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The effect of the finite lifetime of states on nonradiative transitions in diatomic molecules is discussed. It is 
noted that the finite lifetime leads to an important modification of the transition probability. The latter 
may become equal to zero for a certain critical value of the lifetime. Some general properties of transition 
processes, connected with inhomogeneities in plasmas, in diatomic molecules, and in magnetic materials, 
are analyzed. The dependence of the transition coefficients on the parameters of the system is discussed. 

It is well known that systems with inhomogeneous 
parameters (plasmas with density varying in space, 
ferromagnets in inhomogeneous magnetic fields, coupled 
oscillators with time-dependent frequencies, and so on) 
exhibit a new physical phenomenon, namely, resonant 
transfer of energy from one state to another in regions 
where the solutions "cross" (see, for example, rl,2 J). 

Three types of crossing which differ in their formal 
and physical criteria are known at present. [2J The first 
type of crossing of oscillations (states) is characterized 
by the presence of two pOints at which the solutions 
cross in the complex x-plane (x is the coordinate, the 
variation of which results in a change in the parameters 
of the system). If one neglects dissipative corrections 
and other "complex components", the real x axis is 
transparent to both types of oscillation, and the corre­
sponding dispersion curves do not cross but continuously 
approach the crossing region. It is important to note that, 
in this case, the parameters of the system (for example, 
the electric field and refractive index) do not rise sharply 
in this region. This distinguishes the first (or sub-bar­
rier) type of crossing from the second anomalous cross­
ing (see [2J for further details). It is also important to 
note that the transformation coefficient which describes, 
for example, the transfer of energy from one oscillation 
to the other, is proportional to e-05 , i.eo, it is very sensi­
tive to a change in the parameters of the system on which 
05 depends. 

When dissipative factors are taken into account, the 
result is a broadening of the resonances of the crossing 
solutions which, in turn, may have a substantial effect on 
the transformation process and may, in particular, en­
hance it. This phenomenon has already been discussed 
for plasmas. [3, 4J Next, it is known that the crossing of 
the solutions leads to important physical phenomena, not 
only in classical but also in quantum-mechanical sys­
tems (see, for example, [5J). At the same time, we are 
dealing with an over-barrier type of crossing, so that one 
would expect that allowance for the complex additions to 
the energy should appreciably modify the transition 
probability from one state to anothero 

The present paper is mainly concerned with the role 
of "complex components" in quantum-mechanical prob­
lems involving the crossing of states. 

As an example, consider term crossing in the theory 
of atomic collisionso The crossing of atomic terms is 
discussed in many published Rapers for real values of 
energy (see, for example, r6, 7J)0 The complex addition to 
the energy (E = Eo + ir) arises naturally if we investigate 
transitions between levels with finite lifetime n/r, which 
leads to the diffuseness of terms. It is then assumed that 
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the level lifetime is long enough (r « Eo) so that transi­
tions from one term to the other do, in fact, succeed in 
occurring. We next consider certain transition processes 
connected with inhomogeneities in plasmas, diatomic 
molecules, and ferro-antiferromagnets. The dependence 
of transition coefficients on system parameters is then 
discussed. 

1. EFFECT OF TERM DIFFUSENESS ON 
RADIATION LESS TRANSITIONS IN 
DIATOMIC MOLECULES 

It is well known [5,6, 8J that, in the analysis of transi­
tions between two stationary electronic states a = 0 and 
a = 1 with or without change in the orbital angular mo­
mentum of the electronic state (AD -J Al and AD = Al , 
respectively), the problem can be reduced to a system of 
two coupled second-order equations: 

Uo"+fjJoUo=LU" U."+fjJ,U,=LUo, 

2M Ii' J2 
fjJa=t;2[Ta-EoAJr)- 2M-;:;-]' 

where M is the reduced mass of the nuclei, Ta is the 
kinetic energy of the nuclei, EOAo is the energy of the 

(1) 

electrons [measured from E(r - 00)], r is the distance 
between the nuclei, J is the total angular momentum of 
the system, L is the coupling parameter [for large J, 
L = A (r)J/r2], and the primes represent differentiation 
with respect to r. 

Consider the case when either one or both states have 
a finite lifetime. We shall describe a transition in this 
system with the aid of (1), obtained from the time-inde­
pendent Schrodinger equationl) but with coefficients CPa 
which have imaginary additions r a due to the finite life­
time of the stateso 

With regard to the validity of the time-independent 
Schrodinger equation, we note that the formal situation 
in the present case is that, in the time-independent form­
ulation, an infinite approach time is required for the 
collision partner. However, physically, the distances at 
which boundary conditions corresponding to r - 00 can 
be imposed are of the order of rD. Therefore, to describe 
the transition in the language of the time-independent 
Schrodinger equation, it is sufficient to satisfy the con­
dition n 2rr/M « ti, where T ~ ro/v is the characteristic 
collision time (v is the velocity of the nucleus). We shall 
assume that this condition is satisfied. 

The two equations in (1) reduce to the single fourth­
order equation 

• (IV) L' '" [ L" L" ] ,,[ ,2L' fjJo ] , 
Uo -2£Uo + fjJo+fjJ'-L- 2U Uo + 2<po ----r;- Uo 
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+ [ 'Po'P,-L'-2L' ( ~ )' -L" ~ ] Uo=O, 

U,=L-'[Uo"+'PoUo]. 
(2) 

In accordance with the WKB method, the general solu­
tion of (2) will be written in the form 

Uo~ [ ( c+ exp {i S Vo dr }+c_ exp {-i S Vo dr }) exp ( ~ (- J ~:o 
+ S (1 ::') 'I, ) ) + ( d+ exp {i S v, dr} +d_ exp { -i S v, dr } ) 

xexp (+(- Sd:,'-S (1~t,)",))]exp(-+S :~tt'); 
v:., ='ll± (,11"+£') "', 'll='/, ('Po+'ll')' 'I' ='/'('llo-(jl,), 

t= 'I' fL, 

where c! and dz are coefficients. 

(3) 

This solution is valid everywhere except for the 
neighborhoods of the pOints 1'0 = 0, 1'1 = 0, 1'0 = VI' We 
shall be interested in the 1'0 = 1'1 crossing, illustrated in 
the figure, for which Ao f. AI. At points >¥2 + L2 = 0, 
which are located symmetrically relative to the r axis, 
we have 1'0 = 1'1; three Stokes lines emerge from each 
point, of which only one cuts the r axis and joins these 
pOints with one another. The solution on the left of the 
crossing pOints is obtained from (3), in which case y, . y, . 
c. = ce± 41lT and d. = de± 4 1lT , and the limits of integra-
tfon are chosen so-that the lower limits correspond to 
values of r for which 1'0,1 = ° and the upper limits are roo 
To obtain the solutions to the right of the crossing point 
ro, we must bypass the point 1'0 = 1'1 in the complex reg­
ion, as shown in the figure. The coefficients undergo 
discontinuities when the Stokes lines are intersected. 
The parameters which describe these discontinuities can 
be found unambiguously to within a phase factor for a 
unitary transition matrix. [9J This matrix describes 
transitions in dissipative systems. It is shown in the 
Appendix that the unitarity conditions used for dissipa­
tive systems for the transitions matrix are possible when 
the parameter r/cp is small. It will be shown later that 
the transition coefficient is determined by the parameter 
r/L which may be close to unity for r/cp ~ 1 since 
L ~ cp always and, therefore, we shall assume that r/cp 
~ 1 when we consider the transition. 

Consider >¥ in the neighborhood of ro. Since we are 
assuming that the energies of the electron terms have 
imaginary additions, we may write 

'1'= IF,-=Fol (r-ro) +i1', Fo ,= ~ d'llo., I 
' 2 dr r=1'o' 

where r may be either positive or negative. In the same 
neighborhood, L may be assumed to be constant. Pro-
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ceeding by analogy with, [6J and bypassing the point 
1'0 = 1'1, we obtain the solution asymptotic in r to the 
right of ro: 

2 1/2 . T Jt 

Uo= (-:;,-) [(ce-'+d(1-e-")'/'r")exp (i J Vo dr-i4") 
Vo=O 

+ (ce-'+d(1-e-")'/'e i') exp (i J vodrti ; )], 
"'0=0 

(4) 

+(-c(1-e-")'/'e-i'+de-')exp (-i S v, dr+i : )], 
,,\=0 

TO TO 

-r= S Vo dr-- S v, dr, 
'\10=0 ",=0 

2IF,-Fol (v,+vo) , 

{ 211'1 ( 1" ) 'f, 2 . 11'1} , 6=60 1--- 1-- --arcsm--, 1<,L, 6=0, 1'>L. 
nL L' n L 

We shall be interested in the transition of the molecule 
from one electronic state to another when the crossing 
point ro is traversed twice. Suppose that the molecule is 
initially in the (J = ° state, and that its final state can be 
either (J = ° or (J = 1. The boundary conditions at infinity 
for the nuclear wave function, which correspond to this 
situation in the WKB approximation, are 

lim Uo=(_2_)'f' [(1Jo+..!....)e"exp(i f vodr-i n4 ) 
r_<XI n'Y)o 2 Vo=lI 

1=~~n; (- S v,dr+ J !l,dr). 
">',=0 111=0 

If we satisfy these boundary conditions, we obtain a 
set of equations for the constants 1/0,1/1> c, d, which 
yield 

1]o=-i[ e-i,+ (1-e-") e-i("H) sin 'r], 
1], =i(1-e-") "'e-i,,+y)-' sin -r. 

The flux of Uo is then proportional to 

(21 •• ) U,'Uo=Re (1]0+1]0110) = - (1-e-") e-" sin'-r. 

The flux of U1 is proportional to 

(5) 

(6) 

It is important to note that this transition corresponds 
to two transits through roo The first of the factors, 
1 - e-25, is connected with the transition probability 
from one term to the other when the point ro is traversed, 
and the second, e -25, is connected with the probability of 
remaining on the same term. When r =, 0, we obtain the 
result reported by Stuckelberg, [6J in which case the 
maximum value 11/~12 = Y4sin2T is reached for 50 = %ln2 
(where 11)~12 is the transition probability without allowing 
for the term diffuseness). Since >¥ = 1'2(cpO - c(1), the im­
aginary addition r is determined by the difference be­
tween the imaginary additions to cpo and CP1, which corre­
spond to the additions n2r 0,1 1M to the t.erm energy, 
which in turn are determined by the finite lifetime of the 
state. Suppose that the energy of the first term has the 
imaginary addition n2r 1M, Le., this state has a finite 
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lifetime. At the critical value of the lifetime, when Irl 
= L, the point v~ = v~ lies on the real axis of r. In this 
case, 111112 = 0, i.e., the flux of U 1 is zero, which corre­
sponds to zero transition probability. It is clear from 
the expression for 0 that, for large 00, when 11)~12 is 
close to zero, the probability may be a maximum because 
of the finite lifetime of the state. 

2. SOME GENERAL PROPERTIES OF TRANSITION 
PROCESSES CONNECTED WITH INHOMOGENEITY 
IN PLASMAS, DIATOMIC MOLECULES, AND FERRO­
ANTIFERROMAGNETS 

In this section, we consider the transformation of 
spin waves into acoustic waves near the ferroacoustic 
resonance, the transformation of the extraordinary wave 
into the ordinary wave near the total reflection point for 
an ordinary wave, and transitions between terms in a 
diatomic molecule near their crossing point with a view 
to establishing the general features of these phenomena. 
We have to consider the coupled second-order equations 

U:'I+(q:>OI+aL')UOI=( b : +CL) U'O+dOlLU;,o. 

in which the coupling is produced by the quantities under 
investigation themselves (diatomic molecule, c = 1, a = b 
= dO• 1 = 0), r6J or their derivatives (ferro-antiferro­
magnet; do,l = ± 1, a = b = c = O[lD,llJ), or in mixed 
form (plasmas, a = 1, b = -1, c = 0, do.1 = -2 [3,4 J ). The 
coupled equations have two wave-number branches for 
normal oscillations. The above processes correspond 
either to transition between branches of normal oscilla­
tions (plasmas), or to the displacement along one of the 
branches (ferro-antiferromagnet), or to the sum of such 
transitions (diatomic molecule). The form of the wave­
number branches for normal oscillations near the tran­
sition point is illustrated in the figure. 

The distance between the branches is determined by 
the coupling parameters L. The plasma coupling param­
eter is, in this case, a function of the damping r: 

L=-I~' fcr 
dz (lI-l(fer+f) -1) (v+l(rer-r) -1) , 

where v = 47Te 2N(z)/mw 2, N(z) is the plasma density, 
rcr = eHosin2 e/mcwlcos 81, and 8 is the angle between 
the wave vector and the magnetic field Ho. In the diatomic 
molecule, L is independent of r, and in the ferro-anti­
ferromagnet L = 2y2M~/PCt(]l, where y is the magneto­
striction constant, ci is the velocity of transverse sound 
waves, Mo is the magnetic moment, and (]I is the elastic 
constant. 

Because of the presence of complex additions r which 
are connected with collisions (plasmas), relaxation 
(ferro-antiferromagnets), and finite lifetime of the level 
(diatomic molecules), the separation between the normal 
oscillation curves may alter when the curves merge for 
certain critical values r cr' The presence of the complex 
additions increases the probability of transition between 
the normal oscillation branches, thus affecting the proba­
bility of the physical transition under consideration, The 
transformation coefficient which describes the trans­
formation of the extraordinary wave into the ordinary 
wave in inhomogeneous plasmas in the presence of colli­
sions is obtained in r3,4J: 

K=e{~0); 

0=Oo(1-~) , Oo=nko['er/~(dB) , 
r CI ~o dz z=tp 

where ko is the wave vector and Po is a numerical factor. 
The coefficient K is a measure of the fraction of the 
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incident-wave amplitude which, having reached the trans­
formation point, is transformed into another type of wave 
(without taking into account the reduction in amplitude 
due to collisions up to the point of transformation). 

SchlOmann and Joseph [10J have considered the trans­
formation of a spin wave into an acoustic wave in a ferro­
magnet placed in an inhomogeneous magnetic field to 
ensure ferroacoustic resonance, without taking into ac­
count spin-wave damping. Bar'yakhtar et al. [llJ have 
obtained an expression for the transformation coefficient 
describing the change in the spin-wave amplitude between 
the antiferromagnetic and the ferroacoustic resonances 
(see, for example, [12J). To obtain the transformation 
coefficient for the spin wave generated at the antiferro­
magnetic resonance point into an acoustic wave, the 
coefficient given in ruJ must be multiplied by the coeffi­
cient representing the transformation of these waves at 
the ferroacoustic resonance point. In the absence of 
damping, this coefficient is given by [10J 

K=1-exp (-0 0 ) 

and for the usually encountered magnetic field inhomo­
geneities, it approaches unity, so that the total trans­
formation coefficient is the same as in rllJ • 

On the other hand, in the presence of spin-wave damp­
ing approaching the critical value r cr' the argument of 
the exponential acquires an additional factor close to 
zero, which ensures that the coefficient describing the 
transformation of the spin wave into the acoustic wave is 
small, so that the total transformation coefficient is 
small. Since the equations for the wave numbers of 
atomic molecule are similar, calculations of the factor 
in the argument of the exponential, 0, which depends on 
the damping coefficient K, are analogous to the calcula­
tions performed in the preceding section and will there­
fore not be reproduced here. The final result is 

6=60 [1-~ (1- (-'::')')'/' -~arcsin (~)]. 
nfer fer JI reI 

60= 2Monk,U / ( dB ) , r cr= 2k,L 
dz ._. p (k,'-L') 'I. ' 

where kt is the wave number of the transverse acoustic 
wave. Consequently, the presence of the complex addi­
tions may enhance physical transitions connected with 
the transition between the branches of normal oscilla­
tions (plasma and diatomic molecule) and may weaken 
transitions connected with the transition along one of the 
branches (ferro-antiferromagnet), 

Finally, we note some general effects. The form of 
the expression for the wave numbers of normal oscilla­
tions completely determines the dependence of the argu­
ment of the exponential on the ratio r /r c . If the coup­
ling between the equations is produced by rthe quantities 
under consideration themselves, then 0 is inversely 
proportional to the wave number. On the other hand, if 
the coupling is through the derivatives, then it is propor­
tional to the wave number. The numerator of the argu­
ment of the exponential always includes the derivative of 
the quantity defining the "angle" between normal oscilla­
tion branches in the particular transition. 

APPENDIX 

It is well-known that the unitary transformation 
matrix conserves the vector norm and, conversely, if 
the vector norm is conserved, the transformation matrix 
is unitary. Consider the two coupled equations with com­
plex coefficients: 
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U."+q>.(r) U.=L(r) U" U."+q>.(r) U.=L(r) U.; 

<P',' =iji.,. -if., •. 

Near the pOint n 1 = n2 we then have 

(A.l) 

Q.,~= ~ {q>.+q>.-i(f.+f.) ±[ (q>.-q>.-i(f.-f.) ) '+4L'] "'}. 

and from (A.l) we have 

f.-f.+tII sin X { (J' ) J II' exp 2 II.'sinp.dr IAII . " 
IIo2 r r d 

-lL'exp (2 SII"sinp.dr) IBI'}+2i [cosp,exp (2 J II.' sin p. dr) dr IAI' 
1', r, 

, d 
+ cos p. exp (2 I n.' sin p. dr) dr IBI' ] =0. 

" 
where A and B are the amplitudes in the WKB approxi­
mation corresponding to the frequencies n 1 and n 2 : 

II.\= ('1, «q>.+q>.±tII cos x)'+ (f,+f,±tII sin X)'» "'. 

1 ( f.+f.±tII sin X ) 
p." = -arctg • 

2 q>,+q>.±tII cos X 

ClI= ([ (q>,-<p.)'+4L'- (f.-f.)'] +4(f,-f.)'(<p.-q>.)') "'. 

1 (2 (f,-f.) (q>.-<p.)' ) 
x=-arctg . 

2 (<p.-<p.)'+4L"-(f.-r.)' 

When ro = r 1 = 0, we have the usual conservation law 
(see, for example, [9J) 

d 
-(IAI'+IBI')=O, T. e. IAI'+IBI'=const. 
dr 

Therefore, the vector norm is an invariant quantity 
near ro, where n 1 = n 2• Consequently, the transition 
matrix describing the matching of asymptotic solutions 
is unitary. 

When r/cp « 1, the conservation law is satisfied ap­
proximately and, therefore, the matrix is approximately 
unitary. The admissible error is then determined by the 
ratio r/cp. The transition matrix corresponding to the 
case considered in the first section then has a form 
analogous to that given in [9J : 

M= ( 
ie'" (1-e-") 'I. 

e-' 

The difference lies only in the definition of 1) : 
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6=~ J(Q,-Q,)dr 
2 c 

where the contour C joins segments of the real axis and 
surrounds the point n 1 = n 2 nearest to this axis. 

We are indebted to N. S. Erokhin and Y. Y. Gann for 
useful discussions. 

I) An example of the application of the time-independent fonnulation 
of the problem to a system with a fmite lifetime is the problem of 
resonance on quasidiscrete levels, which is discussed by Landau and 
Lifshitz [5]. 
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