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In a strong resonant field the recoil effect is, generally speaking, of a classical nature, namely, gradient 
force causes the atom to move along a certain classical trajectory. A special case arises only at frequencies 
near exact resonance. Owing to saturation, the mean gradient force vanishes in this case and quantum 
fluctuations of the force must be taken into account. A correlation between the induced dipole moment and 
the atom velocity arises in this case. It is shown that an atomic beam incident on the vacuum-resonant 
field interface experiences birefringence. Some features of resonance fluorescence in an inhomogeneous field 
and of heating of atoms in a nonstationary resonance field are discussed. 

1. INTRODUCTION, 

The recoil effect with spontaneous emission of atoms, 
as is well known, becomes noticeable when the resultant 
Doppler frequency shift is larger than the line width y: 

tzk'/M>" (1) 

where M is the mass of the atom and k is the wave num
ber. This condition is satisfied in spectroscopy only for 
very narrow resonances, y ~ 103 _105 Hz. The singu
larities in stimulated emission with allowance for re
coil were considered in [ll as applied to the theory of the 
Lamp dip. The resonant field of the standing wave was 
assumed in this case to be weak in comparison with a 
certain characteristic quantity determined by the line 
width. The, case when only one of the traveling waves is 
weak was studied by Stenholm[21. 

It is of interest to consider the recoil effect in a 
strong field when the trajectory of the atom changes sig
nificantly during the course of the interaction with the 
field. The ques tion is formulated in this manner: how 
does the motion of the atom in an inhomogeneous field 
influence its response, i.e., the average dipole moment 
p? The answer to this question becomes particularly 
clear in the case when p vanishes for an infinitely heavy 
atom. 

In an external monochromatic field given by 

E (r) e-'·'+E' (r) e'·' 

the polarizability ~ of the atom as a function of the 
frequency behaves approximately as shown in Fig. 1; 

(2) 

P = !l!(~, IE21)E, and ~ = W -wo is the detuning of the 
field frequency relative to the transition frequency Wo 

An approximate expression for (l in a strong ihhomo
geneous field and the exact value of QI were obtained by 
the author earlier [3,41 

In a strong field 

(3) 

the dipole moment at ~ = 0 is small, owing to the satu
ration effect, p ~ ny /E « d, and the polarizability can 
be assumed to be equal to zero. In fact, this is true only 
for an atom with M = 00. It will be shown below that for 
an atom with finite mass the dipole moment at exact res
onance is of the following order of magnitude: 

p~d2E/Mv2, (4) 

where d is the matrix element of the dipole moment and 
v is the velocity of the atom relative to the inhomogeneity 
of the field. 
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FIG. I. 

Since the average dipole moment vanishes in the 
resonant case, it is necessary to take its fluctuations 
into account. Therefore the problem of the motion of 
an atom at ~ = 0 becomes essentially a quantum problem. 
In the nonresonant case ~ ::: dEli\. the fluctuations of the 
dipole moment of the atom do not play so important a 
role, and the motion of the atom can be regarded as 
classical under the influence of an average gradient 
force. 

We emphasize that the estimate (4) is suitable only 
for a sufficiently strong inhomogeneous field 

(5) 

The left-hand side of this inequality determines the 
Doppler shift in a classical inhomogeneous field E(r). 
The inequality (5) generalizes the criterion (1) for the 
case of a strong external electromagnetic field. By way 
of example, we estimate with the aid of (5) the value of 
the electromagnetic field for the case when the oscil
lator strength is of the order of unity, M ~ 10 a.u., 
v ~ 104 cm/sec, and y ~ 107 Hz. If the inhomogeneity 
is determined by the resonant wavelength, then E ~ 104 

V/cm, and the emission power is ~5 x 105 W/ cm 2. 

In this paper we consider the behavior of atoms in 
a strong resonant field with allowance for the recoil 
effect. We analyze several examples in which the fluc
tuations of the gradient force are significant. In the 
second section we write down a quantum-kinetic equa
tion for the Wigner density matrix. This equation is 
then used to study the passage of atoms through the 
boundary between vacuum and a strong resonant field. 
It is shown that bir'efringence of the atomic beam is 
produced here in the case of exact resonance. We also 
consider the nonresonant case and discuss the singu
larities of the resonance fluorescence in an inhomo
geneous field. 

A nonmonochromatic random field can be used to 
heat the atoms. The highest heating rate is obtained 
in the case when the average frequency of the field 
coincides with the frequency of the transition. 
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2. KINETIC EQUATION; 
, 

We start from the quantum kinetic equation for the 
density matrix of the atoms p(rlr2t) in an external res
onant field in the form (2). In the approximation of two 
atomic states, the initial equation for p takes the form 
gp(l,2\ _ 1 
--0 -+ yp(l, 2)= _:-r (Ho(l)+H(1»p(l, 2)-p(l, 2) (Ho(2)+H(2»]; 

~t ,h (6) 

Ho=-h'V'/2M, H(r) ='/,<J,M+d(<J+E(r) +<J_E'(r», (7) 

here y denotes the operator of the relaxation of the 
atomic states as a result of the spontaneous emission. 
The matrix a3 is a diagonal Pauli matrix and a+(a_) is 
the operator for the production of the atom in the upper 
(lower) working state. 

Next, as usual, it will be more convenient to use the 
density matrix in the mixed representation (in coordinate 
space and in velOCity space) 

J ""7 (r' r') { iMvr' } p(rvt) = (2:rth)-' d'rp 1'+2",r-2",t exp -h- . (8) 

Changing over to the equation for the Wigner density, 
we confine ourselves to the quasiclassical limit 

hk<Mv. (9) 

We then get from (6) 

dp +lP=.!...(HP-PH)+_l_(VH {Jp+ op VH). 
dt iJt 2M f)v Ov 

(10) 

Here d/dt = a/at + V' V is the total derivative with res
pect to time. The recoil effect in the kinetic equation 
(10) is described by the second term in the right-hand 
side. When this term becomes larger than YP, then the 
recoil effect becomes significant, and we arrive at the 
criterion (5). 

We write down Eqs. (10) for individual components of 
the density matrix of the atoms. We denote by f(rvt) 
= Tr (p(rvt)) the distribution function of the atoms, by 
p(rvt) = dTr(a-p(rvt)) the dipole moment induced by the 
field, and by q(rvt) = Tr(a3P(rvt)) the difference between 
the populations of the upper and lower levels. We then 
obtain from (10) the following system of equations: 

df (VE') Op 
dt=~ f)v + c.c., (11) 

dp ( Y ) id'E tl!' Of 
Tt+ i.HT P=-h- q+2M (VE)f)v , (12) 

dq 2i . 
a;+yq=-yf+7l(pE'-C.C. ). (13) 

The lower level is assumed to be the ground (or metas
table) state; the relaxation operator y is chosen accor
dingly. 

3. BIREFRINGENCE OF ATOMIC BEAM 

We now use Eqs. (1l}-(13) to solve the following very 
simple boundary-value problem: assume that a monoen
ergetic beam of atoms with velOCity Vo(vOx , vOy , 0) is 
incident on the interface x = 0 between vacuum and a 
half-space filled with an optical field E (r). What are the 
trajectories of the atoms inside the region occupied by 
the light? 

If the electromagnetic field propagates along the y 
axis, then we can use for E(x, y) approximately the ex
pression 

E(x, y) =E(x) e"', (14) 

where E (x) is a real function that varies from 0 at 
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x _- "" to E at x _ + "". The explicit form of the func
tion E(x) is ;;:ot important; all that matters is that the 
criterion (5) be satisfied in the transition region. To 
simplify the calculations we assume that it is satisfied 
with a large margin 

d dE (x) 
--->y. 
Mv dx 

(15) 

In the transition layer, the atom is acted upon by two 
forces: a gradient force on the order of ddE(x)/dx along 
the x axis, and a force on the order of 1'J:yk, which is con
nected with the spontaneous emission and which acts 
along the yaxis (for details see[41). When the condition 
(15) is satisfied, the gradient force along the x axis is 
much larger than the force along the y axis. The latter 
can therefore be disregarded. To this end it suffices to 
omit the factor eiky in Expression (14). 

In this approximation the problem beeomes one
dimensional: the velocity along the y axis remains un
changed, and it is necessary to find only the change of 
vx ' We consider first the resonant case ~« (d/Mv)dE/dx. 
Then Eqs. (1l}-(13) in the transition lay,er become much 
simpler and take the form 

(16) 

If the dis tribution function in vacu um as x -- "" is 
fo = A6(vx - vOx), then outside the transition layer, at 
E (x) ~ E"" , we have 

f=Av,.[6 (v:-v_.') +6 (v.'-v+.') ], 

Rep = ~dAvo.[6(v.'-v_.')-6(v.'-v+") 1; (17) 
2 

v' ±.=v",'+2dE~/M. 
Thus, a monoenergetic atomic beam in a. strong resonant 
field splits into two beams of equal intensity with normal 
components v ±x' This is physically connected with the 
fact that although the quantum mean value of the dipole 
moment is indeed equal to zero at ~ = 0, nevertheless 
such a dipole moment can arise as a result of fluctua
tions. The probabilities of occurring in phase or in 
counterphase with the field are equal in this case. 

Assuming the .splitting angle 8 2-8 1 to be small 
(fig. 2), we obtain from (17) 

e,-e,=2(dE~/Mvo')ctge. (18) 

Let us estimate the order of magnitude of this quantity 
for the following case: incident-atom energy on the order 
of 10- 2 eV, E ~ 104 V (power 5 x 105 W/cm 2), 8 = 45°. 
For the resonant transitions of the alkali-metal atoms 
we then have 82-8 1 ~1O-2, 

Under real conditions, however, the thickness of a 
light beam is quite small, and the picture of the splitting 
takes the form shown in Fig. 3 by the solid lines. After 
the passage of the beam, the split atomic beams travel 
in parallel to the incident beam. The divergence of the 
beams is then proportional to the thickness of the light 
beam and becomes small at small thickness. Neverthe-

!I 

z 

FIG. 2 FIG. 3 
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less, even in this case it is possible to observe bire
fringence if we use a beam in which the intensity is 
modulated at a frequency equal to the reciprocal time 
of flight of the atoms through the beam. It is then pos
sible to have for certain atoms a situation wherein the 
atoms on the front boundary are acted upon by the maxi
mum field, and the field at the rear boundary vanishes 
and the atoms move along straight-line trajectories 
(dashed lines). In other words, for these atoms the effect 
due to a thin beam is the same as in the case of half
space. 

4. SINGULARITY OF THE RESONANCE 
FLUORESCENCE IN AN INHOMOGENEOUS FIELD 

We note the following singularity of resonance fluo
rescence in a strong inhomogeneous field. As is well 
known, in the case of resonance fluorescence the emis
sion spectrum of the atom consists of a coherent part 
and an incoherent part. The coherent component has a 
zero emission line width in an external monochromatic 
field and is determined by the average dipole moment 

p (rt) = S d'vp (rvt). (19) 

The incoherent component has a finite emission-line 
width equal to y /2 and is determined by the fluctuations 
of the dipole moment (for details see, e.g.,[S]). In the 
case of a strong homogeneous field at exact resonance 
we have p ~ fiy /E, and the coherent component becomes 
very small. 

In the inhomogeneous case, at not too high a velocity 
of the atom relative to the standing wave, when the con
dition 

Mv'liy«(dE)', (20) 

is satisfied, the value of the average dipole moment can 
increase strongly. Assume that the atom moves in the 
field of a standing wave and the criterion (16) is satis
fied. We can then use formula (17), from which we obtain 
in the first-order approximation in the field 

p (r) =d'E (r)/Mvo'. (21) 

Thus the fraction of the coherent part of the energy 
, 2 2 

emitted by the atom is of the order of (dE/Mv ) . When 
the potential energy becomes comparable with the kin
etic energy, then the coherent and incoherent components 
of the emission become of the same order of magnitude. 

5. NONRESONANT CASE 

To emphasize the difference between the resonant and 
nonresonant cases, let us consider the problem of Sec. 
3 for large detunings ila ~ dE. We assume that when the 
atom moves the field changes in quasistationary manner: 

""dE/dx«;}.E (x). (22) 

In this case the initial equations (11)-(13) can be solved 
by expansion in the small parameter 1/ a. [4] Neglecting 
relaxation, we obtain from (12) approximately 

=~ [E(x)q __ i dE(X)!.!....l +~V"~(E(x) ). 
p 6. Ii 2M dx ov" li6.' ox q 

(23) 

The last two terms in this expression are small, but 
they are the only ones that contribute to Eq. (13) for q. 
When (23) is substituted in (11), it suffices to retain 
only the first term. We finally obtain the following equa
tions for f and q: 
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o d' dE'(x) of 
x(x)v'a;(x(x)q)= MM -a;;- OV, , 

of d' dE'(x) oq 
v. ox = MM -----;;;:- ov" 

(24) 

where x(x) = (1 + 4d2E2(x);b2a2)l/2 is a parameter that 
determines the magnitude of the Stark splitting. 

If the distribution function of the incident atoms has 
the same form as in Sec. 3, then f at x > 0 takes the 
form 

/=VO" [A+O (v"'-VO"'- Ii! (x- 1) )+LO (v/-VO"'+ ~ (x-i) )] (25) 

with A+ + A- = A. 

In the nonresonant case we also have two trajectories 
in accordance with the two possible terms of the atom 
in the external field ±haX(x). Of course, the magnitude 
of the splitting of the trajectories and the shifts of the 
terms under the conditions of inequality (3) and (5) can 
be obtained from the simpler Schrodinger equation for 
a two-level atom. We do not know here, however, what 
fraction of the atoms goes to each trajectory. To answer 
this question it is necessary to solve the kinetic equa
tions (11)-(13) and take the boundary conditions into 
account. If the incident atoms are in the ground state, 
then q = - fa and in this case the atoms move only on 
one trajectory, namely the one determined by the term 
adjacent to the ground state when the field is turned off 
adiabatically. If the incident atoms are in a mixed state, 
then qa = - Wfa and the atoms in the region x > 0 fill 
both trajectories with weights A± = A(1 ± W)/2. In order 
for the atoms to be incident in the mixed state, it suf
fices to apply a weak resonant field El « E such that 
dEl ~lly. 

Notice should be taken of the fundamental difference 
between the resonant and nonresonant scattering. In the 
former case the atoms in the incident beam are all in 
identical states, and we are dealing with birefringence. 
In the nonresonant case, two trajectories appear only 
for atoms that are incident in the mixed state. We have 
here simply the selection, used in masers, of the ex
cited and unexcited atoms. 

6. HEATING OF ATOMS BY A NONMONOCHROMATIC 
FIELD 

In a nonstationary field with a broad frequency spec
trum the atoms experience stochastic acceleration 
(heating). This effect was estimated earli~r[4] for the 
case of strong fields and large detunings ha ~ dE, when 
the average force acting on the atom is strong enough. 
We shall show here that at a = 0 the atoms also become 
heated by the fluctuating gradient force in a nonmono
chromatic field. 

We consider the field of a standing wave with random 
phase cp(t) 

E (xt) =Eo cos (kx+cp (t)) (26) 

and with a phase correlator in the form 

(27) 

so that on the average this field is at resonance with the 
transition frequency. 

If kdE « vMr, then we can use perturbation theory. 
As a result we obtain for the slowly varying part of 
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the distribution function of the atoms fo(vt) = (f(xvt) > 
the Fokker-Planck equation 

8t. ~~ (D(v/f,), D() (dE)' f (28) 
iJt iJv av v ~ 'l'2M v'+(f/k)' 

At low velocities (kv < r) the kinetic energy of the atoms 
increases in proportion to t, and at kv > r we have 
v2 ~ el2 

We note that in the resonant case the diffusion coef
ficient D is, generally speaking, larger than in the non
resonant case. Both coefficients become of the same 
order only if in the nonresonant case the atom has a 
maximu m polarizability Q!, i.e., when.iJ.a ~ dE (see 
Fig. 1). 

7. CONCLUSION 

Thus, in a strong quasistationary field the atom has, 
generally speaking, two trajectories. If the atom was in 
the ground state at the initial instant of time, then it 
it has one trajectory in the resonant case. In the case of 
exact resonance it is necessary to take both trajec
tories into account. 

From the quantum point of view it can be stated that 
at a = 0 the average gradient force vanishes, and account 
must be taken of the fluctuations of this force. A correla
tion exists in this case between the fluctuation of the di
pole moment and the motion of the atom in a strong in-

1'1 
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homogeneous field. As a result, the average dipole 
moment becomes different from zero at exact resonance 
(formula (21)). This circumstance leads to birefringence 
at the atomic beam in the optical field and to the appear
ance of a coherent component in the resonant fluores
cence. 

In the present article we have taken iinto account only 
the fluctuations of the gradient force. If we do not neg
lect the relaxation, then the atom is also acted upon by 
a force due to retardation [4]. It appears that near reson
ance this force also undergoes strong fluctuations. 
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