
---------\ 

Nonresonant charge transfer in the field of an intense light wave 

R. Z. Vitlina, A. V. Chaplik, and M. V. Entin 

Institute for Physics of Semiconductors, Siberian Division, USSR Academy of Sciences 
(Submitted May 22, 1974) 
Zh. Eksp. Teor. Fiz. 67, 1667-1673 (November 1974) 

Nonresonant charge transfer in the field of an intense electromagnetic wave of frequency close to the 
resonance defect is investigated. It is shown that charge transfer is determined by electric dipole 
transitions between states of a quasimolecule. Expressions are obtained for the charge exchange cross 
section. It is shown that the cross section may significantly exceed the geometrical cross section. 

In their recent papers Gudzenko and Yakovlenko[l,Zj 
have noted that the presence of an intense electromag­
netic field may significantly increase the cross section 
for inelastic nonresonant collisions. They have investi­
gated the exchange of excitation between two atoms in 
the presence of a field of frequency equal to the differ­
ence between the levels of the colliding atoms. In P ] the 
cross section for the transfer of excitation was obtained 
only at the center of the absorption line. But the cross 
section for an inelastic collision will also be signif­
icantly increased if the frequency of the field does not 
coincide with the resonance defect. Indeed, the differ­
ence between the terms of the quasimolecule formed by 
the colliding atoms may at a certain distance between 
them coincide with the frequency of the external field. 
In the neighborhood of this point intense electronic 
transitions will occur. As a result the atoms on separa­
tion can turn out to be in different electronic states. 

For the occurrence of such a process it is necessary 
that the matrix element of the electromagnetic pertur­
bation p. A between the states of the quasimolecule 
should be different from zero. Of the greatest interest 
is the case when the electric dipole transition is allowed 
since the internuclear distances Significant for the 
problem are considerably smaller than the wavelength 
of the resonance field. Just such a situation is realized 
in the case of nonresonant charge transfer. We consider 
this problem in greater detail. 

In the production of positi ve or negative ions by 
charge transfer between neutral atoms the behavior of 
quasimolecular terms between which the transition oc­
curs qualitatively corresponds to the diagram (the 
states are assumed to be nondegenerate). At a distance 
R much larger than the atomic radius a the molecular 
terms U1 and Uz contain two contributions. The first 
contribution depends exponentially on the distance and 
is of exchange origin. The second corresponds to the 
polarization interaction and is proportional to K4. The 
factor in front of the exponential in the exchange term 
contains different powers of R depending on the states 
of the atoms between which the electron is transferred. 
If the frequency of the field w is close to the difference 
between the levels of the atoms ~, so that n = w - ~ 

« ~, then the resonance distance Ro is much larger 
than the atomic dimensions (Ro is a root of the equa­
tion U 1 = Uz + w). In this case one should expect that 
the cross section for the process will appreciably ex­
ceed the geometric cross section, and the matrix ele­
ment of the dipole moment can be calculated utilizing 
the asymptotic form of the molecular wave functions. 

The simplest case is the case of charge transfer be­
tween negative ions when the approximation of short 
range potentials is applicable. The terms of the quasi-
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molecule are determined by the relations (in atomic 
units) U1,z(R) = -K~,z(R)/2, where Kl,Z are roots of the 
equation 

(x-a) (x-~) ~R-2e-'"n. (1) 

Here a = (21 Ell)I/Z; f3 = (21 Ezl),/z; El) Ez are the bind­
ing energies of the negative ions partiCipating in the 
collision. 

The molecular functions have the form 

[ e-X" rx,I,-RI ] 

1jl,~c, -r-+ (x,-a)ReX,R Ir-RI ' 

- [ e-x2Ir-RI e-x;R e-I<2'.] 
¢,~c, ---+----- . 

Ir-RI R(x,-a) r ' 

c,~( ;~) '[1+ (x,-a)'R'e'x,Rj", 
(2 ) 

_ ( x, ) 'I, [ e-'X,R] -'I, 
C,- - 1 + -;:::;c,------,-;;-

2n R'(x,-a)' 

The expression for the matrix element of the dipole 
moment in the general case is quite complicated. 
Therefore we reproduce its form in the limiting case 
Ha, Rf3 » 1 (it is just this region that is Significant 
when the condition n «~ = 1 a Z - (:lzl/2 is satisfied): 

(3 ) 

where n is the unit vector along the axis of the quasi­
molecule H • For the sake of definiteness we have as­
sumed f3 > a, so that exp[(Q - f3)R]« 1. In the same 
approximation we have for the terms U1,z: 

a 2 a e-2r.dl 

UI"'--2+~_a ~' 

U ",_L __ ~_~ 
, 2 ~-a R' . 

(4) 

In the case of charge transfer between positive ions 
the coefficient in front of the exponential in the formula 
for d 12 will depend on R. However, the principal part of 
the dependence-the exponential with the smaller of the 
two damping decrements-will be retained. 

We now write down the system of equations for the 
amplitudes for the transition: 

(5) 

where E and ware the amplitude and the frequency of 
the light wave. 
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We assume the intensity of the field E to be suf­
ficiently small so that the condition d· E « w is satis­
fied. Then in the diagonal elements of H one can 
neglect according to the parameter dEl w the rapidly 
oscillating additional terms V u and V 22. In the neigh­
borhood of the point Ro we expand U 1,2 in series in 
terms of R - Ro and we restrict ourselves to a linear 
approximation. We take the quantity d 12 to be constant 
in the region of transition and equal to do = d 12( Ro). We 
arrive at the system of equations 

ui=[U,(Ro) +v(ou,/oR)otla+doEb cos lilt, 

ib= [U,(Ro) +v(oU';oR)otlb+doEa cos lilt, 
(6 ) 

where v is the radial relative velocity at the point Ro, 
and the time is measured from the moment of passage 
through this point. 

By definition we have U1(Ro) - U2(Ro) = w; introduc­
ing 

a=A exp [-iU,(Ro)t), b=B exp [-iU,(Ro)tl, 

we obtain a system of equations in w~ich the nondiagonal 
element has the form (doE/2)( 1 + e21wt). Neglecting 
the term with the factor exp (2iwt) with respect to the 
parameter doE/ w, we bring the equations to a form 
analogous to the equations of the Landau-Zener prob­
lem[31. 

( iJU,) 1 (iJU,) 1 .A=v - tA+-d,EB, iB=v - tB+-doEA. 
,iJR 0 2 iJR 0 2 

The solution of these equations is well known. The 
probability of charge transfer in the case of two pas­
sages through the point Ro (i.e., for one colliSion) is 
equal to 

n (IOU oU I )-' b"'=2 do'(n",E)' iJR'- iJR ' 0 v . 

(7) 

(8) 

The vectors n1 and n2 determine the direction of the 
axis of the quasimolecule respectively when the atoms 
are approaching each other and separating. Using 
formulas (3), (4) we obtain 

6" = n ~(En",)' In'~. (9) 
, 4 a3(a+~),'(~-a)v (~-a)Q 

We note that the term in d 12 which is exponentially 
small cancels against a similar factor in (aU1/aR)0. 
The quantity 0 ~ E2/v) In2(a2/n), so that under the as­
sumptions made above 0 can be both much greater, and 
much smaller than unity. 

From the foregoing it is clear that the general case 
of an inelastic collision in the field of an intense light 
wave must be described by a formula of the Landau­
Zener type. In various specific situations only the 
parameter 0 will be altered. In particular, d 12 is in­
volved in all cases of charge transfer, but the probabili­
ties of certain collisions accompanied by spin exchange 
or by an exchange of excitation can be determined by 
other multipole moments. In the dependence of the 
terms on R one can include polarization and Van der 
Waals interaction, etc. 

The general limitation on the applicability of formula 
(8) in all these cases is the requirement of a sufficiently 
strong lack of parallelism of the terms at the point Ro. 
In the opposite case a restriction to terms linear with 
respect to t in Hu , H22 becomes unjustified. In the 
problem under consideration this means a limitation on 
n from below. Estimating the quadratic terms of the 
expansion in terms of R - Ro with the aid of formulas 
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(3), (4) we obtain the desired estimate in the form 
n » (do ERo)2 (in this case a, {3 and (3 - a are re­
garded to be quantities of the same order of magnitude). 
Another limitation arises from the requirement that the 
principal contribution to the probability of the transition 
should be made by the point Ro, and not by the domain 
of large R, where the terms are practically parallel. It 
coincides with the well known criterion due to Massey 
and in the present case has the form n » avo 

In order to investigate the region of the detuning of 
n which is not encompassed by the Landau-Zener 
formula we utilize an approach analogous to the theory 
of charge transfer with a small resonance defect[41. 
Separating out in the transition amplitudes the factor 

1 ' ] exp [2i S (Hu+H,,)dt , 

we bring the system (5) to the form 
1 1 

iii =2(Hu-H")a+V,,b, i6=-2(Hu--H")b+V,,a. (10) 

Of all the values of R the only region of importance 
is the one in which \ Hu - H 22 \ ~ V12, since in the oppo­
site case the equations become decoupled, i.e., there 
are no transitions between the terms of a quasimole­
cule. Utilizing once again the approximation aR» 1, 
{3R» 1 and omitting terms which contain rapidly oscil­
lating factors we obtain 

The meaning of the parameters Eo and Vo is clear 
from formulas (3), (4); in Eo we have also included the 
factor I/R2 which varies slowly compared with the ex­
ponential. The limits on the domain of transition are 
determined by the inequality 

and are equal to 

z,,,,,.E.[l-(~)'1'], z,,,,,E...[1+( 4VO')'I'], 
eo eoQ e. eoQ 

if n » V~/ Eo; 

, z,""Q'/4Vo', z,""4Vo'/eo', if Q<V'o'leo. 

It can be easily seen that the parameter V~/ Eo is of the 
order of (doE)2R~, i.e., the case n» V~/Eo corre­
sponds to the Landau-Zener approximation. The region 
of transition in this case is small; its width is: 

R,-R,=.!..ln"":':"=.!..( 4Vo' ) 'I, <~; R"2= __ 1_lnz l,,. 
2a ,z, a Qeo a 2a 

In the general case we must solve the system (10) in 
the region Z1 < Z < Z2 and join the solution obtained with 
the amplitudes a, b for R> R1 and R < R2. We expand 
R(t) near the point Ro = (1/2a) In (Eo/S'li): 

R=Ro+v(Ro) (t-to) 

and reduce the system (10) to the form 

iii + ! (Q-eo' e-'a.') a= V" e-a"b, 

;6 - +<Q-eo' e-2a.,) b= V" e-a"a; (11) 

eo'=eo exp [-2a(Ro-vto»), Vo'=Vo exp [-a:(Ro-vto) I. 

In future we omit the prime on Eo and Vo. 

The requirement of the validity of the expansion car­
ried out above over the whole region between R1 and R2 
again leads to a limitation on n from below, but a 
weaker one than in the Landau-Zener approximation. 
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Estimating the terms in the exponentials quadratic in 
terms of t - to we obtain the criterion of applicability: 
(Rl - R2)2 « Ro/ a. From this it follows that ~11) is 
valid for n ~ v~/ Eo, and in the region n « Vol Eo when 
the Landau-Zener approximation is not applicable the 
the validity of (11) is limited by the condition 

ln' (4V,'iQB,) <In (e,jQ) 

(it is understood that Eo» n). For comparison we re­
call that in the usual nonresonant charge transfer the 
diagonal elements of the system of equations for the 
amplitudes expressed in the base of atomic functions 
are constant (cf.,[41) and there exists a large region 
0< R < a-lIn Ll.-\ where intense transitions take place. 
In the given problem Hll and H22 correspond to variable 
molecular terms which diverge as R is decreased. 
Therefore an adiabatic development of the system cor­
responds to the regions R < R2 and R> Rl when there 
are no electronic transitions. 

The solution of the system (10) is expressed in 
terms of the degenerate hypergeometric function: 

b- ( iB,Z )F (iV" ,1 iQ. i8'Z) 
-exp - 2va 2av8, ' 2 + 2av' 2av ' 

where z = exp (2avt). The initial condition is: a = 0, 
b = 1 as t - _00. Making a connection with the adiabatic 
solutions for R < R2 we obtain the expression for the 
probability of transition in the case when the critical 
region is traversed twice: 

1-cos <jl , 
W = [2 (e-""'·'-e-(·'+"» + (1-e-""'·') (e-'+e-")]' (1_e-ttQ/av) 2 ' 

(12) 
(n",E)' nd.'E' 

6,.,=6. 6,=----, <jl=S (U,-U,)dt. 
E'(1-p'IR,')," ' 4B,avoo 

The integral which defines rp is taken over a time inter­
val between two passages through the point R2. The 
phase rp is large if the relative velocity of the atoms is 
much smaller than the orbital velocity of the electrons. 

Formula (12) goes over into the Landau-Zener 
formula (8) when the conditions n » av, n » V~/ Eo are 
satisfied; we must also average over rp and use the re­
lations 

I ~(U,-U,) I =2ae" d,E=2V,. 
aR , 

In the case V~» Eoav, n « V~/ Eo (n/ av is arbitrary) 
formula (12) coincides with the result of Demkov[41: 

W= sin'(<jl/2~ (13) 
ch'(nQ/2av) 

(in Demkov's formula we must replace Ll. by w - Ll. 
= n). Finally, for n < 0, when the frequency of the field 
is smaller than the resonance defect the probability of 
transition falls off rapidly with increasing I n I : 

[ ( nv.')] ( nlQI) W""2 1-exp - ave, exp -~ . (14) 

Expression (12), as has been stated already is not 
applicable for very small I n I, when the condition 
In2(4V~/Eon)« In(Eo/n) is violated. In this case the 
coefficients of the system (11) cannot be assumed to be 
the same at the points Rl and R2 as was assumed in 
deri ving (12). Further, the quantities U 1,2( R) contain 
contributions of the polarization interaction, while in 
the previous discussion only the exchange interaction 
was taken into account. Usually the exchange interac­
tion dominates over the polarization interaction up to 
quite large R (for example, R ~ 10 atomic units in the 
Hi ion). If Ro falls in this region, then all the formulas 
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obtained above remain valid. In the opposite case the 
term Ll.K/R4 where Ll.K is the difference between the 
polarizabilities of the colliding atoms will be added to 
the difference Hll - H22• Assuming that this quantity 
is slowly varying for R» 1 compared with the exchange 
exponential we can include it in n retaining the fore­
going formulas with a renormalized value of the detun­
ing. 

The cross sections for the collisions are determined 
by the probabilities (8), (12) in terms of the usual 
formula 

Ro 

0=2n S W(p)p dp, . 
where p is the impact parameter for the collision. In 
the case of collisions in a gas a must be averaged over 
all the orientations of the vectors nl,2 with respect to 
the electric field of the wave. We shall treat the trajec­
tory of the atoms as being rectalinear R = p + vt and 
we shall average over p and v taking into account the 
fact that p 1 V. In the Landau-Zener case the averaged 
cross section is equal to 

n, 

(0)=4n S [(e-">-(e-(O'+"»]p dp, 
, 

5,x' ) dx 
(l-p'j Ro') 'I, , 

(15 ) 
, ( 2P'5,X') (e-"-">=S exp - dx 

, R.'(l-p'IR.') 'I, 

n 2 11. d 
X S exp ( -25. ( 1 - ! .. ) (1-x') cos' <jl) : . 

o 

In the case of exponential dependence of the terms, 
00 in (15) has the same value as in (12); in the more 
general case 

1\"=~(doE)'(1 aU, _aU, I V oo ) -'. 
2 aR aR 0 

We quote the results for two limiting cases: 

4rr E' 
(0)''''-R.'5,'''-'' 5,<1, 

3 Voo 

4n'" voo'" 
(0)'''' -5-R.'5o-'I. "'E' 5.~1. 

(16 ) 

The maximum in the cross section is attained at 150 ~ 1, 
the corresponding value of the velocity of the atoms at 
infinity (voo) max is proportional to the intensity of the 
light wave (voo)max ~ E2. At its maximum < a) is of the 
order of magnitude R~ ~ a-2ln2(a2/n), i.e., it can ap­
preciably exceed the geometric cross section of the 
atom. 

We quote some numerical estimates. For El = 0.7 
eV, E2 = 3.5 eV, n = 0.1 Ll., v ~ 104 the maximum of 
<a) is attained at flux densities of cE2/41T ~ 109 W/cm2. 
We proceed to average the probability (12). It can be 
easily seen that in the averaged probability < W) the 
case V~ » Eon (formula (13» opposite to the Landau­
Zener case is not realized, since the operation of 
averaging automatically picks out the range of angles 
for which V~/ aVEo ::, 1. Therefore we shall reproduce 
results for two limiting cases of small and large 150, 
assuming the parameter n/ av to be arbitrary: 

(17) 
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The average cross section obtained from formulas (17) 
depends on two parameters: 00 and n/avoo • In the case 
7Tnl avoo » 1 we again arrive at formulas (16). In the op­
posite limiting case we have: 

2" 
(0)" 3lJoRo'; "Q/av_¢:l, .so¢: 1, 

(18) 
(0) ""t/,,,Ro'; "Q/av_¢:l, .so~1. 

In the formulas exhibited above for the cross sec­
tions and the averaged probabilities (15 )-(18) it is as­
sumed that we can neglect the term with cos <p in ex­
preSSion (12), i.e., we exclude from consideration the 
narrow region of impact parameters close to Ro. Within 
this region the phase <p can be small, but for velocity 
v « 1 in atomic units the region indicated above is not 
significant for the calculation of the total cross section. 

In conclusion we note an interesting characteristic 
feature of the processes considered above. The cross 
section for the transition is essentially determined by 
the value of Ro which is a root of the equation UI - Uz 
= w. Therefore, by varying the frequency of the electro­
magnetic wave and measuring the cross sections for 
inelastic collisions or the intenSity of light absorbed in 
such collisions one can in prinCiple reconstruct the 
shape of the curve for the interatomic interaction in 
definite states of the quasimolecule. It is essential that 
the corresponding band of frequencies, generally speak­
ing, should not coincide with the resonance frequencies 
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of atomic transitions, so that self-absorption would not 
interfere with measurements. 

The authors are grateful to A. M. Dykhne, who 
recognized the present problem, and also to E. V. 
Baklanov, E. G. Batyev, and G. 1. Surdutovich for useful 
discussions. 

IlThe average dipole moment of the quasimolecul(~ is noninvariant with 
respect to the choice of the origin of coordinates since the system under 
consideration has a nonzero total charge. Howevler d 12 , d1l"d22 , which 
are essential for further discussion, possess such invariance in view of 
the orthogonality of 1/11 and 1/12' 

IL. I. Gudzenko and S. 1. Yakovlenko, Zh. Eksp. Teor. 
Fiz. 62, 1686 (1972) [SOY. Phys.-JETP 35, 877 (1972)]. 

2S. 1. Yakovlenko, Zh. Eksp. Teor. Fiz. 64,2020 (1973) 
[Sov. Phys.-JETP 37, 1019 (1973)]. 

3L. D. Landau and E. M. Lifshitz, Kvantovaya mekhan­
ika (Quantum Mechanics) Fizmatgiz, 1963, Sec. 90 
[Addison-Wesley, 1965]. 

4yU. N. Demkov, Zh. Eksp. Teor. Fiz. 45, 195 (1963) 
[Sov. Phys.-JETP 18, 138 (1964)]. 

Translated by G. Volkoff 
180 

R. Z. Vitlina et al. 832 


