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We obtain an expression for the amplitude and the phase of a nonlinear electrostatic wave in an 
inhomogeneous plasma; it follows from this that even a small gradient in the concentration changes 
appreciably the way the amplitude and phase depends on the distance from the source--as compared 
to the homogeneous plasma. Moreover, the additional phase shift, caused by the inhomogeneous 
plasma, increases, and in some cases determines the the modulation instability growth rate. An 
experimental check of the results is possible. 

1. Recently considerable success has been achieved 
in experimental studies of nonlinear effects caused by 
the resonance interaction of monochromatic Langmuir 
waves with plasma particles (see, e.g., [1,2]). The gen­
eral setup of such experiments consists in the following. 
One supplies a potential on a grid (the point x = 0 on the 
figure, see below) with a frequency :.J close to the plasma 
frequency :.Jp which generates Langmuir oscillations 
propagating along the axis of the plasma column. Mea­
surement of the field amplitude at different distances 
from the source in a stable plasma show initially linear 
damping with the Landau damping rate YL (YL < 0) 
changing at distances of the order of the nonlinear scale 
length 

IN=2nwTlk, T=(mlekE)"', (1) 

(E(x) is the wave amplitude, k(x) the wave number) to 
oscillations with reriod IN in agreement with the non­
linear theory y-5 After that the amplitude in a homo­
geneous plasma must tend to a constant value due to the 
establishing of an ergodic state in the resonance region 
of phase space. [3,5) 

We consider in the present paper the influence of 
effects of the inhomogeneity of the plasma on the be­
havior of the amplitude and phase of the wave. We shall 
see below that even a small concentration gradient along 
the x axis suffices for the wave to be appreciably damped 
over distances of the order of 5 to 10 times IN from the 
source. Moreover, the inhomogeneity in the plasma leads 
to an additional nonlinear shift in the frequency which un­
der well-defined conditions may cause a modulation in­
stability. The expressions obtained in this paper for the 
changes in the amplitude and the frequency shift can di­
rectly be compared with experiments which, in our opin­
ion, are within the present-day possible limits. 

2. We write the wave equation in the form 

S"=E(x, t)sin (f k(x')dx' -wt+<p ) , (2) 
o 

where E(x, t), k(x), and cp(x, t) are slowly varying func­
tions, while k(x) is determined from the usual dispersion 
law, in which the plasma frequency w depends on x as 
a parameter. E(x, t) and cp(x, t) satisfy the equations 

~+~(v,U)+v:~ (~u) =-jiff 
ot ox ox ox 

2 t+n/w 00 :t 

~ :n e: E J dt' J dv(f-/L)sin (J k(X')dx'-wt'+<p) , 
t_n/~l _00 0 

(3) 
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Here U = (E 2/161T)8(E:.J)/CJ:.J is the energy density in the 
wave, Vg = dW/dk is the group velocity, Vg = dVg/dk, f 
is the dIstribution function of the resonance electrons, 
and fL their distribution function in the linear approxi­
mation. 

We have shown earlier[sl that under certain conditions 
which will be discussed below (see (9)) the right-hand 
side of (3) takes the form'). It will be clear from the ex-

T- 2 o(ew) ro'1L ( m ) 'I, 'I, 1 dk k 
JS"=--.---- -- E --In-. 

n' ow k, ek k dx k, 
(5) 

pression to be obtained below for I)w that the term with 
fJrp/8x in Eq. (3) is small compared to (5). Putting fur­
ther the time-derivative in (3) equal to zero, we get the 
following equation for the field in the stationary regime: 

(3a) 

We shall now assume that the wave parameters sat­
isfy the conditions 

(6) 

(here and henceforth the index 0 will indicate values of 
the various quantities at x = 0). The last of inequalities 
(6) means that the wave must be sufficiently nonlinear, 
and the first one (as will become clear from what fol­
lows) guarantees the fastest damping of the wave for 
very small density gradients. It will, in particular, be­
come clear in what follows that, thanks to the first of 
conditions (6), the amplitude is already considerably 
damped for small Ak = k - ko. Bearing this in mind we 
can write the solution of Eqs. (3) and (5) in the form 

( k ) ,/, ( E ) ·f. 12 1L(roTO)3 ,k 
- - =1+----1n-. 
ko Eo . n' kVg ko 

(7) 

It follows from (7) that E « Eo when 

I'1k kv, 1'/' 
/;'''''n I 121L(roTO)3 (8) 

In that case Ak« k by virtue of (6).2) 

Equation (5) is valid when[61 

4 d ( 1) 1 dk 1 (9) 
-;J;Tx ~ <k"d:i« (roT)" 

Substituting (7) into (9) we find that the first of inequali­
ties (9) is satisfied when E > E" where 

(10) 

It is clear from (10) and (6) that E, « Eo. The second of 
inequalities (9) is satisfied when E » E2 where 

(roT,)' dk 
E,=E,-----. 

k' dx (11) 
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Damping of a Langmuir wave excited by a source (x = 0), in an in­
homogeneous plasma column. 

Hence it follows that E2 « Eo when3l 
1 elk 
k'Tx«UI1:o}-'. (12) 

The solution (7) describes thus the decrease of the 
field from Eo to Emin where Emin = Max(E l , E 2). One 
can show that when E < Emin the decrease of the field 
will be faster than is described by Eq. (7) (see figure). 
Under the conditions (6) and (12) one may thus assume 
that the field decreases to values E « Eo for ~k given 
by Eq. (8). Estimating the corresponding distance x from 
the source from the relation x = ~k/( dk/dx) we get 

(13) 

On checks easily, taking inequalities (12) and (6) in to 
account, that x» IN' The relative change in the density 
over such distances can be determined from the relation 

~nln=-6 (kvTICtl) 2~lklk 

(provided the radius of the plasma column is appreciably 
larger than the Debye radius). 

3. Let us turn to an evaluation of the correction to 
the phase cp(x) of the wave. This quantity is determined 
by Eq. (4) where the physical meaning of ow is that of 
the frequency shift in a reference system moving with 
the group velocity of the wave relative to the plasma. 
It turns out that this quantity consists of two parts 

(14) 

where OWl is caused br the non-linear effects in a ho­
mogeneous plasma:[ll 

(15) 

while OW2 is a correction to the frequency caused by the 
"interference" of the effects of nonlinearity and of in­
homogeneity; we show in the Appendix that it is equal to 

(16) 

Expression (16) is valid for those points where the con­
dition4l ~k/k > 4/1T(WTo) is satisfied. 

Assuming that the distribution function fo(v) of the 
unperturbed plasma is Maxwellian, we can transform 
Eq. (15) as follows: 

3.26 (Ctl)' 1 6Ctl'=--"(L --- --. 
:n: kV r {t)T 

(17) 

Comparing the quantities OW2 and OWl given by Eqs. 
(16) and (17) we see, firstly, that they have different 
signs (OW2> 0, ow, < 0) and, secondly, that OW2 in­
creases as the wave is damped (ow 2 (0) = 0), while 10w,1 
decreases. The quantity OW can thus, due to the effect 
of the inhomogeneity, change its sign at suffiCiently 
large distances from the point where the wave is injec­
ted (provided OW2 increases relatively fast) and, more-
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over, can become of the order of /)W2 (the condition for 
this is given by Eq. (23)). 

Substituting the expressions for OWl and OW2 into Eq. 
(4) with 8cp/8t = 0 we find the extra phase cp(x) in the sta­
tionary regime 

~ d:I;' 
q>=- S-6Ctl (x') =<p,+<p,. 

• v, 

The quantity CPl is determined by the quantity OWl: 

. 3.26 "(L ( Ctl \ 's dx' 
<P'=--n--;;;; kVT 0 'C(2)' 

In points where E (x) ~ Eo, 

3,26 "(L ( Ctl )' x 
fP1=--rr-7. k-;;; wTo' < 

while there where E(x)« Eo we get, using (7) 

[ , 1 dk] -I ( Ctl )', TL ,'" <pj=a (Ctl'Co) -- - ----- , 
k' dx kVT k VgCtl To 

(18) 

where the constant a is equal to 

a= (3.26/2f 3) B (II" II.) ""0.8; 

B is a beta function. As far as CP2 is concerned it is de­
termined by the quantity OW2 and equals 

<P'=~ "(LCtl S' 'C(x')M(x')dx'. 
3n' kv, 0 

Substituting now the value of T(X) from (7) we get 

1 [ 1 dk] -, [ E (x) ] <p,=-- (CtlTo)'-- 1---. 
. 3 k' dx Eo 

(19) 

It follows from Eqs. (18) and (19) that changing the 
value of the parameter WTo, i.e., the amplitude of the 
wave injected into the plasma, we can obtain as a result 
essentially different values for the phase shift cp(x). 
For instance, when WTo> (w /kvT)4yL/ kv g the phase 
shift becomes negative (when dk/dx> 0) and is mainly 
determined by the magnitude of the inhomogeneity of 
the plasma column. 

4. In r12 ] it was shown that the nonlinear frequency 
shift (15) causes in a homogeneous plasma a modulation 
instability of a plane monochromatic wave. As the in­
homogeneity of the medium introduces an additional 
frequency shift (16) which, we saw, can be larger than 
(15) and which has the opposite sign we must reconsider 
the modulation instability problem in an inhomogeneous 
plasma. 

Assuming that the wavelength of the perturbations of 
the envelope is larger than the nonlinear scale length 
iN and appreciably smaller than the length x given by 
(13) we can for the analysis of the modulation instability 
use Eqs. (3) and (4) and cho9se the perturbed amplitude 
and phase proportional to elqx-H1t. Linearizing Eqs. (3) 
and (4) with regard to the perturbations we find the fol­
lowing dispersion equation: 

[ ve' [a(eCtl) ]-1 a(;8)] . ,1}{)Ctl 
(Q-v,q)'+(Q-v,q) ~q6Ctl+16ni -- -- =q'v, --E'. 

Vg aCtl iJE' aE' 
(20) 

It is clear from Eqs. (5), (17), and (16) that 

a (;8) 1 j8 a 6Ctl 2 1 
--=-- --E =---,(6Ctl,-IICtl,). 

aE' 4 E" iJE' 4 

By virtue of inequalities (12) and (6) and also the con­
dition WTo> W/kv T we can neglect the second term on 
the left-hand side of (20): 
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(Q-Vgq) '~'I,q'v/ (1\00.-1\00,). (21) 

We saw earlier that Ilw 1 < 0 and that sign Ilw 2 

= sign (dk/dx) so that the modulation instability occurs 
certainly when5) dk/dx and Vg > O. The growth rate of 
this instability is equal to 

r~'I,q[V/(l\ffi,-l\ffi,) 1"'. (22) 

It follows from (22) that, when dk/dx> 0, the inhomo­
geneity increases the growth rate of the modulation in­
stability and, in the case when Ilw 2 > Illwd, will deter­
mine it. 

The discussion given here by us of the evolution of 
the amplitude and phase of the wave field assumed that 
all quantities change little over the nonlinear scale 
length IN' The expression we found for the growth rate 
(22) is thus valid only when q < 27T /IN' The maximum 
value of the growth rate in the region where our theory 
is applicable is thus reached when q ~ 27T liN: 

k 
, r m~"'" 2ffiT [v/ (I\ffi,-I\ffi,) 1"'. 

Substituting here the characteristic value of ~k/k from 
(8) and the field amplitude E from (10) we find 

If the condition 

(23) 

is satisfied, the main contribution to the modulation 
instability will come from the frequency shift IlW 2 which 
arises when we take the inhomogeneity of the medium 
into account. 

5. We now estimate the conditions under which one 
might observe the effects described above. We shall 
first start from the experimental data from [21. Assuming 
that T~1 = 7.37 X 106 S-1, YLTo = 0.5, k = 3.64 cm-" 
w = 2.54 X 108 s-" Yl/v = 0.09 cm-" vT = 2 x 107cm/s, 
we get from (8): ~k/k =~ x 10-2, ~/n = 10-2. Substituting 
into (13) the length of the apparatus x = 50 cm we find 
k-2(dk/dx)(WTo)2 "" 2 X 10-2• According to (10) and (11) 
we have then E1/EO "'" 0.5, E1 > E 2. Thus, when the den­
sity decreases by 1% over the length of the column, the 
amplitude diminishes under the conditions mentioned 
here by roughly a factor 2. One must note that the sen­
sitivity of the results with respect to even very small 
gradients in the concentration was noticed in [21. 

If we now substitute the above-mentioned values of 
the parameters into (19), we get rp2 "" 10 radians, 
rp1 ~ rp2. The effect of the inhomogeneity on the phase 
can be observed by measuring the phase shift at dif­
ferent distances from the source. 

APPENDIX 

DERIVATION OF THE EXPRESSION FOR THE 
NON·L1NEAR FREQUENCY SHIFT tiW2 

For the evaluation of Ilw 2 we can use the general 
formalism developed in161. We introduce the following 
notation 

z 

2s~ f k(x')dx'-<ot+<jl, 

. [ffi 1 (IJ<jl <0 a<jl)] 25~k(x) V--+- -+--
k k at k ax ' 

845 SOy. Phys.-JETP, Vol. 40, No.5 

n k 
a(x)~--<oln-

, 4 k, ' (A.1) 
X~ (s'T'+sin' S)-'i,. 

The kinetic equation for the resonance particles then 
takes the form 

'_ffi_.!l+' ~_ [Sin2s +a-~(~+~.!...)' l~~o, 
k(x) ax 5 as 2,;' 2 at k ax :P a~ , 

. (A.2) 
where we have used the condition for resonance particles: 
~ ::;'1/1'« w. 

This equation differs from the earlier obtained equa­
tion [61 in that it contains derivatives of rp(x,t). However, 
under the conditions considered in the present paper 
these terms are small compared to a. Indeed, it fol­
lows from Eqs, (17) and (4) that 

~(~) 2 iJ'<jl ~~ YLffiTo (Eo) 'I, 

2 k iJx' 3n' kV g E a, 

so that by virtue of conditions (6) and (10) we can neg­
lect in the kinetic equation (A.2) the term containing 
rp (x,t). We can thus for the determination of the distrib­
ution function of the resonance particles use our old 
results. [61 

We expand in Eq. (4) the distribution function in the 
resonance region in terms of the velocity and restrict 
ourselves to the first two terms in the expansion :6) 

f~fo(ffilk)+fo'(ffi!k) (v-ffilk) , (A.2') 

fo is the unperturbed distribution function. In the same 
approximation we can replace the linear distribution 
function fL by fo. Under condition (9), which we can 
write in the form 

(A.3) 

if we use (A.1), the distribution function of the drifting 
particles (I KI < 1) is equal t07 ) 

2 '{ 2 E(x) 1 '( 2' 2 )'I'} f-fo~-fo ----- 1-x sm S 
k n XT XT 

(A.4) 

when - 1 < K < Kcr , and to 

f-fo~~fo'{~[E(x) -~-a(x)] 
k n XT ,(x) 

[ da(x') d ( 1 )]/ [da(x') d ( 1 )] 
x~- dx' T(X') ~+ dx' ,(x') (A.5) 

1 ' 2 } --(l-x'sin's)'I'--a(x) 
x, n 

when Kcr < K < 1. The quantity Kcr is determined from 
the relation 

E (x,,) Ix,,~,; (X)lTo-T (x) a (x) 

(E (K) is the a complete elliptical integral of the second 
kind). 

Formula (A.5) refers to those drifting particles which 
have changed the sign of their relative velocity ~ during 
the time of flight (in the notation use by us in [6Lnega­
tive particles), and also to those which left the trapping 
region of phase space due to the decrease in the wave 
amplitude. The quantity T(X') in (A.5) is the value of 
T in the point where the particle is reflected or where 
it leaves the trapping region 

E(x)/xT(X) ~l/T(x')+G(x') -a(x). (A.6) 

For trapped particles (I KI > 1) we have 
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f-fo=-~fo,r -A,(1-X'Sin'S)'/'+~0(X)]. 
k l XT n 

(A.7) 

Substituting (A.4), (A.5), and (A.7) into (4) we get 

64 {1 (' 6w,= -;.- 'tLT "30 x ) 

(A.8) 
S"[ 2 ( E(X») ] d .(O(x'») '} 

+T(X) 0 -;;a 1-K(x) -1 dx' ,;(x') dx . 

The function of K occurring in the integral in (A.8) is a 
single-valued function of x' according to formula (A.6). 
Moreover, it is positive definite and changes from 

n' 
32 ,;-'(x) [1/';(x')+0(x')-0(x) ]-. (A.9) 

for x' ~ x to 1 for x' = x. 

If the condition I T(x)a(x) I > 1 is satisfied, which, if 
we bear in mind the definition of the quantity a(x) in 
(A.1), is equivalent to the condition .:lk/k> 41(1(WTot" 
we can replace the integrand in (A.8) by (A.9) and ap­
proximately evaluate that integral 

64 { 1 n' 1 } 64 6W'=-'tL1: -o(x)---- ""-·-'tL1:0(X). 
n' 3 32 1:(x) 3n' 

Substituting then the expression from (A.1) for a(x) we 
get (16). 

1)It is clear from (5) that, at least when k-ko ~ ko the sign of the non­
linear decay-rate is independent of the sign of the gradient of k and 
determined merely by the sign of 'YL (a more detailed analysis is given 
elsewhere [6-8]). 

2)It is necessary [9] that WTo > (w/kvT)2 in order that no satellites will 
be generated, as that would change the evolution of the wave in an es­
sential way. 

3)When the condition (WT 0/k)2 dk/ dx ;;. I is satisfied the change in the 
phase velocity due to the inhomogeneity is so large that there is no 
particle trapping at all. Karpman and Shklyar [10] obtained for that 
case a general expression for the effective damping rate. 

4)1t is clear from Eq. (A.8) in the Appendix that 6W2 ~ 0 as 6k ~ O. 
5)These conditions are satisfied, in particular, when the radius of the 

plasma column is appreciably larger than the Debye radius so that 
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and the display diminishes when x increases (dn/dx < 0). 
6)Taking the third term in the expansion, which is proportional to the 

second derivative of the distribution function 32fo/3v2Iv= w/k, into 
account leads to the expression for the nonlinear frequency shift in a 
homogeneous medium, 6w I found by Morales and O'Neil. [11] 

7)We have given explicitly only the distribution function in the region in 
front of the maximum of the wave packet. Expressions (A A) to (A.7) 
refer to the region beyond the maximum. One can obtain them by the 
method developed in [6] taking into account the differences of the 
regions at different sides of the maximum which we noted there. 
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