frequency of the captured particles 
near the centers is equal to 

Q,,'=2 (C~)·kk'F., (v,,,Vol.')' (2.18) 
B, ' 

In the derivation of the integral (2.16), we used the facts 
that dvd dt ex: g 2 and dV 1/ dt c:c ,g 2, while dl/!n / dt 
~ kz LI. Vz ex; g. In the case of small a « 1, the expres­
sions for the integral (2.16) and frequency Otr (2.18) 
are valid only for not very strong fields, namely, 

B k ' lal 'nl +2 :> (c--) , k,-k •. 
B, WB 

(2.19) 

Since the next approximation, which contains the reso­
nance (1.1), is proportional to gt, the perturbation of 
the considered trajectories in the (vz, l/!n) plane by the 
higher approximation is proportional to ,g 2. 

In concluding this section, we note that as a result of 
averaging of the exact integrals (2.3), we can obtain 
three more approximate integrals of motion of the parti­
cle under the resonance conditions (1.1). 

3. DAMPING OF THE WAVES 

We now determine the damping of the waves due to 
their absorption by resonant particles. If we consider 
the problem of the evolution of the initial perturbation 
in the absence of extraneous currents, which maintain 
the field, then the capture of resonant particles by the 
field of the oscillations leads to saturation of the absorp­
tion and to a sharp decrease in the damping decrement 
(cf. with l 6,7]). Therefore, we shall consider the case of 
strong damping, when capture of the particles by the 
field of the wave is unimportant, i.e., the wave is damped 
before the particles perform an oscillation in the 
"potential" well of this wave. For this it is necessary 
that the damping decrement y be large in comparison 
with Otr. This situation is analogous to the case in 
which we can use the linear theory of damping for cyclo­
tron resonances W "" kzvz + nWE. However, in reso­
nance at the half-integer harmonics WE the damping 
decrement is proportional to g2, while Otr is propor­
tional to g; therefore the condition}, »Otr is satisfied 
only at rather strong fields. We recall that for reso­
nance w"" kzvz + nWE, the quantity Otr ex; Ig and y 
does not depend on g; therefore, capture is absent only 
for weak fields. 

If the criterion y » Otr is not satisfied, but the 
Coulomb collisions remove the particle from the reso­
nance region LI. Vz before it completes an oscillation in 
the "potential" well of the wave, i.e., if 

(3.1) 

then the effect of capture can also be neglected (d. 
withlS]). (Here Vc is the frequency of collisions between 
the ions if the resonant particles are ions, or between 
ions and electrons, and between electrons if the resonant 
particles are electrons.) In this case, "Maxwellization" 
of the distribution function takes place in the resonance 
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region. Inasmuch as the quantities Otr ex; ,g and LI. Vz 
ex; ,g are small, then, in contrast with linear cyclotron 
resonances, when Otr ex; fl and LI. Vz c:c ,fg, the role of 
Coulomb collisions turns out to be more Significant in 
the nonlinear cyclotron resonance. 

In the following, we shall investigate the damping of 
a wave when capture of the resonant particles is absent 
because the inequality y » Otr or condition (3.1) is 
satisfied. We find the change in the kinetic energy ab­
sorbed by the resonant particles in a unit volume of 
plasma: 

dT, mn, 1 S· S • 2 af, -=-- dl dv(v, +Vol )--, 
dt 2 f.., iJt 

(3.2) 

where A is the wave length, 1 the distance in the direc­
tion of the wave vector k (21TA- 1 dL '" d( k· r », fo is the 
equilibrium distribution function, which, at the initial 
instant of time, is equal to folt",O '" fo(vzO, V10) (vzO 
and V10 are the initial values of the longitudinal and 
transverse velocities of the particles). The term con­
nected with the initial perturbation of the distribution 
function has been omitted from (3.2). The contribution 
of this term to the change in the kinetic energy as 
t - 00 turns out to be small as a consequence of the ef­
fect of "mixing" (cf. withl6]). 

Taking into account that 

!A=~~+.!J.!.... iJVol.' 
at av" at a Vol.' at 

eB ~[ af, (.)' af, (n) ] 
=--' -~--R. (Vol.,)+--R. (v",Vol.') cos (Cl>n'+rx) 

m n avzo % aV.l..o.L 

and transforming to the initial variables in the cylindri­
cal system of coordinates (2.4), and also using the z 
component of the integral (2.3), we get 

dT 1 'n 
- =-eBn,- S d(k.;,+k,z,) S Vol' dvol.O dv" de. 
dt 2n , 

x[~V,(t)+~e'El.(a)sin(Cl>.+a)] (3.3) 
kz. mkz, 

In order to obtain the change in the kinetic energy under 
the resonance conditions (1.1), we transform in (3.3) to 
the averaged variables. (We note that the Jacobian of 
this transformation is equal to unity with accuracy to 
terms of order ,g2.) 

For the quantity vz(t), we find from (2.10): 

, IS 2 

i>,(t)=v,,- (c-) kF. (v",Vol') 
"Bo Z 

cos[ 1jJ",+ (2k,v,,-2w+nWB) t+2a]- cos (1jln,+2rx) x ·---.--.---------
2k,v,,-2w+nWB 

Since the component in this expression which describes 
the change in the longitudinal velocity of the particle 
under the resonance conditions (1.1) is proportional to 
,g2, it turns out to be sufficient in converting to the 
averaged variables to limit oneself to the substitution 
(2.8) and (2.9). Carrying out the integration over the 
variables kxto + kzzo, eo and over the variable vzO, and 
using the relation 

. sin (2k,v,.-2w+nwB) tn. (_ 2W-nWB) 
hm =-u Vzo---- , 
t~~ 2k,v,,-2w+nwB 2k, 2k, 

we obtain the following asymptotic (as t - oX) expres­
sion for the change in the kinetic energy: 
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(3.4) 

where wp = 41T/e2n.o/m and 

, ' S~ - d- F (- - ) { of. F (- - ) 
=V:r V.LO V.l.O 1) ~V,1:0, V...l..O avJ.o D.!. Vzo, VJ.O . 

of. _ _ 1 WB ~ WB [Ii'/' (0) _ _ 

+-a-F.,(V,.,V.LO)+-2 -k £... _ +k -{J-2 RuJ.. (v,.,vJ..') 
VJ;O S(iJB (0 ,Vzo V.1.8 

• (3.5) 
{J'/. (.j _ ] (n-.j _ _ • 1 WB ~ IllB 

+-1)-- R., (vJ..') RuJ.. (v,.,vJ..')+-2 -k £... _ +k . 
VzoOV.LO I SOls (i) ,V,O 

[ 0'/. (.j (- 1)'/. (.j (- - ) ]R(R-.l (- )} I X --RI: V.l.O) + R." VtO,V.LO v V..LO _ 2CO-II(I""8 

8vzo2 aVzo;8v...l..o...l... Z vzo =--;:--

We make use of the law of conservation of energy 

dW/dt+dT/dt=O, (3.6) 

where W is the mean value of the energy density of the 
electric and magnetic fields in the plasma and the oscil­
lations energy of the plasma particles in the field of the 
wave: 

(3.7) 

lOb is the Hermitian part of the dielectric tensor of the 
plasma. Then Eq. (3.6) can be written in the form 

dfS'/dt=-21fS'/fS' (0), (3.8) 

where 

(3.9) 

vE = e C (0)/ mw is the oscillation amplitude of the parti­
cle in the field of the wave at t = O. The value of y 
characterizes the rate of change of the wave amplitude. 
Integrating (3.8), we find the damping law of the ampli­
tude of the wave field: 

fS2(t) =fS' (0) / (1+21t). (3.10) 
It then follows that for yt » 1, the quantity C falls off 
as t- 1/ 2• 

4. DISCUSSION OF RESULTS 

We estimate the value of the damping decrement for 
nonlinear electron cyclotron resonances. Assuming that 
wpe ;S wBe, and that the phase velocity of the wave is of 
the order of the speed of light W ~ kc, we get for 
w"" WBe/2 

It follows from this expression that the width of the ab­
sorption resonance is of the order of Llw ~ c- 1 vTewBe. 

For resonances \ n \ ~ 3, the damping decrement of 
waves with a phase velocity of the order of c is very 
small: 

(4.2) 

We note that account of relativistic effects in the equa­
tions of motion (2.1) (or in the kinetic equation) should 
also lead to weak nonlinear damping, consideration of 
which might possibly change the result (4.2). For slow 
waves (ck/ W » 1), when the frequency w of the wave 
is close to the frequency of the upper or lower hybrid 
resonance w+ or w_, where 

W±2='/2 (WP,'+WB;) ±'/,[ <,WP,'+WB/) '-I,wp,'wB/k,'/k')'i', (4.3) 

the damping falls off sharply. In this case, the value of 
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the damping decrement (4.2) increases by a factor of 

(ck/ w)2 \ n \ -3. 

In the low-frequency region, for Alfven or fast mag­
netoacoustic waves with frequency w"" wBi/2 ~ kVA 
(vA is the Alfven velocity), the damping decrement is 
equal in order of magnitude to 

(4.4) 

For higher resonances (w = Y2nwBi, \ n \ ~ 3) the 
damping decrement is reduced by a factor of 

(VA/VTi)2\n\-3 in comparison with (4.4). 

If the amplitude of the wave is maintained by a sta­
tionary external source, then in the absence of colliSions, 
capture of the resonant particles by the field of the wave 
takes place, and absorption saturation sets in. However, 
if sufficiently frequent Coulomb collisions prevent cap­
ture of the particles, then upon satisfaction of the condi­
tion (3.1), the distribution function will be Maxwellian 
in the resonance region. The wave energy absorbed by 
the resonant particles, will be transferred to the non­
resonant particles of the plasma, i.e., heating of the 
plasma will occur. The change in the temperature is 
then determined by the condition 

(4.5) 

The absorption coefficient of the wave K = 1m k, which 
characterizes the spatial decay of the wave amplitude, 
is expressed in terms of the quantity y with the help of 
the condition K = ydk/dw. 

As an example, let us consider the absorption of high­
frequency electromagnetic waves with frequency 
w"" wBe/2 in a plasma. If no ~ 5 x 1012 cm-3 , Bo 
~ 5 kG, Te ~ 10 eY and C ~ 1 kY/cm, we then get 
vC ~ 3 X 107 cm/sec, vTe ~ 108 cm/sec and y/w 
~ 0.1, and the wave is attenuated at a distance l ~ c/y 
~ 5 cm. This example shows that the nonlinear electron 
resonance w"" wBe/2 can easily be detected in a gas­
discharge plasma. Using this resonance for the heating 
of a plasma in big thermonuclear installations (no ~ 5 
x 10 14 cm-S, Bo ~ 50 kG, Te ~ 1 keY, A = 21TC/W ~ 5 mm) 
requires the use of very high powers: even at C ~ 100 
kY/cm, we get y/ W ~ 4 x 10-"-

The nonlinear ion cyclotron resonance w"" wBi/2 
on Alfv€n and fast magnetoacoustic waves in a plasma 
with thermonuclear parameters (no ~ 10 14 cm- , Bo 
~ 40 kG, Ti ~ 1 keY) leads to very strong damping of 
these waves even for relatively small values of the am­
plitude; for example, for B ~ 100 G (If ~ 1 kY/cm), we 
obtain y/ w ~ 10-2 • The excitation of waves with fre­
quency W "" wBi / 2 in a plasma of large dimensions can 
be more effective than that of waves with frequency 
W = wBi or W = 2wBi. since the former have a large 
wavelength; a damping mechanism that leads to heating 
of the ion component of the plasma exists for them, as 
for waves with frequencies WBi and 2WBi. 

The condition for applicability of the developed 
theory (3.1) and (2.9) are satisfied for the numerical 
examples given. 

In conclUSion, we note the possibility of nonlinear 
cyclotron excitation of waves in a plasma. If the parti­
cles of the plasma have an anisotropic velocity distri­
bution, for example, because of the presence of a helical 
beam of electrons, then the quantity y, which is deter­
mined by Eq. (3.9), can become negative. In this case, 
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an "explosive" instability arises; in accord with (3.10), 
the amplitude of the oscillations grows to infinity within 
a finite time ~ t = Y2Y. However, for sufficiently large 
values of the amplitude, the growth of this instability 
should be restricted to the higher nonlinear terms. 
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