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It is demonstrated within the framework of the Korteweg-de Vries (KdV) equation that a periodic 
stationary wave is stable with respect to finite perturbations. Particular solutions of the KdV equation 
are found which are analogs of the well-known N -soliton solution, describe the interaction of solitons 
and a periodic wave, and constitute shear "dislocations" of the latter. The problem of interactions 
between the "dislocations" is studied. 

As is well known,Pl the propagation of one-dimen­
sional waves of finite amplitude in media with weak dis­
persion is described by the Korteweg-deVries (KdV) 
equation: 

(1 ) 

The KdV equation was the first of a series of nonlinear 
equations studied by the inverse scattering problem 
methodYl The scheme of application of this method (in 
the form described by Lax(31) consists of the following. 
A Qair of linear operators L and A are associated with 
the considered nonlinear equation, with the help of which 
this equation is represented in the form 

oLlat=i[f" A]. (2 ) 

Here the solution of the Cauchy problem reduces to the 
investigation of the direct and inverse spectral problems 
for the operator L. The use of such an approach allows 
us effectively to study the behavior of the solutions of 
Eq. (1) as u - ° as I x I - 00. In particular, a tri vial 
consequence of the application of the inverse problem 
method is the proof of the asymptotic stability of the 
stationary solution of the KdV equation-the soliton. It 
has been shown[4] that as t - "", a solution that is 
initially close to a soliton also represents a soliton that 
is continuously dependent on the initial perturbation. 

However, extension of the Lax scheme to the case 
u - uo (x, t) as x - 00 presents Significant difficulties. 
In this case, the approach suggested by Shabat[51 is far 
more convenient We shall refer to this below as the 
Shabat scheme. 

In the present paper, use of this scheme allows us 
to study the behavior of solutions of the KdV equation 
in the case in which u - Uo as x - 00, where Uo (x) is 
the stationary solution of (1), the so called cnoidal 
wave:[l] 

II (x-vt) = --21f> (x+iw' -vt) +uI6, (3 ) 

where y(x) is a Weierstrass elliptic function (see, for 
example/ 6 ]), with periods 2w, 2iw' (w, Wi real). In 
particular, we shall prove the stability of the solution 
(3) and find particular solutions of the KdV equation that 
are direct analogs of the well-known N-soliton solu­
tion,l4] which in our case describes the interaction of 
solitons with the periodic wave (3) and which represent 
shear "dislocations" of the latter. We shall also prove 
that asymptotically (as t - 00), the general solution of 
(1) with periodic conditions on x at infinity is the set of 
noninteracting dislocations of the wave (3). 
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1. STATEMENT OF THE PROBLEM AND THE 
FUNDAMENTAL EQUATIONS 

Let us consider the integral equation (the Marchenko 
equation): 

-
K(x, y)+F(x, y) + J K(x, s)F(s, y)ds=O. (4) 

We shall assume that the kernels K and F depend on 
the time t as a parameter. Following Shabat,E5] we de­
fine the differentiation operator D relative to the con-

volutionofthetwokernels G*H;o I'G(X,S)H(S,y)dS: 
_00 

D(G*H)=DG*H+G*DH. 

It is easy to see that the differentiation operators 
ha ve the form 

a 0" Ii" 
Do= iJt' Dn= ax" +(_1)n+> ay'" D/=j(x,t)-j(y,t).· 

These operators form an algebra, i.e., the commutator 
of any two operators and also their linear superposi­
tion are differentiation operators. Then the following 
theorem is valid: if K and F are the solutions of Eq. 
(4) and DF ;0 0, there exists an operator 0 such that 
OK ;0 O. Here the principal differential parts of D and 
o coincide and D contains as coefficients in front of 
the differentiation operators the kernel K and its 
deri vati ves on the characteristic x ;0 y. 

We now consider the two operators 

a' a' 
P= ~ -J~ +u, (x, t) -u, (y, t), 

ox' ay2 
a a' a' a a 

Q= - +4 - +4 -. -' +6u, - +6uo - +3u •• +3u". 
at Ih' dy' ax ay 

As is not difficult to see, they are differentiation opera­
tors. We require that the kernel F satisfy the following 
two equations simultaneously; 

PF=O, (5) 

QF=O. (6) 

From the compatibility condition of these equations, it 
follows that lP, QJ ;0 0 (cf. with[7]). The latter is equiv­
alent to Uo satisfying the KdV equation. -Furthermore, 
letting the operators P and Q act on Eq. (4), we find 
that K( x, y) satisfies the set of equations 

PK=(P+2:x K(x,x»)K=O, (7) 

QK= (Q+12~.!....K(x,x)+12~K(X,X)~+6~K'(x,x») K=O. (8) 
dx ax dx ax dx 

From the compatability of these equations, it follows 
that u ;0 2dK( x, x)/ dx satisfies the equation 

(9 ) 
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This equation describes the propagation of the perturba­
tion u against the background of the wave uo. Thus, the 
Shabat method allows us to solve the Cauchy problem for 
Eq. (9) according to the following scheme: 

PK_O K+'+X·'-O 
K (x, x, 0) ---+ K (x, y, 0) ---+ F (x, y, 0)-

~F(x,y, t) ~K(x, y, t)---+K(x,x, t). 

We note that the nontrivial items of the given scheme 
are the second and the fourth-analogs of the direct and 
inverse Cauchy problem for the operator L in the Lax 
scheme (2). 

The given method allows us to investigate effectively 
the stability of any solutions of the KdV equation to 
finite perturbations. The only limitation on the value of 
the perturbations follows from the Marchenko equation; 
to be preCise, it is necessary that u(x) fall off at one of 
the infinities (in the given case, at +00). Specifically, we 
shall study the problem of the stability of a periodic 
stationary wave. 

2. THE DIRECT SCATTERING PROBLEM 

By the direct scattering problem we shall mean the 
problem of determining F(x, y, t). For this purpose, 
we consider Eqs. (5), (6). These equations are of the 
type for which the Fourier method is applicable. In this 
connection, we first find the particular solution of Eqs. 
(5), (6) of the form 

F(x, y, t) =C(t)1jJ(x)1jJ(y). 

It is easy to see then that I/J satisfies a Schrodinger 
equation with a potential Uo having a period 2w: 

d'1jJ 2 ( , -;w:- ~ x+i(~ )1jJ=-E1jJ. 

Without limitation of generality, we set the velocity 
v = O. (Actually, this corresponds to a transition to a 
set of coordinates moving at a velocity v.) 

This equation-the Lame equation-has been thoroughly 
studied in the literature (see, for example[6l). Its eigen­
functions are expressed in terms of the Weierstrass 
functions a(x) and t(x): 

O(X+iUl' +a) 
1jJ.(x) O(X+iUl')o(a) exp[~ (a)x+WUl')a], (10) 

and the "energy" E is connected with the parameter a 
by the relation 

E=-~(a). 

Here I/Ja(x) and I/J_a(x) are linearly independent. For 
real E-and it is just these values that are of interest 
to us-the parameter a is a complex number and varies 
along the boundary of a rectangle as shown in Fig. 1. 
Here the segments (w, w + iw') and (iw", 0) corre­
spond to the continuous spectrum. To each segment 
there corresponds an allowed band. The first band cor­
responds to values of the energy E between -'(fl ( w) 
and - 'If (w + iw"), and the second to E from - ~ (iw') 
to 00. 

It is curious to note that for the given potential there 
exist only two allowed bands. This phenomenon can be 
explained rather Simply. The potential uo(x) refers to 
a periodic reflectionless potential for which, in particu­
lar, the representation 

uo(x)=2(~{iOO')+~ x' ) 
ioo' ~ooch'x(x+2noo)' 

is valid, with K = 1T/2w', i.e., the potential uo(x) is an 
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infinite sum of reflectionless soliton potentialsYl Here 
the wave functions (10), which correspond to the con­
tinuous spectrum, are Bloch wave functions with the 
quasimomentum 

p(a) =i<,,-t (oo~(a) -~ «)))a). 

We can establish the fact directly that the value of the 
quasimomentum is a continuous quantity in the transi­
tion from one allowed band to another. Here p = 0 at 
the point a = w; at the points a = ±iw' and a = w ± iw' 
the values of p are identical, 

In addition to the continuous spectrum, we shall be 
interested in solutions I/Ja(x) that correspond to values 
from the forbidden bands. It can be established that for 
these bands 1m p > 0 correspond to two segments: 
(0, w) and (w + iw', iw') in the complex plane of a. 

We now determine the C(t) dependence. Solving 
Eqs. (6) and USing the formulas for the addition of 
elliptic functions (see[6l), we find that 

Co(t)=C,(O) exp [-4~'(a)tl. (11) 

NOW, knowing the particular solution of Eqs. (5), (6), 
we construct the general solution: 

F(x,y,t)= S p(a,t)1jJ.(x)1jJ,(y)da+ LMn'(t)1jJn(X)1jJn'(y), 
c 

where the integral is taken over the entire continuous 
spectrum (- 00 < p < 00), and the discrete summation 
over the values of an for which 1m p (an) > O. 

The given solution is a general one in the class of 
functions which vanish at +"". The solutions p(a, t) and 
M~ (t) vary with time according to (11). The values of 
p(a, t) and M~(t), as will be shown below, are connected 
with the data on scattering from the total potential 
V = Uo + ll. 

3. THE INVERSE SCATTERING PROBLEM 

By the inverse scattering problem, we mean the 
problem of the determination of K(x, y, t) from a given 
F(x, y, t). Here, by virtue of the Marchenko equation 
and Eq. (7), there arises a connection between p(a, t) 
and M~(t) and the data on scattering from the potential 
V. 

Before moving to this problem, we make two obser­
vations. First, it can be shown (see, for example,[9 l) 
that the wave functions I/Ja(x), which correspond to a 
continuous spectrum, form a complete set of functions. 
Moreover, we can establish the fact that these functions 
are orthogonal: 

00 ~( ) 

L1jJ.(x)1jJ.(x)dx=2n I~+'(fl(a) IIl(p(a)+p(b». (12) 

Second, the functions I/Ja and I/Jn, which correspond to 
the continuous and discrete spectra, are linearly inde-
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pendent. For this reason, the general solution for 
K(x, y) can be put in the form 

K(x,~)=- f p(a,t)!p.(x)¢.(y)da-,E Mn'(t)!pn(x)¢;(y). 
c 

Substituting this solution in the Marchenko equation, 
we find the triangular representation for the functions 
CPa, CPn: 

'00 

!P.(x)=¢~(x)+ f K(x,y)ljla(y)dy, 

00 
(13 ) 

!Pn(X)=ljln(X)+"J K(x,Y)¢n(y)dy, 

where the functions CPa and CPn satisfy the Schrodinger 
equation 

(14) 

i.e., CPa is a wave function of the continuous spectrum 
and cpn corresponds to the bound state, inasmuch as CPn 
decays as x - 00, and, as will be shown below, falls off 
also if x - - 00. 

As is well knownp,41 the solutions of the KdVequa­
tion for decaying potentials, whic h corres pond to the 
continuous and discrete spectra, can be regarded 
separately asymptotically as t - 00. A similar proposi­
tion is also valid for the given problem. By virtue of 
this, we set all M~ = 0 and consider the asymptote 
CPa(x) as x - -"". 

Since, CPa(x) tends to iJ!a(x) as x - 00, as follows 
from the triangular representation, it can be decom­
posed at the other infinity into the functions iJ!a(x) and 
iJ!a(x): 

<pa (x) =a (a) ljla(X) +~ (a) Ijla' (x). (15 ) 

Here the scattering data a (a) and f3 (b) carryall the 
information on the potential u(x). From Eq. (8), one 
can easily determine the behavior of a (a, t) and 
j3 (a, t). It can be established directly that Cl (a, t) does 
not depend on time, while j3 (a, t) varies according to 
the law 

~(a, t) =~(a, 0) exp (-4~'(a)t). 

We now establish the coimection of p (a) with the 
scattering data; it follows from (15) that, as x - _.00, 

K(x, y) =K,(x, y)+K,(x, y); 

K,(x,y)=- S p(a,t)a(a)ljla(X)ljla(y)da, 
c 

K,(x,y)=-J p(a,t)~(a,t)Ijl;(X)ljla(y)da. 
Since the functions iJ!a(x) are rapidly oscillating, it fol­
lows that K1(x, y), F(x, y) differ from zero in the 
region x ~ -y, and Kz(x, y) in the region x ~ y. It then 
follows from the Marchenko equations (4) that, as 
x - - 00 (cf. withlZl) 

00 

K,(x,y)+ S K,(x,s)F(s,Yi)ds=O. 

Solving this equation by the Fourier method and using 
the orthogonality of the functions iJ!a(x) (12), we obtain 

pta t)= __ 1_ ~'(a,t) 
, 2ni a(a) 

Thus the quantity p (a) is connected with the scattering 
data for the continuous spectrum, As will be shown in 
the following section, the quantities M~(t) are also 
connected with the scattering data for the bound states. 
To each discrete level there corresponds a solitary 
wave-a soliton. 
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4, N-SOLITON SOLUTIONS 

We now consider solutions u(x, t) that correspond to 
discrete degrees of freedom, We shall first make clear 
to what solution of the equations a soliton or solitary 
wave corresponds. For this purpose, we keep only a 
single term in the discrete sum (13): 

K (x, y) =-M.' (t)!pn(X) Ijl: (y); 

it then follows from the triangular representation that 

!pn (x) =Ijln (x) / {HMn'(t) I'¢n(y) l'dY}. 

Thus 
d ~ 00 

V(x, t) =uo(x) +2-K(x, x, t) =uo(x)+2-ln( HMn'(t) f Iljlnl' dY). 
dx dx' 

• (16) 

We shall call this solution a soliton. We now investigate 
it, 

The integral in (16) is rather simple to calculate if 
Eq, (14) is used: 

SOO IIjl l'dx=IIjlI' a(x'+2Rea)a(x')lo(a)I' X'~X+iUl'. 
. n n a(2Rea)a(x'+a)a(x'+a')' 

It is then obvious that u (x, t) - -2M~ d I iJ!n I zldx as 
x - 00, i.e., u decays exponentially as x - 00, At the 
other infinity (x - - 00) 

a(2Rea)a(a') 
!pn(X) .... M';'(t)a(a) 1jl_ .. (x+2Rea)exp(-2~'(a)Rea), 

(17) 
V(x, t) .... uo(x+2Re a) 

and the contribution to the potential uo(x + 2Re a) is 
exponentially small as x - - "". 

The solution (16) naturally does not have the form of 
a stationary wave. However, this wave moves in the 
mean with a constant velocity in the medium. We deter­
mine it from the following: we find the time T in which 
the soliton passes through one period of the soliton 
lattice 2w, Inasmuch as 

a (X+2Ul) =-o(x) exp (2~ (Ul) (x+oo», 

this time T = -1m p( a) will" (a), i.e., the mean velocity 
is 

'u=2oof,;=-2~' (a) 11m p (a). 

Thus the soliton in the given case represents a non­
stationary solitary dislocation which propagates with 
some mean velocity v along the cnoidal wave. By in­
vestigating the sign of v, we can establish that all soli~ 
tons having a from the lowest forbidden band move to 
the right and those having a from the upper band to the 
left. A graph of these solutions, calculated on an elec­
tronic computer, is shown in Fig. 2. The completely 
natural question arises as to the interaction of two dis­
locations having two different velocities. It is obvious 
that there exists instant of time t when the interaction 
of the solitons becomes significant. It is clear before­
hand that in a collision of solitons, the parameters a 
remain as before, A similar propOSition is, of course, 
satisfied for N-soliton interactions. As will be shown 
below, the collisions are pair collisions; therefore in 
what follows we can limit oursel ves to study of collision 
of only two solitons, 

Thus, as t - - 00, let there be two solitons with 
velocities Va, Vb (Vb > va). We determine the matrix 
of scattering from the two soliton potentials, As 
x - 00, let the asymptotic form of CPa(x)- ljJa(x), We 

E. A. Kuznetsov and A. V. MikhaYlov 857 



FIG. 2. Plot of solutions V(x) for dislocations which are propagated 
a) to the right (a = 0.3), b) to the left (a = 0.5 + iw'); c) for the soliton 
lattice (w = I, w' = lin). 

determine <Pa(x) as x - - 00. After the first soliton (a), 
we have (17): 

a(2 Re a)a(a') 
<p.(x) M.'(t)a(a) ¢_.·(x+2Rea)exp(-2~·(a)Rea). 

This expression represents an intermediate asymptotic 
form, as t __ 00, between two solitons which have 
moved a great distance apart. Our problem now is to 
calculate the scattering matrix due to the second soliton 
(b ). 

The kernel Kt(x, y) is expressed only in terms of 
the functions <Pb(X + 2 Re a): 

Kb(x, y) =-Mb'<Pb(X+2 Re a)1jJ,(y+2 Re a) 

M.'¢b(X+2 Re a)1jJ,(y+2 Re a) 

1+M.'J l¢b(s+2Rea)I'ds 

Here the eigenfunction <Pa is determined from the tri­
angular representation (13) 

q>,(x)=8(a) (¢_.'(x+2Rea) 

+ f K b(x+2 Rea,y+2 Re a)1jJ_.·(y+2 Re a)dY). 

As is shown in the Appendix, as x - - "", 

<pa(X) =8(a, b, _00)¢_a"(x+2Re a+2b'), 

a'(a+b) 
8(a, b, -00)=-8(a)---exp[ -~(a·)b·l. 

a'(a-b) . 

In connection with the fact that <pa(x) is proportional to 
</i-a * as x - - "", it follows that the scattering matrix 
is 

8(a, b, t)=8(a, b, -oo)exp (4~'(a)t). (18) 

On the other hand, as t - "", the solitons a and b 
change places. Carrying out similar calculations, we 
establish the fact that the scattering matrix in this case 
has the form 

a (2 Re a) a (a') a (a-b) 
8 (a, b, 00) = - M,' (00 )a(a) a (a+b) exp[ -2~' (a) Re a+2~ (a) b 1. 

The time behavior of the scattering matrix can be 
found from this expression by continuing it in time to 
small t. Setting the result equal to (18) at t = 0, we 
find that as a result of collision of the slow soliton (a) 
with the fast soliton (b), M~ has been changed: 

I M.+ I' I a(a-b) I' 
_----C = -(--) exp[ 4 Re (~(a) b) 1. 
M.- a a+b . 

Repeating these discussions for soliton (b), we obtain 

I ~I'= I a(a+b) I.' exp[-4Re(~(b)a)1. 
M,- a(a-b) 

In particular, the conclusion then follows that the 
collisions are pair collisions o Only the phase of the 
soliton 

858 SOY. Phys.·JETP, Vol. 40, No.5 

L1q>=ln IM.+IM.-I' 

is changed as a result of the collisions. Here, in con­
trast with ordinary SOlitons, an additional phase shift 
appears in A<p that is equal to -4 Re(~ (b)a) for the 
fast soliton and to 4 Re( t (a)b) for the slow one. These 
are connected with the fact that the soliton is a disloca­
tion of the soliton lattice. In the case in which the per­
turbation u is a localized one, there is a limitation on 
the number of solitons: 

r.an~PW+iq{J)·, (p,q-are integers), (19) 

which is connected with the fact that as x - - 00 the 
lattice is unperturbed. From this it follows, in particu­
lar, that the minimum number of possible dislocations 
is equal to 20 Expression (19) can be regarded in a 
sense as a "parametric" perturbation of the disloca­
tions. In concluding this section, we write out the ex­
plicit expression for the N -soliton solution 

d' 
V=uo(x)+2 dx,ln L1, 

L1=det 116nm+Mn' (t) J ¢n (S)¢m' (S)dS\\. 

One can also establish directly from investigation of 
this solution that the interaction of solitons is of paired 
nature, i.e., the change of phase of each soliton repre­
sents the sum of phases A<p in the scattering by each 
indi vidual soliton. 

5. ASYMPTOTIC STATES 

In this section, we shall prove that the asymptotic 
, state of any initial condition is a set of solitons. The 
latter is equivalent to the fact that the soliton lattice 
turns out to be stable. As follows from the results of 
the previous section, the lattice can only change its 
phase by an amount equal to twice the sum of phases of 
all the dislocations which leave on the right. 

Thus, we must prove that the effect of the nonsoliton 
part can be neglected asymptotically as t - "". For 
this purpose, as was shown in[41, it suffices to establish 
that as t - 00 the kernel F(x, y, t), which corresponds 
to the continuous spectrum, tends to zero. First we 
shall prove the condition of unitarity for the scattering 
matrices O!, f3. For this purpose, we introduce two func­
tions (Jost functions): <Pa, <Pa, which are solutions of 
Eq. (14): 

q>.(x) ~1jJ.(x) as x~oo, cD. (x) ~¢a(X) as x~-oo. 

Here, as it is not difficult to see, <Pa and <P~ are 
linearly independent, whence it follows from comparison 
with Sec. 3 that 

q>a (x) =a(a) cD.(x) +~ (a) cD; (x). 

Calculating the Wronskian {<Pa, <PaJ, which does not 
depend on x, we obtain the unitarity condition 

I a(a) I '-I ~(a)1 '=1. 

It then follows that I p (a, 0) I :s 1/2110 We now consider 
the expression 

. 1 J ~'(a,t) 
F(x,y,t)=-2 . -(-)-¢.(X) 1jJ.(y) da. 

:TU c a a 

We note that (:J*(a, t) ~ exp( -4y '(a)t), i.e., as t - uo 

the given integral is the integral of a rapidly oscillating 
function. It then also follows that F(x, y, t) - 0 as 
t - 00. It is ob vious that this is also valid as t - - "". 
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Thus the effect of the nonsoliton part can be neglected 
as t - 00 and the asymptotic state of any initial condi­
tion is a set of solitons. This also proves the fact of 
stability of the soliton lattice, 

In conclUSion, the authors thank Y. E. Zakharov for 
his interest in the work and S. M. Manakov for useful 
discussions. 

APPENDIX 

We consider the expression 

<P.(X)=I/l.(X)+S K,(x,y)I/l.(y)dy, 

K,(x, y) =-M,'I/l,(x) I/l" (y) / {HM" I I I/l, (y) l'dY }, 

(A.l) 

where the quantities a and b correspond to values of 
the energy from the forbidden bands with 1m p (a) ;. 0 
and 1m p (b) ;. O. We find the asymptotic form of rpa(x) 
as x - 00, We first note that the functions rpa(x) and 
l/'b(X) increase exponentially as x - - 00. Further, us­
ing Eq. (14) and the formula for the addition of ?; func­
tions,[6] we find that the integrals in (A.l) are expressed 
in terms of the 'ff' function: 

S I/l. (y) I/l, (y) dy . 
'ff" (x') -rp' (a) ] 
rp (x') -rp (a) 

It is convenient in what follows to express this an­
swer in terms of (J functions, Using the representation 
of the 'ff' functions in terms of (J functions (see[B], 
p. 323): 

'ff'(u)-'ff'(v)= 
a(u+v)a(u-v) 

a'(u)a'(v) 

1 11 'ff'(x) 'ff"(x) i a(x+a+b)a(x-a)a(x-b)a(a-b) 
- 1 'ff'(a) 'ff"(a) = 
2 1 'ff'(b) 'ff"(b} a3 (x)a 3 (a)a3 (b) 

we get 

S
w a(x'+a+b)a(a)a(b)a(x') 
• I/l.(Y)I/l,(y)dY=I/l.(x)I/l,(x) a(a+b)a(x'+a)a(x'+b) 
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It then follows immediately that, as x - - 00, 

<p(x) =I/l.(x) IJl (x', a, b), 

a(x+a+b)a(a) a(2b)a(x+b) 

a(a+b) a(b)a(x+a) a(x+2b) 

(A.2) 
lJl(x,a,b)=l 

We now consider the function .p(x, a, b). This func­
tion is elliptic in the arguments x, a with poles at the 
points a = -b, x = -a, x = -2b and points comparable 
with them. Since that the given function is elliptic, 
.p(x, a, b) has only three zeros in the fundamental 
square. The zeros of the function .p(x, a, b) are rather 
easily calculated: a = b, x = 0, x = -a - 2b. It then fol­
lows that 

( b) -c a(a-b)a(x)a(x+a+2b) 
I]) x, a, - ----:---;-c·---;----,--::~-:-~ 

a (x+a)a(x+2b )a(a+b) 

Calculating the residue to .p(x, a, b), for example, at 
the point x = -a, we find that C = -1. Substituting this 
expression in (A.2), we obtain 

a(a-b) 
<p.(x)=I/l.(x+2b)S(a, b), S(a, b) = - -( -b-exp[2~(a) b]. a a+ ) . 
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